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TranSkeleton: Hierarchical Spatial-Temporal
Transformer for Skeleton-Based Action Recognition

Haowei Liu, Yongcheng Liu, Yuxin Chen, Chunfeng Yuan, Bing Li, Weiming Hu

Abstract—In skeleton-based action recognition, it has been a
dominant paradigm to extract motion features with temporal con-
volution and model spatial correlations with graph convolution.
However, it’s difficult for temporal convolution to capture long-
range dependencies effectively. Meanwhile, commonly used multi-
branch graph convolution leads to high complexity. In this paper,
we propose TranSkeleton, a powerful Transformer framework
which neatly unifies the spatial and temporal modeling of skeleton
sequences. For temporal modeling, we propose a novel partition-
aggregation temporal Transformer. It works with hierarchical
temporal partition and aggregation, and can capture both long-
range dependencies and subtle temporal structures effectively.
A difference-aware aggregation approach is designed to reduce
information loss during temporal aggregation. For spatial mod-
eling, we propose a topology-aware spatial Transformer which
utilizes the prior information of human body topology to facili-
tate spatial correlation modeling. Extensive experiments on two
challenging benchmark datasets demonstrate that TranSkeleton
notably outperforms the state of the arts.

Index Terms—Skeleton-based action recognition, spatial-
temporal Transformer, long-range temporal dependencies.

I. INTRODUCTION

ACTION recognition is a long-standing research problem
of classifying human actions according to the input

videos [1]–[3] or skeleton sequences [4]–[9]. It has a wide
range of applications, such as human-computer interaction and
intelligent monitoring [10]. Compared to video data, skeleton
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data not only consumes less storage and computation resource,
but also has better robustness to viewpoint change and back-
ground clutter. Therefore, skeleton-based action recognition
has drawn a lot of attention from researchers in recent years.

Generally, the inherent information of skeleton sequences
can be decomposed into two orthogonal dimensions, i.e. the
spatial skeleton pose in each frame and the temporal motion
trajectory of each joint. Both of them are important for action
recognition. Recently, with the remarkable achievement of
deep learning in vision tasks, much effort has been made
on applying deep neural networks to skeleton-based action
recognition. Early deep learning methods generally arrange
the human skeleton as a sequence of 3D joint coordinates
or transform it into a pseudo-image, and then use Recur-
rent Neural Network (RNN) [4], [11]–[13] or Convolutional
Neural Network (CNN) [14]–[16] for feature extraction and
classification. Though making great progress, these RNN or
CNN-based methods neglect to capture the inherent spatial
correlations among joints. Inspired by graph learning [17]–
[19], researchers find that the human skeleton can be regarded
as a graph with joints as nodes and bones as edges. There-
fore, recently Graph Convolutional Network (GCN) has been
widely applied to this task [5]–[9] and has achieved signifi-
cant performance boost over conventional methods. However,
these methods generally integrate multiple branches of graph
convolution to extract richer spatial information, causing huge
computation cost. On the other hand, they focus on improving
GCNs for better spatial modeling. As for temporal modeling,
most of them simply stack multiple temporal convolutional
layers to extract motion features, and thus have two non-
negligible drawbacks. 1) The increase of the temporal recep-
tive field in this way is rather limited, leading to in fact short-
range temporal modeling. 2) Detailed motion information may
have largely vanished when reaching deeper layers, hindering
the interaction between distant input frames. Therefore, it is
pretty intractable for them to fully grasp the temporal motion
information, especially long-range temporal dependencies.

Recently, Transformer’s strong ability of sequence modeling
has been verified in various computer vision tasks, e.g. image
recognition [20], [21] and video analysis [22], [23]. This
motivates us to explore its potential in unifying the spatial and
temporal modeling of skeleton sequences. A straightforward
way to achieve this is directly substituting GCN and TCN with
Transformer for spatial and temporal modeling respectively.
Nevertheless, in practice such a simple extension of vanilla
Transformer (V-Trans, as illustrated in Fig. 1) cannot achieve
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Fig. 1. Comparison of different temporal modeling methods. Left: Temporal convolutional network (TCN) performs local modeling in a sliding-window
fashion, with relatively limited temporal receptive field. Middle: Vanilla Transformer (V-Trans) performs global modeling throughout the model without
temporal aggregation. Right: Our proposed partition-aggregation temporal Transformer (PAT-Trans) performs temporal modeling to each long segment within
the same hierarchy in parallel, and gradually reduces the number of segments to one through difference-aware temporal aggregation. Thus it can capture both
long-range dependencies and subtle temporal structures effectively, and also greatly reduces the redundancy of V-Trans.

satisfactory performance. We analyze that this is due to two
intrinsic factors: 1) V-Trans maintains the sequence length
throughout the model, which leads to huge redundancy as the
input skeleton sequences are generally long (e.g. 300 frames).
2) Lack of local modeling makes it difficult for V-Trans to
capture the subtle temporal structures of the input sequences,
especially when trained on limited-scale skeleton datasets.

To address these issues, we propose to unify the spatial and
temporal modeling of skeleton sequences within a hierarchical
Transformer framework named TranSkeleton (as illustrated in
Fig. 2). In this framework, we first propose a novel partition-
aggregation temporal Transformer (PAT-Trans, as illustrated
in Fig. 1) which works with hierarchical temporal partition
and difference-aware temporal aggregation. Then we devise
a topology-aware spatial Transformer which incorporates the
proposed physical connection constraint to facilitate spatial
modeling. Specifically, in each hierarchy, we first partition the
input sequence into several long segments along the temporal
dimension, and perform attention-based temporal modeling
to each segment using stacked Transformer units. Then we
concatenate the segments and reduce the sequence length by
half through temporal aggregation. We perform such partition-
modeling-aggregation process in a hierarchical manner, and
gradually reduce the number of segments to one. Through
this way, we realize effective local-to-global temporal mod-
eling. In addition, we propose a difference-aware temporal
aggregation (DATA) approach. By taking inter-frame differ-
ences into consideration, it greatly reduces the information
loss brought by multiple temporal aggregations. Compared to
V-Trans, the proposed PAT-Trans reduces great redundancy
and better grasps the subtle temporal structures of the input
sequences. For spatial modeling, we also adopt Transformer

to capture the spatial correlations among joints, and devise
a physical connection constraint (PCC) to embed the prior
information of human body topology into Transformer in
a neat way. Note that the spatial and temporal modeling
share Transformer’s multi-head self-attention (MSA) as their
core computation mechanism. Therefore, by combining spatial
MSA with temporal MSA in each Transformer unit, we can
easily integrate the proposed topology-aware spatial Trans-
former and partition-aggregation temporal Transformer into
a unified spatial-temporal modeling framework. Compared
with the prevailing TCN-GCN paradigm, our TranSkeleton
captures long-range temporal dependencies more effectively,
and avoids cost-expensive multi-branch GCN integration. We
conduct extensive experiments and analysis on two challeng-
ing skeleton datasets, i.e., NTU RGB+D and NTU RGB+D
120. The experimental results validate the effectiveness and
efficiency of our method.

Our contributions can be summarized as follows:

• A powerful Transformer model named TranSkeleton is
proposed for skeleton-based action recognition. It effec-
tively and neatly unifies spatial and temporal modeling
within a pure Transformer framework.

• A novel temporal modeling method PAT-Trans is pro-
posed. It works with hierarchical partition and aggrega-
tion, and can well capture both long-range dependencies
and subtle temporal structures simultaneously.

• A difference-aware temporal aggregation approach and a
physical connection constraint are devised. The former
greatly reduces the information loss in multiple temporal
aggregations. The latter provides the prior information of
human body topology to facilitate spatial modeling.
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II. RELATED WORK

A. Skeleton-Based Action Recognition

Early deep learning methods in skeleton-based action recog-
nition apply RNNs [4], [11]–[13] or CNNs [14]–[16], [24],
[25] to model skeleton sequences. As the human skeleton has
a natural graph structure, these methods fail to capture the
inherent correlations among joints. ST-GCN [5] first applies
graph convolution for spatial correlation modeling and tem-
poral convolution for motion feature extraction. Since then,
TCN-GCN based methods [26]–[32] have achieved significant
performance boost. MS-G3D [7] and STIGCN [33] introduce
multi-scale topologies into GCNs to explore the correlations
among distant joints. DC-GCN [34] boosts the graph modeling
ability by using different learned topologies in different feature
channel groups. These methods all employ learned adjacent
matrices to model human body topology, and thus lack adapt-
ability to different input samples when inference. 2s-AGCN
[6] and SGN [35] introduce self-attention mechanism to model
the correlations among joints dynamically according to their
features. CTR-GC [32] proposes a channel-wise topology
refinement graph convolution for dynamic topology and multi-
channel feature modeling. In the semi-supervised scenario, X-
CAR [36] proposes a contrastive augmentation and representa-
tion learning framework to obtain rotate-shear-scale invariant
features. However, most existing methods use multi-branch
graph convolution to extract richer spatial information, leading
to a drastic increase of parameters and computation cost. In
contrast, we avoid such unnecessary increase of complexity
by employing multi-head self-attention for spatial modeling.

On the other hand, existing methods mainly focus on
improving GCNs to achieve better spatial modeling. For tem-
poral modeling, most of them simply stack multiple temporal
convolutional layers to extract motion features. In order to
enlarge the temporal receptive field, MS-G3D [7] uses parallel
temporal convolutions with different dilation rates. MST-GCN
[37] devises a hierarchical residual architecture for multi-
scale temporal modeling. DualHead-Net [38] proposes a dual-
head graph network consisting of two interleaved branches
to extract features at two spatial-temporal resolutions. SEFN
[39] proposes a symmetrical enhanced fusion network to
fuse multi-level spatial and temporal features. However, as
increasing temporal convolution’s kernel size will cause a
drastic increase of parameters and computation cost, TCN-
based methods generally have a small convolution kernel size
(e.g. 3). This makes it difficult for them to realize a global
temporal receptive field and capture long-range dependencies
effectively. Recently, [40], [41] introduce vanilla Transformer
into the TCN-GCN framework for global modeling. [42]
directly adopts global Transformer for temporal modeling.
However, as discussed in Sec. I, due to the issues of vanilla
Transformer, i.e., huge redundancy and lack of local modeling,
they don’t achieve satisfactory performance. Different to [40]–
[43], in this work, we propose a novel local-to-global temporal
modeling method, and unify the spatial and temporal modeling
of skeleton sequences within a pure Transformer framework.

B. Vision Transformer

Transformer [44] uses multi-head self-attention for sequence
modeling and has been the mainstream approach in natural
language processing. Recently, it is introduced into computer
vision, and has achieved remarkable performance in various
vision tasks, such as image recognition [20], [21], [45], object
detection [46] and semantic segmentation [47]. In video-
based action recognition, its validity has also been verified
[22], [23]. Nevertheless, compared to conventional CNN-based
methods, vision Transformer models generally require much
more training data to achieve competitive performance. This
issue becomes more intractable when applying Transformer to
skeleton-based action recognition, as so far skeleton datasets
are relatively small compared to image and video datasets. To
address this, we propose a hierarchical Transformer architec-
ture which works in a local-to-global manner in the temporal
dimension. Introducing local modeling into Transformer not
only facilitates the training on limited-scale datasets, but also
enhances the model’s ability to capture the subtle temporal
structures of the input sequences.

It’s worth noting that, different from existing vision Trans-
formers in image recognition (e.g. Swin Transformer [21])
which adopt local modeling strategy as well, we extend Trans-
former to unify the much more intractable spatial-temporal
modeling task. In particular, our proposed local-to-global tem-
poral modeling method (PAT-Trans) has rarely been studied
before, as TCN-based local modeling dominates the area
of skeleton-based action recognition and video Transformers
[22], [23] generally perform global modeling due to their much
shorter input clips (e.g. 8 frames).

III. METHOD

In this section, we first give an overview of the proposed
TranSkeleton framework (Sec. III-A). Then, we elaborate
its two key components, i.e., Partition-Aggregation Temporal
Transformer (Sec. III-B) and Topology-Aware Spatial Trans-
former (Sec. III-C).

A. Overview of TranSkeleton

As Fig. 2 shows, TranSkeleton processes the embeddings
of the input skeleton sequences in a multi-stage manner. Each
stage comprises three types of units, i.e., temporal partition,
spatial-temporal Transformer unit and temporal aggregation.
Specifically, the input sequence is first uniformly partitioned
into several segments along the temporal dimension. Then, the
spatial-temporal Transformer unit is devised to model each
segment. It consists of two multi-head self-attention modules
for spatial and temporal modeling respectively, along with an
MLP module for feature transformation. Following the original
Transformer [44], we also apply LayerNorm [48] before each
inside module and use several residual connections to facilitate
the training. Finally, temporal aggregation is conducted to
reduce the temporal dimension and merge adjacent segments.
As the temporal partition and aggregation are performed in a
hierarchical way, the number of segments is gradually reduced
to one. Therefore, the whole framework works as a local-
to-global architecture in the temporal dimension. After the
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Fig. 2. Illustration of the proposed TranSkeleton with L stages. In each stage, we first partition the input feature into Si segments along the temporal
dimension, then feed them into N stacked spatial-temporal Transformer units for spatial and temporal modeling alternatively. After that, we concatenate the
segments into a sequence and apply the proposed difference-aware temporal aggregation approach (Sec. III-B) to reduce the temporal dimension by half.
The output is then fed into the next stage. We perform temporal partition and aggregation in a hierarchical manner, such that the number of segments is
progressively reduced to one. The final classification score is obtained through global average pooling followed by a fully-connected (FC) layer.

multi-stage partition-modeling-aggregation process, we apply
a global average pooling followed by a linear layer to predict
the action label. Note that in order to encode the positional
information, we add trainable spatial positional embedding
ESP after joint embedding and temporal positional embedding
ETP in each stage.

Different from the TCN-GCN paradigm, our TranSkeleton
unifies spatial and temporal modeling within a pure Trans-
former framework. It achieves sufficient interaction among
joints and deeply-correlated information flow along motion
trajectories, and thus can learn discriminative spatial-temporal
representations of the input skeleton sequences.

B. Partition-Aggregation Temporal Transformer

Extracting temporal features along the motion trajectories of
the joints is important for skeleton-based action recognition.
However, this can be intractable since different actions take
place on different temporal scales, and thus it requires the
model to effectively capture long-range temporal dependen-
cies. The strong ability of Transformer in sequence modeling
makes it a desirable option for temporal modeling. Neverthe-
less, directly employing vanilla Transformer (V-Trans) leads
to inferior performance. This is due to: 1) It usually requires
long input skeleton sequences for decent performance, while
V-Trans maintains such long sequence length throughout the
model. This causes huge redundancy when the model deepens.
2) Different from TCN, V-Trans lacks local modeling. This
makes it difficult to capture the subtle temporal structures of
the input sequences, especially when trained insufficiently on
limited-scale skeleton datasets.

Partition-Aggregation Temporal Transformer. To overcome
these issues of V-Trans, we propose a partition-aggregation
temporal Transformer (PAT-Trans). It works with hierarchical
temporal partition and aggregation to capture local-to-global
temporal dependencies. Specifically, given an input feature
X ∈ RT×J×C , we perform temporal modeling to each joint
Xj ∈ RT×C in parallel, where T , J and C are the se-
quence length, the number of joints and the feature dimension
respectively. We first uniformly partition the input feature
Xj into S segments (X1

j , X2
j , ..., XS

j ) along the temporal
dimension. Then feed them into a shared temporal multi-head
self-attention (T-MSA) module. T-MSA applies dot-product
attention to model the correlations among the elements of the
input sequence in a dynamic fashion. Given the feature of
the k-th segment Xk

j ∈ RT
S ×C , T-MSA first employs linear

mapping functions WQ,WK ,WV ∈ RC×C to generate the
corresponding query matrix, key matrix and value matrix, i.e.,
Q,K, V ∈ RT

S ×C . Before dot-product attention, each of Q, K
and V is uniformly split into h groups (i.e. h heads) along the
channel dimension. Each head corresponds to a Ĉ-dimensional
subspace of the original representation space, where Ĉ = C

h .
Then in each subspace, we compute the matrix multiplication
of the corresponding query matrix Qi and key matrix Ki.
After normalization, we obtain an attention map and use it
to guide the interaction of the elements of the value matrix
Vi. The above dot-product attention is applied in these heads
in parallel. Then the results are concatenated and fed into a
linear layer W ∈ RC×C , so as to fuse the features of different
heads. The above process can be formulated as

Q = Xk
j WQ,K = Xk

j WK , V = Xk
j WV , (1)
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Hi = softmax

(
QiK

T
i√

Ĉ

)
Vi, i ∈ {1, 2, . . . , h}, (2)

T-MSA(Xk
j ) = (H1||H2|| . . . ||Hh)W, (3)

where || is the concatenate operation and 1√
Ĉ

is a scaling

factor for normalization.
After that, we concatenate the output of the S segments

into a whole sequence X̃j ∈ RT×C , and reduce the sequence
length by half through temporal aggregation. The whole tem-
poral modeling process in one stage can be formulated as

TM(Xj) = TA
(
T-MSA

(
X1

j

)
|| . . . ||T-MSA

(
XS

j

))
, (4)

where || is the concatenate operation and TA denotes temporal
aggregation. We perform such partition-modeling-aggregation
process in a hierarchical manner, and gradually reduce the
number of segments to one. During this process, the temporal
receptive field increases rapidly and soon covers the whole
sequence. In this way, we realize effective local-to-global
temporal modeling. Note that the number of segments S is an
important hyper-parameter in this process. The ablation study
on its impact can be found in Sec. IV-C.

Difference-Aware Temporal Aggregation. Temporal aggre-
gation plays a significant role in constructing the proposed
PAT-Trans due to: 1) It reduces the sequence length and avoids
the unnecessary increase of complexity of high-level features.
2) It effectively enlarges the temporal receptive field and
facilitates the interaction among distant frames. For instance,
if two consecutive stages have the same segment length, the
equivalent temporal receptive field would double after the
temporal aggregation between them. Generally, average pool-
ing and max pooling are two commonly used operations for
dimension reduction. However, average pooling leads to much
loss of high-frequency information as it smoothes the motion
trajectories. Max pooling preserves the biggest response of
each channel and drops the smaller ones, resulting in hidden
information loss as well.

To reduce information loss during aggregation, we propose
a simple yet effective difference-aware temporal aggregation
(DATA) approach. As illustrated in the lower right part of
Fig. 2, for feature vectors X̃ ∈ RTi×J×C , we first reduce
the temporal dimension by half with max pooling or average
pooling, and compute the difference between odd frames X̃odd

and even frames X̃even. Then we concatenate the two results
in the channel dimension, and reduce the number of channels
to C with a linear projection W̃ ∈ R2C×C . The whole DATA
approach can be formulated as

DATA
(
X̃
)
=
(
pooling

(
X̃
)
|| abs

(
X̃odd − X̃even

))
W̃ ,

(5)
where || is the concatenate operation. By fusing the inter-frame
differences and the pooled features, DATA preserves more
discriminative information during temporal aggregation, and
thus greatly enhances the model’s temporal modeling ability.

Comparison with TCN and V-Trans. How far the forward
signals from the input elements have to traverse before they
meet, is a key factor which affects the model’s ability to

capture long-range dependencies. The shorter these paths are
between any pair of input elements, the easier it is to grasp
long-range dependencies [44]. Therefore, the proposed PAT-
Trans has two key advantages over TCN: 1) As the segment
length of our method (e.g. 16) is much larger than TCN’s
kernel size, its receptive field can soon cover the whole
sequence within a few hierarchies. In contrast, TCN needs
a great many layers to achieve the same goal, leading to an
unacceptable increase of model complexity and computation
cost. 2) Even with the same receptive field as TCN, our method
has higher efficiency of information interaction. For instance,
if we set the segment length to 16, then the aforementioned
path length is 1 for any pair of elements within the same
segment. This is because for PAT-Trans, all the elements of
a segment directly interact with each other by dot-product
attention, regardless of their distance. In TCN, however, it
takes 6 stacked temporal convolutional layers (kernel size =
5) to realize the interaction between the 1st and the 15th
elements. Plenty of subtle motion information has already
vanished in such deep layers.

Compared to V-Trans, our PAT-Trans performs temporal
modeling in a local-to-global manner. Introducing local mod-
eling into Transformer not only enhances its ability of grasping
the subtle temporal structures of the input sequences, but also
facilitates the training on limited-scale datasets. Meanwhile,
the hierarchical architecture greatly reduces the redundancy
of V-Trans. Fig. 1 shows the illustration of the above three
temporal modeling methods. A performance comparison of
them is presented in Sec. IV-C.

C. Topology-Aware Spatial Transformer

Different from local-to-global temporal modeling, for spa-
tial modeling, we apply multi-head self-attention to capture
the spatial correlations among joints in a global manner. This
is because unlike a skeleton sequence, the joints within a
skeleton have an explicit order, e.g., 1st for “head” and 5th
for “left shoulder”. Meanwhile, the number of joints is much
smaller than the sequence length. Specifically, given an input
skeleton sequence, we perform spatial modeling within each
frame individually. We treat the 3D coordinates of the joints in
the t-th frame Xt ∈ RJ×3 as a sequence containing J elements
and get the embedding vectors of the joints by mapping the
coordinates into a C-dimensional space through linear projec-
tion We ∈ R3×C . Then we sum the embedding vectors with
the trainable spatial positional embedding ESP ∈ RJ×C and
feed the result into spatial multi-head self-attention (S-MSA)
modules. Similar to Eq. (1)-(3), S-MSA generates h attention
maps in the representation subspaces and uses the attention
maps to guide the information flow among joints. Therefore,
it avoids the increase of complexity caused by multi-branch
GCN integration. The above stated spatial modeling process
can be formulated as

SM(Xt) = S-MSA(XtWe + ESP ) . (6)

Note that the spatial and temporal modeling share MSA as
their core computation mechanism. Thus as illustrated in the
lower left part of Fig. 2, by combining S-MSA with T-MSA
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Fig. 3. Illustration of the physical connection constraint. Left: A simplified
human skeleton. Right: The corresponding parameterized adjacent matrices
in two attention heads, where only the elements correspond to actual physical
connections have non-zero values.

in each Transformer unit, we integrate the proposed spatial
Transformer and temporal Transformer into a unified spatial-
temporal modeling framework.

Physical Connection Constraint. Apart from joint coordi-
nates, bone vector which represents the length and direction
of bones is another commonly used modality in skeleton-based
action recognition. However, both absolute position and human
body topology information are completely lost in this bone
modality, which hinders pure attention-based spatial modeling.
To tackle this, we devise a physical connection constraint
(PCC) to form a topology-aware spatial Transformer. Specifi-
cally, apart from the dynamically generated attention matrices,
we define a parameterized adjacent matrix in each attention
head and restrict all elements to zero except those correspond
to actual physical connections. For instance, as illustrated in
Fig. 3, the 7th bone connects to the 6th and the 8th bones in
the simplified human skeleton. Thus the 7th row/column in the
parameterized adjacent matrices only contains three non-zero
values. Combining the original multi-head self-attention with
the physical connection constraint, Eq. (2) turns into

Hi =

(
softmax

(
QiK

T
i√

Ĉ

)
+Ai ⊙MPCC

)
Vi, (7)

where i ∈ {1, 2, . . . , h} and ⊙ denotes element-wise mul-
tiplication. Ai is the parameterized adjacent matrix in the
i-th attention head. MPCC is a zero-one matrix which is
used as the physical connection constraint. Besides, adding
a parameterized adjacent matrix without any constraint is an
option as well. We’ll compare the performance of these two
schemes in the ablation study.

Note that the devised PCC is quite different from 2s-AGCN
[6] in two aspects: 1) We do not perform manual partition
as 2s-AGCN, which splits the physically connected neigh-
borhood into three subsets. 2) 2s-AGCN requires multiple
GCN branches to perform laborious feature transformations
to different subsets. In contrast, our PCC neatly embeds the
prior information of human body topology into Transformer
by constraining the information flow among joints.

IV. EXPERIMENTS

A. Datasets

NTU RGB+D. NTU RGB+D [49] is the most widely
used large-scale dataset for skeleton-based action recognition,
which contains 56880 samples of 60 classes ranging from

TABLE I
COMPARISON OF DIFFERENT TEMPORAL MODELING METHODS.

Methods Params FLOPs Acc (%) ∆
A V-Trans 2.21M 7.21G 76.8 -
B TCN 2.36M 2.36G 82.5 5.7
C Global 2.21M 2.37G 82.3 5.5
D Sliding-window 2.21M 2.32G 83.1 6.3
E PAT-Trans 2.20M 2.31G 84.1 7.3

daily actions to medical conditions. The action samples are
performed by 40 distinct subjects and captured by Microsoft
Kinect v2 cameras from three different views simultaneously.
Each sample contains a skeleton sequence with the 3D coor-
dinates of 25 body joints at each frame. The authors of the
dataset recommend two evaluation protocols: (1) cross-subject
(X-Sub): training on samples from 20 subjects, and testing on
those from the other 20 subjects. (2) cross-view (X-View):
training on samples captured by camera 2 and 3, and testing
on those captured by camera 1.

NTU RGB+D 120. NTU RGB+D 120 [50] is currently
the largest dataset for skeleton-based action recognition. It
extends NTU RGB+D by adding 57600 samples of 60 extra
classes. Therefore, it contains 114480 samples of 120 classes
in total, which are performed by 106 distinct subjects. There
are 32 different setups, each denoting a specific location and
background. The authors recommend two evaluation protocols:
(1) cross-subject (X-Sub 120): training on samples from 53
subjects, and testing on those from the other 53 subjects. (2)
cross-setup (X-Set 120): training on samples with even setup
IDs and testing on those with odd setup IDs.

B. Implementation Detail

We implement the proposed TranSkeleton model with Py-
torch. Four NVIDIA RTX 2080Ti GPUs are used for training
and testing. The whole model is comprised of three stages,
each containing two basic Transformer units. We set the
feature dimensions of the three stages to 64, 128 and 256
respectively. Each MSA module in the basic unit has four
heads. The expansion ratio of the MLP module is set to 2. We
adopt the sampling strategy as in [51] and resize each input
sequence to 64 frames by interpolation. We adopt Adam [52]
optimizer and cross entropy loss to train for 70 epochs with
a weight decay of 0.0001. The initial learning rate is set to
0.001, and decays with a factor of 0.1 at epoch 50 and 60.

C. Ablation Study

To assess the contributions of the individual components
of the proposed TranSkeleton model, we conduct extensive
ablation experiments on the cross-subject benchmark of the
NTU RGB+D 120 dataset.

Temporal modeling method. As shown in Table I, all the
methods apply multi-head self-attention for spatial correlation
modeling, but adopt different temporal modeling methods.
Note that V-Trans (vanilla Transformer) is non-hierarchical,
while the rest methods conduct temporal aggregation to form
a hierarchical architecture. Specifically, the detailed setups are
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Fig. 4. Performance comparison of different temporal modeling methods on
several action classes.

as follows. Global (model C): Applying Transformer for global
modeling in all hierarchies without temporal partition. Sliding-
window (model D): Applying Transformer in a sliding-window
fashion, which is similar to TCN but the core computation is
replaced with dot-product attention. PAT-Trans (model E): Our
proposed method. For a fair comparison, the window size of
model D is set equal to the segment length of ours. As can
be seen, V-Trans leads to a drastic increase of computation
cost and shows the worst performance. Model C outperforms
V-Trans by 5.5%, showing that the hierarchical architecture
largely reduces Transformer’s redundancy and improves its
validity. However, it has a slight performance drop compared
to TCN-based local modeling. This indicates that lack of
local modeling limits Transformer’s temporal modeling ability.
Sliding-window outperforms model C by 0.8%, indicating
that introducing local modeling into Transformer even in a
relatively naive way can improve its performance.

Finally, PAT-Trans achieves the best performance, surpass-
ing model B and C by 1.6% and 1.8% respectively. Note
that PAT-Trans in fact has the fewest parameters and FLOPs.
Therefore, the performance boost is brought by the local-
to-global modeling method itself, rather than the increase of
model complexity or computation cost. Moreover, PAT-Trans
outperforms model D by 1.0%, showing that our method is a
superior way of introducing local modeling into Transformer.

Fig. 4 shows the performance comparison on several action
classes where PAT-Trans exceeds TCN-based local modeling
the most. “Take off a shoe”, “take object out of bag” and
“exchange things” are three complex actions that take place
on a long temporal scale. “Cutting nails” and “play with
phone/tablet” are two actions that are easily confused, as their
poses are quite similar and require a relatively long period of
observation to distinguish. It can be seen that global modeling
outperforms TCN-based local modeling on most of these
classes, while PAT-Trans further improves the performance.
The results demonstrate our method can better capture long-
range temporal dependencies and the subtle temporal struc-
tures of the input sequences simultaneously.

The number of segments. The number of segments S plays
an important role in the hierarchical temporal partition process.
In each hierarchy, a big S leads to local modeling within short
segments and thus enhances the ability to capture the subtle
temporal structure of the input sequence. In contrast, a small
S makes the model perform longer temporal modeling and

TABLE II
ABLATION STUDY ON THE NUMBER OF SEGMENTS. Si DENOTES THE

NUMBER OF SEGMENTS IN THE i-TH HIERARCHY.

S1 S2 S3 Acc (%) ∆
1 1 1 82.3 -
2 2 1 82.9 0.6
4 2 1 83.8 1.5
8 4 1 84.1 1.8
16 8 1 83.4 1.1

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT INPUT LENGTHS.

Input length 32f 48f 64f 80f 96f
Acc (%) 83.3 83.8 84.1 84.1 84.0

can better capture long-range dependencies. Therefore, S is a
key factor in balancing local and global temporal modeling.

We build a TranSkeleton model of three hierarchies and
compare the performance of different S. Note that Si denotes
the number of segments in the i-th hierarchy, and S3 is set
to 1 for global modeling in the last hierarchy. As shown in
Table II, setting S1 = S2 = S3 = 1 (i.e. performing global
temporal modeling) yields the worst performance. Increasing
S1 and S2 introduces local modeling into Transformer and
notably improves the model’s performance. However, when S1

and S2 become too big, the model would concentrate on local
modeling within short segments, and thus harms its ability to
capture long-range dependencies.

The number of input frames. Existing GCN-based methods
[6], [7] generally take 300 frames as input by repeating
the skeleton sequences of different lengths, which leads to
redundant computation. Different from them, we adopt the
sampling strategy as in [51] and resize each input sequence
to a certain number of frames through interpolation. Table III
shows the performance comparison of different input lengths.
As can be seen, the model’s performance initially increases
with the input length. When the input length is greater than
64 frames, the performance becomes saturated. Therefore,
considering the computation efficiency, we set the input length
of our TranSkeleton model to 64 frames.

Positional embedding. To evaluate the impact of the spatial
and temporal positional embeddings, we compare several
different combinations, as shown in Table IV. The baseline
model without any positional embedding yields the worst per-
formance. Adding spatial positional embedding facilitates the
correlation modeling among joints and brings a performance
boost of 0.7%. Adding global temporal positional embedding
in each hierarchy further improves the performance by 1.4%.
This shows that temporal positional embedding has a greater
impact on the performance, as Transformer cannot distinguish
the order of the input frames without it. Finally, adding shared
temporal positional embedding achieves a slightly better per-
formance compared to the global one. We analyze that this is
because a positional embedding shared by all segments may
get more sufficient training, as we perform segment temporal
modeling in stage 1 and 2.
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TABLE IV
ABLATION STUDY ON THE SPATIAL AND TEMPORAL POSITIONAL

EMBEDDINGS. PE DENOTES POSITIONAL EMBEDDING.

Spatial PE Temporal PE Acc (%) ∆
✗ ✗ 81.8 -
✓ ✗ 82.5 0.7
✓ global 83.9 2.1
✓ shared 84.1 2.3

TABLE V
COMPARISON OF DIFFERENT TEMPORAL AGGREGATION APPROACHES.

DATA DENOTES DIFFERENCE-AWARE TEMPORAL AGGREGATION.

Methods Acc (%) ∆
Avg-pooling 83.4 -
Max-pooling 84.1 0.7
DATA(Avg) 84.4 1.0
DATA(Max) 84.9 1.5

Temporal aggregation. As shown in Table V, we compare
the performance of different temporal aggregation manners.
Average pooling yields the worst performance, as it results
in a significant loss of high-frequency temporal information.
Max pooling preserves the biggest response in each channel
and achieves better performance. However, it drops the smaller
values and causes much information loss as well. By taking
the difference of consecutive frames’ features into considera-
tion, the DATA approach using avg-pooling outperforms plain
average pooling by 1.0%. Replacing average pooling with max
pooling further boosts the performance by 0.5%. These results
demonstrate the proposed DATA approach effectively reduces
information loss during temporal aggregation and enhances the
model’s temporal modeling ability.

Physical connection constraint. We evaluate the impact of the
devised physical connection constraint. As shown in Table VI,
the baseline model without parameterized adjacent (PA) matrix
performs the worst. This is due to absolute position and human
body topology information are both lost in the bone modality,
and thus may hinder pure attention-based spatial modeling.
Adding a parameterized adjacent matrix without any constraint
boosts the performance, but the improvement is rather limited.
Finally, applying the devised physical connection constraint
leads to a performance boost of 1.1% compared to the baseline
model. The results demonstrate that the devised PCC explicitly
embeds the prior information of human body topology into the
model, and thus effectively facilitates the spatial modeling.

Model complexity. Here we compare the number of param-
eters, floating point operations (FLOPs) and the classification
accuracy on the cross-subject benchmark of the NTU RGB+D
dataset. GCN-based methods [6], [7], [34] generally integrate
multiple branches of graph convolution to extract richer spatial
information, resulting in huge computation cost. In contrast,
we unify the spatial-temporal modeling within a pure Trans-
former framework, and thus avoid such unnecessary increase
of complexity. As shown in Table VII, our model reduces
about 1/3 parameters compared to recent GCN-based methods,
and has 7× and 14× fewer FLOPs than DC-GCN+ADG [34]
and MS-G3D [7] respectively. Noticeably, taking only 64-

TABLE VI
ABLATION STUDY ON THE PHYSICAL CONNECTION CONSTRAINT (PCC).

PA DENOTES PARAMETERIZED ADJACENT MATRIX.

Methods Acc (%) ∆
w/o PA 84.5 -
PA w/o PCC 84.9 0.4
PA w/ PCC 85.6 1.1

TABLE VII
COMPARISON OF MODEL COMPLEXITY WITH GCN-BASED METHODS. THE

ACCURACY IS ON THE CROSS-SUBJECT BENCHMARK OF NTU RGB+D.

Methods Params FLOPs Acc (%)
2s-AGCN [6] 3.5M 19.5G 86.5
DC-GCN [34] 3.4M 16.2G 88.2
MS-G3D [7] 3.2M 32.9G 89.4
TranSkeleton 2.2M↓31% 2.3G↓86% 90.1

frame skeleton sequences as input, our model still notably
outperforms existing GCN-based methods whose input length
is generally 300 frames. Since the computation cost of our
model increases linearly with the input length, its FLOPs
would still be 33%∼67% fewer than these methods even with
the same input length. We also compare the training time of
these methods. On NVIDIA RTX 2080Ti, the training of 2s-
AGCN [6], DC-GCN [34] and MS-G3D [7] require 25, 33
and 87 GPU hours respectively. In contrast, the training of
our model only takes 9 GPU hours. The results validate the
high efficiency of the proposed TranSkeleton model.

D. Visualization

Spatial attention. We visualize the attention maps of the
spatial MSA module in the 1st Transformer unit of our model.
Fig. 5 shows the attention maps of four typical actions, i.e.,
“drink water” (upper left), “put on a shoe” (upper right), “hand
waving” (lower left) and “hopping” (lower right), where blue
indicates bigger attention scores. In the upper left attention
map, the two red boxes indicate a strong correlation between
the head and the right arm, which is vital for classifying the
“drink water” action. In the upper right attention map, the
red boxes show the strong correlations between the right arm
and two feet for the “put on a shoe” action. Likewise, in the
lower left attention map, the model manages to capture the
correlation between two arms for the “hand waving” action.
Finally, in the lower right attention map, strong correlations
are shown between “H” (right foot) and “P+Q” (head, shoulder
and spine). This is quite interesting, as the “hopping” action
means exactly “jumping on one foot”, and our model success-
fully grasps the most discriminative correlations.

In addition, as shown in Fig. 6, we visualize the biggest
attention scores of three typical actions with red lines. In
the “brush hair” action, there are strong correlations between
the head and two hands, which are important for classifying
this action. Similarly, the model manages to capture the
correlations between the left hand and two feet in the “stand
up” action. Note that in the “clapping” action, the strongest
correlations are between the base of the spine and two hands.
This is kind of interesting as the correlation between two
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Fig. 5. Spatial attention maps of the “drink water” (upper left), “put on a
shoe” (upper right), “hand waving” (lower left) and “hopping” (lower right)
actions. Blue indicates bigger values.

Fig. 6. Spatial attention visualization of the “brush hair”, “stand up” and
“clapping” actions. The red lines indicate the biggest attention scores among
all the joints.

hands intuitively seems more important. We conjecture this
is because it’s challenging to directly capture the correlation
between two hands, as both of them are moving fast when
clapping. The above visualization results demonstrate that the
spatial attention in our model can well capture key correlations
among joints for correct action classification.

Temporal attention. We visualize the attention maps of the
temporal MSA module in the last Transformer unit of our
model, but in the form of curves. Specifically, for each joint,
we sum its temporal attention scores along the query dimen-
sion, and thus turn the 2D attention map into an 1D vector.
We term this 1D vector as temporal attention intensity. Each
value in this vector indicates how much the corresponding
frame contributes in the dot-product attention process, i.e., how
much the temporal attention concentrates on the corresponding
frame. As shown in Fig 7, we visualize the temporal attention
intensity of some typical joints for three actions, i.e., “brush
hair”, “stand up” and “take object out of bag”. Note that for
clarity, the marked frames (left part) are visualized using their
corresponding images (right part) instead of skeletons.

Fig. 7. Temporal attention intensity visualization of the “brush hair”, “stand
up” and “take object out of bag” actions. Note that for clarity, the marked
frames (left part) are visualized using their corresponding images (right part)
instead of skeletons.

As in Fig. 7, the top row shows the temporal attention inten-
sity curves and the corresponding frames of the “brush hair”
action. The red curve represents the left hand and the blue
curve represents the right hand. As can be seen, the two curves
have similar tendencies. In frame a, the performer is just
standing there holding the brush. Therefore, the corresponding
temporal attention intensity values are low. In contrast, the
attention intensity values become high in frame b and c, as the
“brush hair” action is ongoing in these frames. Here we have
an interesting finding. In this video, the performer brushes hair
with her left and right hands alternatively. As the curves show,
our model precisely grasps this subtle temporal structure. This
further validates the effectiveness of our proposed partition-
aggregation temporal Transformer.

The middle row shows the visualization result of the “stand
up” action. The red curve represents the spine and the blue
curve represents the right foot. As can be seen, there’s a peak
in both curves, showing that the temporal attention manages
to focus on discriminative frames where the actual “stand
up” action takes place. Finally, the bottom row shows the
visualization result of the “take object out of bag” action,
which is a typical complex action comprising several simple
sub-actions. The red curve represents the left hand and the
blue curve represents the right hand. Frame a, b and c show
the corresponding sub-actions “unzip the bag”, “reach into
the bag” and “take out the object”. As can be seen, both
curves cover the second half of the sequence where the
action actually happens. We also notice the difference between
the two curves especially the opposite trends around frame
c. We conjecture this is due to the severe occlusion when
the left hand reaches into the bag. The above visualization
results demonstrate the temporal attention can well capture
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TABLE VIII
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE NTU RGB+D AND NTU RGB+D 120 DATASETS.

Methods X-Sub(%) X-View(%) X-Sub 120(%) X-Set 120(%) Params(M) FLOPs(G)
Ind-RNN [55] 81.8 88.0 - - - -
HCN [51] 86.5 91.1 - - - -
ST-LSTM [11] - - 55.7 57.9 - -
RotClips+MTCNN [14] - - 62.2 61.8 - -
ST-GCN [5] 81.5 88.3 70.7⋆ 73.2⋆ 3.1 16.2
RA-GCN [8] 87.3 93.6 81.1 82.7 2.0 32.8
2s-AGCN [6] 88.5 95.1 82.5⋆ 84.2⋆ 3.5 39.0
SGN [35] 89.0 94.5 79.2 81.5 0.7 0.8
Shift-GCN [29] 90.7 96.5 85.9 87.6 0.7 10.0
DC-GCN [34] 90.8 96.6 86.5 88.1 3.4 64.8
PA-ResGCN-B19 [30] 90.9 96.0 87.3 88.3 3.6 18.5
MS-G3D [7] 91.5 96.2 86.9 88.4 3.2 132
MST-GCN [37] 91.5 96.6 87.5 88.8 3.0 -
DualHead-Net [38] 92.0 96.6 88.2 89.3 3.0 -
TranSkeleton (Joint) 90.1 95.4 84.9 86.3 - 2.3
TranSkeleton (Bone) 90.3 94.5 85.6 86.8 - 2.3
TranSkeleton 92.8 97.0 89.4 90.5 2.2 9.2

⋆: The results are implemented based on the released codes.

both long-range dependencies and subtle temporal structures.
Meanwhile, it is adaptive to different input sequences and can
focus on discriminative frames.

E. Comparison with the State-of-the-Art

As there is complementarity between different modalities,
state-of-the-art methods generally adopt multi-stream fusion
to boost their performance. For a fair comparison, we apply
a similar score-level fusion strategy to obtain the final results.
Specifically, we combine the classification results of four indi-
vidual modalities, i.e., joint, bone, joint/bone and joint motion.
Here joint/bone is a hybrid modality which concatenates the
joint and bone data in the channel dimension. And joint motion
is the temporal differential between consecutive frames of the
joint modality.

To verify the effectiveness of our TranSkeleton model,
we compare it with state-of-the-art methods on two large-
scale benchmark datasets: NTU RGB+D and NTU RGB+D
120. The corresponding results are shown in Table VIII.
On both benchmarks of NTU RGB+D 120 (i.e. X-Sub 120
and X-Set 120), TranSkeleton surpasses existing TCN-GCN
methods by a large margin. For instance, the state-of-the-
art method DualHead-Net [38] in fact combines multi-scale
GCN/TCN with MS-G3D [7] to form a complex two-branch
network. Thus its computation cost could be larger than
MS-G3D, which has 14× FLOPs than ours. TranSkeleton
significantly outperforms it by 1.2% on X-Sub 120 and X-
Set 120, with much lower model complexity. On the X-
Sub benchmark of NTU RGB+D, TranSkeleton also largely
outperforms DualHead-Net [38] by 0.8%. Even on the highly
saturated X-View benchmark, we also surpass existing state-
of-the-art methods by 0.4%. We’d also like to clarify that, as
another research direction, extreme efficiency [35], [53], [54]
isn’t the main focus of our work, for it inevitably harms per-
formance. For instance, we largely outperform the lightweight
SGN [35] model by 10.2% and 9.0% on X-Sub 120 and X-
Set 120 respectively. The above experimental results verify the
effectiveness of our method.

V. CONCLUSION

In this work, we present TranSkeleton, a concise yet power-
ful Transformer framework which unifies spatial and temporal
modeling for skeleton-based action recognition. For temporal
modeling, we propose a novel partition-aggregation temporal
Transformer which works with hierarchical partition and ag-
gregation. It effectively captures both long-range dependencies
and subtle temporal structures, and is demonstrated better than
TCN and vanilla Transformer. A difference-aware aggregation
approach is also designed to reduce the information loss
caused by temporal aggregation. Besides, for effective spatial
modeling, we devise a physical connection constraint to form a
topology-aware spatial Transformer. Experimental results and
comprehensive analysis on two challenging skeleton datasets
demonstrate that the proposed TranSkeleton notably surpasses
the state-of-the-art counterparts.
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