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ABSTRACT
The grain size is an important steel grading parameter. For metal-
lographic steel images with various grain sizes and complex tex-
tures, it is not possible for a human expert to determine the grain
size efficiently. Meanwhile, conventional computer vision models
are designed based on general images and they are not capable
of achieving high performance in metallographic steel grain size
recognition. To solve these problems, a method based on multiple
receptive field fusion is proposed. A multi-scale convolutional net is
used to extract information of microstructures in various scales. In
addition, to augment the extracted features, a self-attention module
is used to improve the robustness of feature representation with
complex metallographic textures. At last, via a multiple feature
fusion module, the data capacity is extended by projecting features
into multiple hidden spaces. A comprehensive experiment was con-
ducted on the Huawei Cloud Dataset and the classification accuracy
was improved by 27% compared with other SOTA models, while
our computation cost was only 0.06 GFLOPs.
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1 INTRODUCTION
Statistics show that the steel production of China ranks high in the
world. However, the recycling rate of steel in China is far below the
world average. Steel recycling can reduce energy costs and protect
the environment. It should be noted that the key to steel recycling is
accurate grading. Accurate grading can filter out unqualified scrap
and impurities to ensure reasonable and effective recycling.

The grade of steel is a critical metric for evaluating the perfor-
mance, quality and service life of steel. The accuracy of the grading
results directly affects the safety performance measurement of the
steel. Currently, the most common method of grading steel is to
compare microscopic images of steel with standard grade images,
which relies heavily on human manual processing. As a result, the
grading is subject to human experts, which will lead to uncertainty.

Even though deep learning models offer great advantages in
image recognition and classification tasks, general deep learning
models cannot yet be directly applied to metallographic grain size
determination. Themost popular deep learningmodels are designed
based on general image classification tasks. In comparison with
natural images, metallographic images have huge texture and back-
ground differences. In addition, deep learning models usually use
fixed size convolutional kernels or patches to extract local features,
which works well for semantic generalization on general images.
However, the grain patterns and sizes of metallographic images are
diverse, and a fixed-size convolution kernel is not sufficient to cope
with various grain scales. On the other hand, the microstructure im-
ages are of high resolution. Directly training a classification model
on these images would consume a large amount of computational
resources and have a huge impact on the inference efficiency.

To eliminate the performance gap and reduce the training cost,
a multiple receptive field network is designed by us to perceive
various steel grain sizes. During the training process, instead of
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Figure 1: The Dataset [8]. There are 14 classes and 4222 high-resolution images in this dataset. The grain sizes are range from
6.5 to 13.0, and grain textures are complex and various.

Figure 2: Grain sizes distribution in dataset [8]. The distribu-
tion is not even in the dataset.

sampling the high-resolution image, only a particular row or col-
umn of the image is sampled to train the model. In this way, the
training sample amount is greatly increased, which will improve
the robustness of the trained model. In general, different grain sizes
have huge differences in microstructural scales. Therefore, a fixed-
size receptive field cannot cover all kinds of grain sizes. To address
this problem, a multiple receptive field fusion strategy is proposed
by us to extract grain features.

Specifically, the input rows or columns of pixels are fed into
CNNs [15] of various kernel sizes to extract grain features, whose
kernel sizes range from 3 to 59, with a size span of 2. Then, each
feature vector output from these nets is aligned to the length of
512 using an adaptive averaging pooling layer. To fuse receptive
features of different scales and filter out noisy information, we use
channel attention to select and augment features. After feature
augmentation, we finally concatenate all feature vectors and use
MLP [9] (Multilayer Perceptron) to output image labeling results.
Compared with classical models such as ResNet [10] and VIT [6],
our model is very lightweight and can extract proper feature maps
from various metallographic images. Additionally, extracting multi-
ple receptive features for a single sample is equivalent to increasing
the data in the hidden space, which makes our model more accurate
on small training data.

We conducted a comprehensive experiment on the dataset [8].
The dataset [8] contains 4000 high-resolution images, including 14
different levels of microscope steel images. We randomly selected
1000 images as the test set and the rest of the images as the training
set. Compared with classical models such as ResNet [10] and VIT
[6], our model obtains a performance that exceeds these models by

more than 30%. Our experimental results demonstrated the rational-
ity of our model design. For metallographic image classification, it
is necessary to use CNNs of various kernel sizes to handle different
scales of grains. At the same time, our model is lightweight and con-
sumes less energy, which can improve the efficiency of application
to the steel industry and facilitate steel recycling.

The key contributions of this paper are summarized as follows:

• The grain sizes vary greatly among metallographic images
of different grades. However, a fixed-size receptive convolu-
tional kernel can only perceive a limited range of microstruc-
tural grain sizes, which prevents state-of-the-art image recog-
nition models from achieving high performance on metallo-
graphic grain size classification tasks. To address this issue,
a multiple receptive domain fusion strategy is designed to
extract robust features for different grain sizes using multi-
ple kernel size CNNs [15]. Finally, an accuracy of 84% was
obtained on our large metallographic grain size classification
dataset [8].

• For metallographic images containing a large amount of
noise and impurities, features extracted directly from CNN
inevitably contain noise information. To cope with this prob-
lem, a channel attention module was designed. This module
fuses global information by applying average pooling [16]
and nonlinear transformation to the input features. Finally, it
uses a sigmoid layer to activate and mask the input features.
In this way, the robustness is significantly improved.

• We proposed an end-to-end metallographic image classifi-
cation network. Taking line pixels as input elements, data
augmentation was performed in the hidden space by multi-
ple receptive CNNs. This greatly increases the data capacity,
allowing our network to achieve 65% accuracy on fewer data
samples, and the computation cost of our network is only
0.06 GFLOPs.

2 RELATEDWORK
In this section, we mainly focus on the traditional steel image
labeling methods and current popular image classification models.
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2.1 Natural Image classification
Different from the steel image labeling problem, there are many
automatic labeling methods for natural image classification. Benefit-
ing from the development of deep learning techniques, a number of
models with different architectures have been designed for natural
image labeling and they have achieved 90% accuracy on the large
image recognition dataset ImageNet [3] and CIFAR [14]. VGG [22]
were proposed in 2014 to classify natural images. By increasing the
depth and size of the convolutional neural network [15], it achieved
the best results beyond its previous works. Even though stacking
more convolutional layers may improve the accuracy, the model
training will be very unstable for deeper convolutional neural net-
works. To cope with this problem, ResNet [10] was developed in
2015 with an increased number of convolutional layers to 101. How-
ever, a deeper networkmeans more computational burden.With the
consideration of reducing the computational cost of deeper models,
mobilenets [11, 21] were designed to run on low-cost devices.

The transformer [24] is another popular architecture often used
in computer vision tasks, was first applied to Natural Language
Processing (NLP) for its attention mechanism allows capturing at-
tention in a long sequence. In VIT, images are viewed as 16x16
words. VIT uses a pure transformer to classify the images. VIT
shows that attention [2] can perform very well on image classifica-
tion tasks. Compared with VIT, SwinTransformer [18] uses shifted
windows, brings more attention to non-overlapping local windows,
and allows cross-window connections. Recently, CoCa [25] and
DaViT [5] were proposed and achieved 91% and 90% accuracy on
ImageNet [3]. However, direct application of these state-of-the-art
models to the steel image labeling task does not produce competi-
tive results.

2.1.1 Microscope Steel Image Analysis. Steel grain size is an impor-
tant grading parameter since it has an impact on the mechanical
properties of steel such as strain, ductility and stress resistance.
Currently, steel image grading is still mostly done by experts who
manually assess steel grain size, which leads to huge uncertainties
due to subjectivity. However, existing conventional methods cannot
effectively determine grain size for a wide range of grain sizes and
complex microstructures.

To challenge this issue, several machine learning based works
have been proposed. To determine the grain size of steel, In [26],
a fuzzy logic-based edge detection algorithm was used to detect
grain boundaries. In [7], the Ostu edge detection method is applied
to collect image features and then train support vector regression
to estimate the grain size. To detect grain boundaries in microstruc-
ture images of superalloyed steel during sintering, in [4], a fuzzy
logic algorithm and a neural network algorithm are used. Due to the
popularity of deep learning, there are some works based on deep
learning to deal with this problem. Based on U-Net [20], in [17], a
weighted propagation convolutional neural network is proposed to
detect the boundaries of polycrystalline microscopic images. [1]: a
deep learning convolutional neural network was used to evaluate
the grain size of copper alloys. Nevertheless, these methods were
experimented on a limited dataset and could not handle microstruc-
ture images with various grain sizes.

Our approach transfers the success of deep learning in natural
image classification tasks to the challenging task of steel grading,
and it eliminates the performance gap.

3 METHODOLOGY
The pipeline of the network is shown in the Fig. 3. In order to
extract effective features from images with different grain sizes,
the feature extraction method with fixed perceptual field size and
fixed convolution kernel size was abandoned, and the features of
grains were extracted in parallel by using multi-size perceptual
convolution network. Compared with the convolution network of
single sensing field, this method senses the information of grain
density and size of different grains and can classify a large range of
grain size images. There will inevitably be impurities and noise on
the microscopic image. In order to filter out the noise information,
the self-attention mechanism is used to screen and enhance the
features, which significantly enhances the robustness of the model.
At the same time, the model only needs line pixels as input, which
greatly reduces the computation of the model and increases the
diversity of training samples. The specific method design is shown
below.

3.1 Data preprocessing
Data preprocessing is a key step in model training. Appropriate data
preprocessing can increase the diversity of data andmake the model
more accurate and robust. Select dataset [8] as the training data
and test data. This data set contains 4222 high-definition images
with a size of 1376x1104, including 14 different grain sizes. To
facilitate training, all images are resized to 1376x1376. If this high-
definition image is directly used for training, it will consume a
lot of computing resources and computer storage. If the image
is directly sampled, a lot of high-definition information will be
lost, which will affect the final accuracy of the model. In order to
keep the high-resolution information in the data and reduce the
calculation amount of the model, instead of the full image, line
pixels are selected as the input of the model. Among them, the
length of line pixels is 1376, and each value in the sequence is the
gray value of the image. In data normalization, the average and
standard deviation of image pixels in the whole data set are selected
to normalize the data. After data preprocessing, the data capacity
of is greatly expanded, which is beneficial to the improvement of
model accuracy.

3.2 Model network design
In the general image classification model, the convolution kernel
with a fixed size is usually selected to extract the features of the
image for classification. However, grain size is a very critical fac-
tor in the grading task of metallography. For the classification of
large-scale grain size images, it is difficult for a single perceptual
domain size to cover a large range of grain sizes. Noise and impu-
rities will inevitably appear on microscopic images. The network
needs to be able to adaptively ignore these redundant informa-
tion. Therefore, a multi-perception domain extraction module and a
multi-self-attention feature fusion module are designed. The main
purpose of the first module is to sense the grain information of
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Figure 3: The complete structure of our network. First, we get the feature in the shape of 512x(30C) by applying our multi-
receptive field perception module on input line pixels. The C is the output channel of the last convolutional layer in the
multi-receptive field perception module. To filter out noise information and fusion multi-receptive feature, the extracted
feature is feed into channel attention module. Finally, to get the output probabilistic vector, the augmented feature is classified
by MLP and softmax layer.

Figure 4: The multi-receptive field feature extraction module includes 30 parallel convolution nets. The convolutional kernel
size of these nets ranges from 3 to 59 with stride 2 and each sub-net includes three 1D convolutional blocks. To align the length
of the output features, we adopt adaptive average pooling to normalize the output length of each sub-net to 512. For simplicity,
we concatenate all the sub-net output to a single vector. Given the input line pixels with the 1376x1 shape, the output shape of
the Multi-receptive filed extraction module is 512x(𝐶x30), where 𝐶 is the output channel of the subnet.

Table 1: Classification accuracy using different loss function. The first row is the classification results using focal loss to train
our model. The second row is the classification results using cross entropy loss to train our model.

Loss function 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 overall
Focal loss 85.185 73.077 92 100 93.023 91.304 77.778 75.758 76.923 78.261 80 62.5 91.304 100 84.198

Cross entropy loss 81.481 84.615 92 100 90.698 91.304 73.333 72.727 76.923 78.261 90 68.75 100 100 84.938

different sizes. The second is to fuse these perceptual domain fea-
tures and filter the impurity information in the image. The fusion
of these two modules puts forward an end-to-end network, which
can achieve high-precision metallographic grading results.

3.2.1 Single perceptual domain feature extraction. On general im-
ages, the most commonly used feature extraction is convolution
kernel of single perceptual domain to convolve images. This fea-
ture extraction method has high classification accuracy on natural
images, and this method draws lessons from the design of this
convolution block. Specifically, the single sensing domain feature
extraction network of contains three block. Every block contains

Conv1D, RELU, Batch Normalization [13]. The structure of single
sensing domain extraction network is shown in the Fig. 4. For the
single sensing domain feature extraction network, the convolution
Kernel size is defined as 𝐾 . The number of output channels of the
last convolution layer is 𝐶 . Through the stack of three convolution
layers, the new network extracts the features in a single perceptual
domain. Because the number of layers is relatively shallow, the
network calculation is very small and the reasoning speed is very
fast. The shallower layers also make the network easier to train.

3.2.2 Multi-perception domain feature extraction. Since the single
perceptual field feature extraction network can handle the limited
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Table 2: Classification accuracy comparison of previous methods and our model on dataset [8].

Methods 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 overall
resnet-18 [10] 100.000 53.846 44.000 50.000 48.837 60.870 28.889 36.364 33.333 60.870 65.000 56.250 91.304 100.000 55.556
resnet-50 [10] 96.296 53.846 36.000 25.000 41.860 67.391 48.889 33.333 41.026 69.565 35.000 50.000 91.304 100.000 55.06

mobilenet_v2 [21] 85.185 53.846 16.000 30.000 51.163 63.043 31.111 24.242 61.538 60.870 20.000 50.000 91.304 100.000 51.852
vit_b_16 [6] 77.778 61.538 12.000 45.000 62.791 63.043 33.333 69.697 33.333 60.870 70.000 25.000 95.650 100.000 56.543
vit_b_32 [6] 88.889 57.692 8.000 25.000 46.512 54.348 35.556 39.394 53.846 65.217 70.000 31.250 95.652 100.000 53.333

convnext-tiny [19] 51.852 61.538 0.000 30.000 46.512 34.783 35.556 57.576 0.000 47.826 45.000 43.750 73.913 100.000 41.975
convnext-base [19] 48.148 57.692 24.000 20.000 20.930 47.826 31.111 0.000 71.795 39.130 30.000 56.250 86.957 100.000 42.963
efficientnet_b0 [23] 77.778 57.692 20.000 30.000 34.884 56.522 37.778 39.394 41.026 60.870 45.000 43.750 95.652 100.000 50.617
efficientnet_b1 [23] 74.074 57.692 16.000 35.000 39.535 45.652 37.778 39.394 25.641 65.217 20.000 31.250 91.304 100.000 46.420

ours 85.185 73.077 92.000 100.000 93.023 91.304 77.778 75.758 76.923 78.261 80.000 62.500 91.304 100.000 84.198

Figure 5: Our channel attention module. For input feature 𝑥 ,
we first apply average pooling to get global feature 𝐺 . After
that, we use MLP and Sigmoid layer to do the non-linear
transformation on 𝐺 to get 𝐺 ′. To get augmented feature 𝑥 ′,
we multiply the 𝐺 ′ with 𝑥 channel wisely.

Table 3: MLP configuration of channel attentention Module.

Layer Index Layer Name Input shape Output shape
Layer1 Fully connected layer 1x120 1x30
Layer2 ReLU 1x30 1x30
Layer3 Fully connected layer 1x30 1x20

Table 4: MLP configuration of classification head.

Layer Index Layer Name Input shape Output shape
Layer1 Fully Conected 1x61440 1x256
Layer2 Batch Normalization 1x256 1x256
Layer3 ReLU 1x256 1x256
Layer4 Fully Connected 1x256 1x128
Layer5 Batch Normalization 1x128 1x128
Layer6 ReLU 1x128 1x128
Layer7 Fully Connected 1x128 1x14

grain size range, the classification of large-scale grain sizes needs
to extract the features of multiple perception fields for learning. For

example, for large-sized grains, a large sensing domain is needed
to extract the grain size information. For small-sized grains, a small
sensing domain is needed to extract grain size information. Based on
the above assumptions, an extraction network of multiple sensing
domains is designed to extract features from input sequences. The
architecture is shown in Fig. 4.

Specifically, the multi-sensing domain extraction network in-
cludes a plurality of single-sensing domain extraction networks.
The 𝐾 of these single sensing domain extraction networks ranges
from 3 to 59, and the step size is 2. However, due to the different
size of convolution kernel, the output length of each subnetwork
is different. In order to facilitate the processing of the following
features, the output of the sub-network is normalized to the length
of 512 by using adaptive average pooling. As shown in the figure,
splice the final output of the network to obtain a feature graph
with a length of 512 and a feature dimension of (30x𝐶). Because a
single sequence is represented by features in different perceptual
domains, it is equivalent to enhancing the data in the feature space,
which will also make our model have better learning ability for
small samples.

3.2.3 Multi-perception domain feature fusion. In microscopic im-
ages, noise will inevitably be introduced. Materials also contain
many impurities. Therefore, when using the network to extract
features, noise will inevitably be introduced. At the same time, it
is also necessary to fuse the multi-perceptual features and screen
out the features that are important to the classification task. There-
fore, a multi-perception domain feature fusion module is designed,
which can adaptively filter the feature noise and screen and en-
hance the multi-perception domain features. Our channel attention
architecture is similar with [12]. In order to filter out the impuri-
ties and noise information in the features, the global feature 𝐺 is
obtained by averaging the multi-perception domain features. Av-
eraging operation can not only filter the features, but also extract
the main information from the features. After average pooling, in
order to calculate the influence of each channel of features on the
classification task, the nonlinear transformation of G is performed
by MLP, and then sigmoid function is applied to obtain a weight
vector with a length of (30x𝐶). By multiplying the weight vector
by the original multi-perception domain features, the enhanced
feature representation can be obtained. The intuitive details are
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Table 5: Classification Accuracy using Only 120 training samples for each classes on dataset [8].

Training image Numbers 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 overall
1680 60.000 70.000 80.000 70.000 56.667 43.333 40.000 53.333 70.000 50.000 76.667 86.667 80.000 90.000 66.190

Table 6: Number of parameters and inference GFLOPs.

Methods Number of Parameters (M) FLOPS(G)
resnet18 [10] 11.183 1.821
resnet50 [10] 23.536 4.119

mobilenet_v2 [21] 2.241 0.318
vit_b16 [6] 86.860 33.030
vit_b_32 [6] 88.300 8.560

convnext_tiny [19] 27.830 4.466
convnext_base [19] 87.580 15.377
efficientnet_b0 [23] 4.025 0.400
efficientnet_b1 [23] 6.531 0.590

ours 15.801 0.062

shown in Fig. 5. The formal definition is as follows.

𝐺 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑥)
𝐺 ′ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃 (𝐺))
𝑥 ′ = 𝐺 ′ · 𝑥

(1)

3.2.4 MLP feature classification. In the classification stage, in order
to introduce enough nonlinear transformation, a three-layer MLP is
used to realize feature classification. As shown in the figure, firstly,
the enhanced multisensory domain features are expanded into a
one-dimensional vector, and after the vector is sent toMLP, theMLP
outputs an M-dimensional vector, and the probability belonging to
each ranking can be obtained by applying softmax function to the
vector. To train a classification model, the most frequently used loss
function is Cross Entropy Loss. The formal definition is as follows.

𝐿𝐶𝐸 = − 1
𝑁

𝑁∑︁
𝑖

𝐾∑︁
𝑡

𝑦𝑖,𝑡 log(𝑝𝑖,𝑡 ) (2)

However, our training data distribution is uneven, we also try
using Focal loss to train our model. The formula is as follows.

𝐿𝐹𝐶 = − 1
𝑁

𝑁∑︁
𝑖

𝐾∑︁
𝑡

𝑦𝑖,𝑡 (1 − 𝑝𝑖,𝑡 ) log(𝑝𝑖,𝑡 ) (3)

4 EXPERIMENTS
4.1 Setup
4.1.1 Datasets. To test ourmodel performance and verify our ideas,
we select [8] as the experiment dataset. There are 5000 steel grain
images under 500x microscope. The steel grades of the dataset, rang-
ing from 6.5 to 13.0, are partitioned into 14 classes. All the image’s
resolution is 1376x1104. The dataset class distribution is uneven as
shown in Fig. 2. To conduct our experiments, we randomly select
4000 images as the training set and 1000 images as the test set. All
the following experiments use the same dataset setup.

4.1.2 Training. We use the same training setup for all models. The
learning rate and total epochs are set to 1e-3 and 100, and the
learning rate declines 0.7 every 10 epochs. In addition, we select
the SGD parameter optimizer for all models. For our model, we
randomly select a row or a column as the model input. For other
models, we randomly crop a 224x224 image block.

4.1.3 Configuration. We use the following configuration to imple-
ment our model. In multi-receptive field extraction module, each
subnet including three convolutional layer, and each convolutional
layer’s output channel is 4. In the channel attention module, the
MLP architecture configuration is shown in Tab. 3. The MLP archi-
tecture details are shown in Tab. 4

4.2 Comparison
4.2.1 Accuracy. For a fair comparison with other models, we select
the last epoch to test the model accuracy. The concrete results are
shown in table Tab. 2. It is obvious that our model achieves higher
accuracy than ResNet [10], ConvNext [19], VIT [6], mobilenet_v2
[21] and efficientnet [23]. We can conclude that the multi-receptive
field features are beneficial to improving the model accuracy.

4.2.2 Computation Burden. It should be noticed that our model is
very light and fast. For the effective sampling strategy and lighter
model architecture, our model uses less storage space and com-
putation resources, which makes our model more effective to be
deployed online. The quantitative result is shown in Tab. 6.

4.2.3 Ablation Study. We try to use different loss functions to
verify our model’s robustness. As the Tab. 1 shows, no matter what
loss function we choose to train our model, the final accuracy is not
heavily affected. This also shows that our architecture is reasonably
designed for steel grain image grading.

4.2.4 Few shot learning. To explore the few shot learning ability
of our model, we reduce the training data from 3817 images to 1680
images and test the accuracy of each classes. As the Tab. 5 shows,
our model can learn a robust classifier on a smaller dataset and got
65% accuracy rate.

5 CONCLUSIONS AND FUTUREWORK
In our work, we solved the steel grading problem effectively using
the deep learning algorithm. One of our contribution is that we
propose a multi-receptive filed network adapting to different grain
scales, which removes the performance gap between natural image
classification and steel image grading. Simultaneously, our model
needs less storage space and computation resources, which can be
deployed on mobile devices and improve industry efficiency. In the
future, we will do more tests and adaption based on our model and
try to improve performance. At the same time, we will think about
letting the model output more explainable grading results, like the
number of intercept points.
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