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   Dear Editor,
This  letter  investigates  the  adaptive  asymptotic  tracking  sliding-

mode control for nonlinear 2-D vehicular platoon systems subject to
actuator  faults.  Firstly,  by  using  the  Nussbaum  function,  the  disad-
vantageous factors brought by the unknown direction actuator faults
can  be  attenuated.  Then,  a  new  neural  network  (NN)  asymptotic
tracking control method is presented based on the sliding-mode con-
trol and bounded estimation approach. By constructing a barrier Lya-
punov  function,  it  can  be  guaranteed  that  all  signals  of  the  corre-
sponding  closed-loop  systems  are  bounded,  and  constraints  are  not
violated.  Finally,  a  numerical  simulation  is  given  to  verify  the
obtained results.

In the past few decades, the research on the vehicular platoon sys-
tems has received growing interests due to its great anti-interference
characteristics and string stability. A plenty of representative control
algorithms in this area have been developed in [1]–[4]. Although the
aforementioned  studies  can  achieve  the  string  stability,  the  issue  of
spacing constraints was not considered. To circumvent this problem,
an interesting control scheme was proposed in [5], which can guaran-
tee  not  only  the  safe  distance  but  also  communication  connectivity.
Besides,  it  is  desirable for vehicles to guarantee the collision avoid-
ance in some chaotic environments. The distributed tracking control
method was proposed for vehicle systems to deal with the problem of
obstacle avoidance in [6] by means of the NN. On the basis of exist-
ing  researches,  a  vehicle  model  on  a  two-dimensional  (2-D)  plane
was  first  considered  in  [7],  which  can  simulate  the  more  realistic
driving  scene.  Besides,  there  were  many  related  results  on  asymp-
totic  tracking  control  problem,  which  provided  asymptotic  stable
tracking error systems with zero errors in [8]–[10].

It  is worth noting that,  the aforementioned results do not consider
the issue of actuator faults, which will lead to deteriorative and insta-
ble  performance  of  the  system.  To  ensure  the  controlled  systems’
security and dependability, various advanced methods on fault-toler-
ant  control  have  been  reported  in  [11]–[13].  Recently,  the  authors
have turned the research direction to the fault-tolerant control of the
vehicular platoon systems since various types of actuator faults trig-
ger risks to vehicle mechanism. In [14]–[16],  the sliding-mode con-
trol  method  and  adaptive  control  technique  were  used  to  eliminate
the impact of faults for platoon systems. Although lots of significant
progress on adaptive fault-tolerant control for vehicular platoon sys-
tems have been proposed, the following defects are inevitable in the
existing control strategies. 1) The disadvantageous factors brought by
the  unknown  direction  actuator  faults  should  be  considered,  which
widely exist in practice and can not be ignored in controller designed.
2) There is no work focusing on the asymptotic tracking control for
vehicular  platoon systems with unknown direction actuator faults  to
provide tracking performance with zero-error tracking.

di(t)

Motivated  by  the  above  considerations,  this  letter  addresses  the
adaptive asymptotic  tracking sliding-mode control  problem for  non-
linear  2-D  vehicular  platoon  systems  subject  to  actuator  faults  with
unknown  directions.  The  main  contributions  lie  in  the  following:
1)  Different  from the traditional  control  methods [1]–[6],  where  the
proposed  control  method  do  not  obey  principle  owing  to  the  exis-
tence of unknown direction actuator faults. To solve this problem, we
design  a  Nussbaum  function  to  eliminate  disadvantageous  factors
brought  by the  unknown direction actuator  faults.  2)  An asymptotic
tracking  control  for  nonlinear  2-D  vehicular  platoon  systems  with
unknown  direction  actuator  faults  is  first  proposed  in  this  work.
Based  on  the  sliding-mode  control,  we  design  a  novel  asymptotic
tracking controller to ensure that the practical distance  tracks the
desired distance d asymptotically.

Problem  formulation: Consider  a  nonlinear ith  follower  system
expressed as the following form:
 

ẋi(t) = vi(t)cosψi(t), ẏi(t) = vi(t) sinψi(t)

v̇i(t) = ai(t) = uF
i (t)+gi(xi,yi,vi, t)+ ri(t)

ψ̇i(t) = ωi(t), ω̇i(t) = ϵi(t)
(1)

xi(t), yi(t)
ψi(t)

vi(t) ai(t)
uF

i (t)
gi(xi,yi,vi, t) ri(t)

ωi(t) ϵi(t)

where  are the vehicle’s lengthwise position and horizontal
position  respectively;  is  the  angle  between  the  speed  direction
and  the X-axis  direction;  and ,  respectively,  the  vehicle’s
velocity  and  acceleration;  denotes  the  actuator  faults;

 is uncertainty under nonlinear unmodeled dynamic; 
represents  external  disturbance;  is  the  angular  rate  and  is
the acceleration of the velocity direction deflection angle.

The leader system can be defined as
 {

ẋ0(t) = v0(t)cosψ0, ẏ0(t) = v0(t) sinψ0
v̇0(t) = a0(t).

(2)

The actuator faults in our research are modeled as follows:
 

uF
i (t) = γi(t, tγ,i)ui(t)+ni(t, tn,i) (3)

γi(t, tγ,i) ni(t, tn,i)
tγ,i tn,i

where  denote  the  fault  factors  and  are  the  bias
faults.  and  are unknown fault time instants.

ri(t)
|ri(t)| ≤ r̄i, i = 1,2, . . . ,n

Assumption  1:  The  external  disturbances  are  unknown  and
bounded satisfying .

γi(t, tγ,i) ni(t, tn,i)
0 < γ

i
≤ |γi(t, tγ,i)| ≤

γi <∞ |ni(t, tn,i)| ≤ n̄i, i = 1,2, . . . ,n

Assumption  2:  The  unknown  parameters  and 
referring to (3) satisfy the following conditions: 

 and .
Here, two error variables of the vehicles are defined as

 

ei(t) = di(t)−d, eψi(t) = ψi−1(t)−ψi (4)
∆min < d < ∆max di(t) ψi(t)where d is the desired distance with .  and 

are  respectively  the  distance  and  the  velocity  direction  deflection
angle, which are expressed as
 

di(t) =
√

(xi−1 − xi)2 + (yi−1 − yi)2 (5)
 

ψi(t) = arctan[(yi−1 − yi)/(xi−1 − xi)]. (6)

0 < ∆min < di(t) < ∆max
∆min ∆max

To guarantee collision avoidance and communication maintenance,
the  spacing  restrictions  are  given  as: ,  where

 is  the  minimum  distance  to  ensure  safety,  while  is  the
maximum distance to maintain effective communication.

In  addition,  to  guarantee  the  distance  restrictions,  the  following
error constraints should not be violated:
 

ka < ei(t) < kb (7)
ka = ∆min −d kb = ∆max −dwhere  and .

Choose the following sliding surfaces:
 

si(t) = ėi(t)+ρ1ei(t)+ρ2|ei(t)|
a
b sgn(ei(t)) (8)

 

sψi(t) = ρ3eψi(t)+ ėψi(t) (9)
a > b ρ1, ρ2

ρ3

where a and b are positive constants satisfying , and  and
 are positive constants.

ui(t)Then, the controller  is established as 
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ui(t) = −(Di(t)+Gi(t)+Hi(t)+ lsi(t))N(ξi(t))
ϵi(t) = ρ3ėψi(t)+ ϵi−1(t)+ lsψi(t) (10)

Di(t) = ρ1ėi(t)+ρ2
a
b |ei(t)|

a
b−1ėi(t)+

Ci(t)−ė2
i (t)

di(t)
, Gi(t) = si(t)×

(
θ̂iζ

T
1,i(Xi)ζ1,i(Xi)√

s2
i ζ

T
1,i(Xi)ζ1,i(Xi)+σ2

i

+
φ̂iζ

T
2,i(Xi)ζ2,i(Xi)√

s2
i ζ

T
2,i(Xi)ζ2,i(Xi)+σ2

i

+
ηi√

s2
i +σ

2
i

) Hi(t) =
1−sgn(ei(t))

νi
×

ei(t)
ka

2−e2
i (t)
+

1+sgn(ei(t))
νi

ei(t)
kb

2−e2
i (t)

where  

, 

 and the  adaptive  update  laws  are  pro-
posed as
 

˙̂θi(t) = αi
( s2

i ζ
T
1,i(Xi)ζ1,i(Xi)√

s2
i ζ

T
1,i(Xi)ζ1,i(Xi)+σ2

i

−σi(t)θ̂i(t)
)

˙̂φi(t) = βi
( s2

i ζ
T
2,i(Xi)ζ2,i(Xi)√

s2
i ζ

T
2,i(Xi)ζ2,i(Xi)+σ2

i

−σi(t)φ̂i(t)
)

ξ̇(t) = (Di(t)+Gi(t)+Hi(t)+ lsi(t))si(t). (11)
αi βi

σi(t)
σi(t) > 0,

limt→∞
r t

t0 σi(ϵ)dϵ ≤ σi < +∞, σi

Here, ,  and l are positive parameters. The Nussbaum function
can be chosen as [7] to attenuate the disadvantageous factors brought
by  unknown  direction  actuator  faults.  In  addition,  is  any  uni-
form  boundedness  continuous  function  expressed  as: 

 with  being  an  unknown  positive
constant.

Theorem 1: Consider the 2-D vehicular platoon systems (1) satisfy-
ing Assumptions 1 and 2. The controller (10) and the adaptive laws
(11) can ensure that  the tracking errors  converge to zero asymptoti-
cally, and all the signals of closed-loop system are bounded.

Proof: The Lyapunov candidate function is selected as
 

V(t) = ΣN
i=1(V s

i (t)+Vb
i (t))

V s
i (t) =

1
2

s2
i (t)+

1
2αi
θ̃2i (t)+

1
2βi
φ̃2

i (t)

Vb
i (t) =

1− sgn(ei(t))
2νi

ln
ka

2

ka
2 − e2

i (t)

+
1+ sgn(ei(t))

2νi
ln

kb
2

kb
2 − e2

i (t)
. (12)

Then, by considering (1), (4) and (8), we can obtain
 

ṡi(t) = Di(t)−γiui −ni(t, tn,i)−gi(xi,yi,vi, t)− ri(t). (13)
Vb

i (t)From (12) and Lemma in [7], the derivative of  gives
 

V̇b
i (t) =

[
1− sgn(ei(t))

νi

ei(t)

ka
2 − e2

i (t)
+

1+ sgn(ei(t))
νi

× ei(t)

kb
2 − e2

i (t)

]
[si(t)−ρ1si(t)−ρ2|ei(t)|

a
b sgn(ei(t))]

≤ −2ρ1Vb
i (t). (14)

By utilizing (12)−(14), we have
 

V̇(t) = si(Di −γiui +gi(xi,yi,vi, t)+ni(t, tn,i)− ri(t)

+
1− sgn(ei(t))

νi

ei(t)

ka
2 − e2

i (t)
+

1+ sgn(ei(t))
νi

ei(t)

kb
2 − e2

i (t)
)

−2ρ1Vb
i (t)− 1

αi
θ̃i

˙̂θi −
1
βi
φ̃i ˙̂φi (15)

θ̂i(t) φ̂i(t) θ∗i φ∗i
θ̃i(t) = θ∗i − θ̂i(t) φ̃i(t) = φ∗i − φ̂i(t)
where  and  represent  the  estimation  of  and .  Define

 and .
W∗Tj,i ζ j,i(Xi), j = 1,2,Referring  to  [12],  the  NN  are  employed  to

approximate the uncertainty of the system such that
 

gi(xi,yi,vi, t) =W∗T1,i ζ1,i(Xi)+ε1,i(t)

ni(t, tn,i) =W∗T2,i ζ2,i(Xi)+ε2,i(t) (16)
ε1,i(t) ε2,i(t) |ε1,i(t)| ≤

ε1,i |ε2,i(t)| ≤ ε2,i W∗1,i W∗2,i

where  and  are  approximate  errors  and satisfy 
 and ,  and  are  the  given  optimal  weight

vectors.

Then, it gives
 

V̇(t) ≤ si
(
Di −γiui +

θ̂isiζ
T
1,i(Xi)ζ1,i(Xi)√

s2
i ζ

T
1,i(Xi)ζ1,i(Xi)+σ2

i

+
siηi√
s2

i +σ
2
i

+
φ̂isiζ

T
2,i(Xi)ζ2,i(Xi)√

s2
i ζ

T
2,i(Xi)ζ2,i(Xi)+σ2

i

+
1− sgn(ei(t))

νi

ei(t)

ka
2 − e2

i (t)

+
1+ sgn(ei(t))

νi

ei(t)

kb
2 − e2

i (t)

)
+ θ∗i σi +φ

∗
i σi −ηiσi

+ θ̃i
( s2

i ζ
T
1,i(Xi)ζ1,i(Xi)√

s2
i ζ

T
1,i(Xi)ζ1,i(Xi)+σ2

i

− 1
αi

˙̂θi
)
−2ρ1Vb

i (t)

+ φ̃i
( s2

i ζ
T
2,i(Xi)ζ2,i(Xi)√

s2
i ζ

T
2,i(Xi)ζ2,i(Xi)+σ2

i

− 1
βi

˙̂φi
)
. (17)

Considering (11) and the estimation errors, it follows that:
 

V̇(t) ≤
N∑

i=1

[(ςN +1)ξ̇i − ls2
i −2ρ1Vb

i (t)]+
N∑

i=1

σiµ. (18)

µ = 1
4 θ
∗2
i +

1
4φ
∗2
i + θ

∗
i +φ

∗
i +ηiwhere .

Integrating both sides of the above inequality yields
 

V(t) ≤ V(0)+
N∑

i=1

w t

0
[(ςN +1)ξ̇i]dτ−

N∑
i=1

l
w t

0
si(τ)2dτ

−
N∑

i=1

w t

0
ρ1Vb

i (τ)dτ+
N∑

i=1

µ
w t

0
σidτ

≤
N∑

i=1

w t

0
[(ςN +1)ξ̇i]dτ+△0 (19)

△0 = V(0)+µσiwith .
V(0)∑N

i=1

r t
0[(ςN +1)ξ̇i]dτ [0,+∞)

V(t) ei, θ̃i, φ̃i
θ̂i φ̂

[0,+∞)

This together  with Lemma in [17],  it  can be shown that  and
 are bounded on . In view of the defini-

tion of ,  the boundedness of  can be achieved.  Besides,
we can obtain that  and  are bounded. Therefore, we can conclude
that all the signals of the controlled system are bounded on .

Next, we prove the asymptotic tracking performance of the sliding
surfaces. By using Barbalat’s Lemma [18], one has
 

lim
t→∞

N∑
i=1

k
w t

0
si(τ)2dτ ≤

N∑
i=1

w t

0
[(γN +1)ξ̇i]dτ+△0 < +∞.

limt→∞ si(t) = 0
limt→∞ ei(t) = 0

From  that,  we  know .  Together  with  (8),  we  can
get .  Therefore,  the  asymptotic  convergence  is
achieved.  In  addition,  to  prove  the  stability  of  sliding  surfaces,  the
Lyapunov function can be selected as following form:
 

Vψ(t) =
N∑

i=1

(Vψ
i (t)), Vψ

i (t) =
1
2

s2
ψi(t). (20)

Then, the derivative of (28) can be gained
 

V̇ψ
i (t) = sψi(t)ṡψi(t) = −ks2

ψi(t)

V̇ψ(t) =
N∑

i=1

(−ks2
ψi(t)) = −2kVψ(t) (21)

V̇ψ(t) < 0 V̇ψ(t) = 0 sψi(t) = 0
V̇ψ(t) < 0
where .  Hence,  if  and  only  if ,  or  else

,  which implies that the object of this letter is  ensured that
sliding surfaces are asymptotically stable.

d = 15 m ∆min = 7 m ∆max = 22 m
a0(t) = 0.6t m/s2, 2.3 m/s2,−5 m/s2

0 s ≤ t < 5 s, 5 s ≤ t < 9 s, 14 s ≤ t < 15 s

Numerical  example: A platoon  of  vehicles  with  1  leader  vehicle
and  4  follower  vehicles  are  taken  into  account.  The  desired  vehicle
distances are set as , and , . The ex-
pected  acceleration  of  leader  is 
while , respectively.

To verify the above results, the system parameters used for simula-
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αi = 10 βi = 0.0009 σi = 10e−5t θ̂i(t) = 1
φ̂i(t) = 1 ρ1 = 1.5 ρ2 = 0.3 ρ3 = 6 a = 6 b = 4 l = 170

gi(xi,yi,vi, t) = −a0,i −a1,ivi(t)−a2,iv2
i (t) a0,i =

0.01176 a1,i = 0.00077616 a2,i = 0.000016
ni(t, tn,i) = sin(it+ iπ)

γi(t, tγ,i) ni(t, tn,i)
γ1(t, tγ,1) = 1.2−0.2cos(t) γ2(t, tγ,2) = 0.5−0.2cos(t) γ3(t, tγ,3) =

−0.9−0.2cos(t) γ4(t, tγ,4) = −0.4+0.2sin(0.01t) ni(t, tn,i) = 0.3+
0.2cos(t) m = 3 n = 0.001

tions  are  given  as: , , , ,
, , , , , , . In the simu-

lation,  is  used  with 
, , . In addition, the distur-

bance  enters  into  the  system at  the  beginning.
Consider  the  fault  efficiency factors  and bias  fault 
as: , , 

, , 
. For the Nussbaum function, we select , .

di(t) ψi−1(t) ψi

ui

Simulation  results  under  the  proposed  scheme  are  depicted  in
Figs. 1(a)−1(d), Figs. 1(a)  and 1(b)  show the  performance  of  output
variable  and  and the desired reference d and , respec-
tively.  It  can  be  observed  from  these  two  figures  that  the  tracking
errors converge to zero asymptotically despite of unknown direction
faults occurring on the actuators, which means that the proposed con-
trol scheme can completely compensate for the influence by the fault
to the system. Fig. 1(c) shows the practical positions of four vehicles,
which can be seen that all followers move to the line, and 2-D driv-
ing scene is  achieved. Fig. 1(d) shows the curve of control  input .
Generally,  according  to  the  simulation  results,  it  is  obvious  that  the
tracking errors converge to zero asymptotically while the whole sig-
nals of closed-loop systems are bounded.

To  better  exhibit  the  effectiveness  of  the  presented  scheme,  we
make  a  comparison  on  convergence  results  between  the  presented
scheme  in  this  letter  and  existing  control  scheme  in  [7].  From  the
comparison  in Fig. 2,  it  is  very  clear  that  the  tracking  errors  in  this
letter are much more satisfactory than those in [7].

Conclusion: In this letter, 2-D vehicular platoon asymptotic track-
ing  sliding-mode  control  under  unknown  directions  actuator  faults
has  been  investigated.  By  using  the  Nussbaum  function,  the  disad-
vantageous factors brought by the unknown direction actuator faults
can be attenuated effectively. Based on the sliding-mode control and
bounded  estimation  approach,  a  new  asymptotic  tracking  control

method is  presented to  realize  the asymptotic  convergence of  track-
ing  errors.  Simulations  verify  the  performance  of  the  proposed
approach.
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Fig. 1. Simulation results of this letter.
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