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A B S T R A C T

Enormous untrimmed videos from the real world are difficult to analyze and manage. Temporal
action localization algorithms can help us to locate and recognize human activity clips in
untrimmed videos. Recently, anchor-free temporal action localization methods have gained
increasing attention due to small computational costs and no complex hyperparameters of
pre-set anchors. Although the performance has been significantly improved, most existing
anchor-free temporal action localization methods still suffer from inaccurate action boundary
predictions. In this paper, we want to alleviate the above problem through boundary refinement
and temporal context aggregation. To this end, a novel Progressive Boundary-aware Boosting
Network (PBBNet) is proposed for anchor-free temporal action localization. The PBBNet consists
of three main modules: Temporal Context-aware Module (TCM), Instance-wise Boundary-
aware Module (IBM), and Frame-wise Progressive Boundary-aware Module (FPBM). The TCM
aggregates the temporal context information and provides features for the IBM and the FPBM.
The IBM generates multi-scale video features to predict action results coarsely. Compared with
IBM, the FPBM focuses on instance features corresponding to action predictions and uses
more supervision information for boundary regression. Given action results from IBM, the
FPBM uses a progressive boosting strategy to refine the boundary predictions multiple times
with supervision from weak to strong. Extensive experiments on three benchmark datasets
THUMOS14, ActivityNet-v1.3 and HACS show our PPBNet outperforms all existing anchor-free
methods. Further, our PPBNet achieves state-of-the-art performance (72.5% mAP at tIoU = 0.5)
on THUMOS14 dataset.

. Introduction

As the cost of photography decreases, information is often stored in the form of video data in many scenarios (Rani & Kumar,
020; Zhao, Zhang, et al., 2021; Hassani, Ershadi, & Mohebi, 2022). Unlike text, image, and audio, video data with both spatial
nd temporal information is more complex, especially long-duration untrimmed videos in real world. To analyze the untrimmed
ideos, we often focus on a theme of interest, such as human activities, animal activities, or object movements. Then, computers
an trim and recognize video snippets about the assigned theme from the untrimmed videos with deep learning algorithms. It can
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help us to analyze and process the huge amount of real-world video data efficiently. Among the subjects, there is no doubt that
human is the most essential and important theme. Furthermore, videos containing human behaviors appear most commonly thus
collected easily. Hence, most studies on untrimmed video understanding focus on human actions. Temporal action localization
(TAL), a vital and fundamental video understanding task, is developed to study on how to locate and classify every video clip that
may contain an human action instance in the untrimmed videos. The TAL algorithms can be applied to a variety of scenarios (Zhao,
Torralba, Torresani, & Yan, 2019; Hosono, Sawada, Sun, Hayase, & Shimamura, 2020; Dave et al., 2022; Li et al., 2022; Alkanat,
Akdag, Bondarev, & de With, 2022), including surveillance, business recommendations, autonomous driving, etc. The TAL task has
attracted increasing attention in recent years.

Most existing TAL methods rely on predefined or dense temporal anchors, which lead to a large number of redundant action
roposals and high computational complexity. Given an untrimmed video with 𝑁 frames, existing actionness-based methods based

on dense anchors (Lin, Liu, Li, Ding, & Wen, 2019; Lin et al., 2020; Wang, Zhang, Zheng, & Pan, 2022) usually perform an exhaustive
enumeration of all boundary combinations and evaluate their confidence scores by building a 𝑇 ×𝑇 two-dimensional proposal map,
which generates 𝑇×(𝑇−1)

2 action proposals. The anchor-based methods (Xu, Das, & Saenko, 2017; Chao et al., 2018; Gao et al.,
2020) pre-set anchors with 𝑁 different scales for each temporal location and regress action boundaries on the top of these anchors,
which produce 𝑁 × 𝑇 action proposals. If using multi-scale features, the number of action proposals will be greater. Besides, the
performances of anchor-based methods are sensitive to the hyperparameters of anchors. Complex hyperparameter adjustments limit
the application of anchor-based TAL methods.

For efficiency, anchor-free TAL methods take each temporal location as a target point to regress the distances between the
location and two action boundaries, which only generate 𝑇 action proposals and do not preset anchors. Compared with the above
TAL methods, anchor-free methods require fewer hyperparameters and lower computing costs. It enables the anchor-free approach to
be a competitive alternative. Existing anchor-free TAL methods have made preliminary explorations on how to design an anchor-free
TAL framework. Lin et al. (2021) proposed a basic coarse-to-fine anchor-free TAL method named AFSD. The AFSD method design
a boundary max-pooling strategy to build a boundary salient refinement module that can refine the coarse boundary predictions.
Some anchor-free methods (Zhao et al., 2022; Zhang, Wu, & Li, 2022) achieve good performance on the benchmark datasets with
the help of self-attention mechanisms.

However, most of the existing anchor-free TAL models still suffer from imprecise action boundary predictions. (1) Because of
generating only a small number of proposals, the anchor-free TAL methods have natural inferiority in action boundary prediction.
The AFSD adopts a coarse-to-fine framework that effectively improves the precision of boundary prediction, but its refinement
strategy is relatively simple and does not fully utilize the boundary neighborhood information. It leads to ambiguous boundary
prediction when the boundary context is complex. The AFSD model only refines the action proposals once. It also limits the
improvement of boundary prediction. (2) The anchor-free TAL method regresses action boundaries directly upon temporal location,
which relies on the ability of models to capture temporal context information. The capability of existing anchor-free TAL models
for temporal modeling is still unsatisfactory.

To solve the above problems, we propose a novel anchor-free temporal action localization framework named Progressive
Boundary-aware Boosting Network (PBBNet) to detect action instances through boundary refinement and temporal context
aggregation. With the powerful capability of capturing temporal context, the PPBNet can generate high-quality boundary predictions
through progressive boundary-aware boosting. To be specific, the PBBNet consists of three main modules: Temporal Context-aware
Module (TCM), Instance-wise Boundary-aware Module (IBM), and Frame-wise Progressive Boundary-aware Module (FPBM). The
TCM is used to aggregate the temporal context information. It generates coarse-grained and fine-grained aggregated features for
the IBM and the FPBM, respectively. The IBM is used to locate the approximate temporal position of action instances. It generates
multi-scale features by a pyramid network and predicts action boundary and category on each location of multi-scale features.
The FPBM is used to refine the coarse boundary predictions from IBM. Compared with IBM, the FPBM focuses on action instance
features and uses more supervision information. Besides, the FPBM extracts instance features according to the action predictions
and adopts a progressive boundary-aware boosting strategy, where action boundaries are regressed multiple times in the frame level
with supervision from weak to strong.

The main contributions of this paper can be summarized as follows:

• We propose a novel Progressive Boundary-aware Boosting Network (PBBNet) for anchor-free temporal action localization.
Unlike existing coarse-to-fine anchor-free methods, the refinement of PBBNet directly focuses on action instance features and
adopts a progressive boundary-aware boosting strategy to refine boundary predictions with supervision from weak to strong.

• A novel temporal context-aware module is designed to improve the capability of capturing temporal context information. It
first transforms 1D temporal features into 2D space to capture local information by 2D convolution and then uses self-attention
to aggregate global information in 1D space.

• Comprehensive experiments are performed on THUMOS14, ActivityNet-v1.3 and HACS datasets. Our proposed PBBNet
achieves state-of-the-art performance on THUMOS14 dataset. Moreover, our PBBNet outperforms all existing anchor-free TAL
models on ActivityNet-v1.3 and HACS datasets.

The remaining sections of the paper are organized as follows. In Section 2, we introduce related works about anchor-free temporal
action localization. In Section 3, we describe the details of our PBBNet method. In Section 4, experiments and analysis on three
benchmark datasets are provided. Finally, Section 5 makes the conclusions of this paper.
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2. Related work

Due to the explosion of video data, it is expected that computers can help us process, analyze and utilize this rich yet redundant
ideo data through artificial intelligence technologies. Thus, video understanding algorithms gained a lot of attention and have
een developed significantly. Akin to image classification (Zhang, Jiang, et al., 2017; Dosovitskiy et al., 2020), video classification
i.e., action recognition) algorithms (Feichtenhofer, Fan, Malik, & He, 2019) have achieved high accuracy. However, video
lassification methods can only handle short-duration trimmed videos and are not capable of handling long-duration untrimmed
ideos. It limits real-world applications of video understanding technologies. To solve this issue, the temporal action localization
TAL) task focuses on processing untrimmed videos. It can trim and recognize video snippets about human activities from untrimmed
ideos with the help of deep learning. Most TAL methods (Liu, Ma, Zhang, Liu, & Chang, 2019; Chen et al., 2019; Zhao et al., 2020;
an, Tang, Wang, & Wu, 2021) separate this task into two subtasks: temporal action proposal generation and video classification.
hey first generate temporal action proposals (like bounding boxes in object detection) with high confidence scores. Then, they
lassify these action proposals using advanced video classification algorithms (Zhao, Zhang, et al., 2017). Some TAL methods (Lin,
hao, & Shou, 2017; Long et al., 2019; Lin et al., 2021) are one-stage algorithms, which locate and classify action instances from
ntrimmed videos simultaneously. However, the performances of one-stage TAL algorithms are often lower than two-stage TAL
lgorithms. In fact, both the one-stage and two-stage approaches need to locate action instances by generating action proposals. In
his paper, we focus on how to generate action proposals. The TAL methods can be divided into three categories: actionness-based
ethods, anchor-based methods and anchor-free methods. We will discuss these methods separately in the following.
Actionness-based TAL methods. Actionness-based TAL methods adopt a bottom-up method to predict action proposals. The

‘actionness’ means the probability that each video clip contains an action instance in an untrimmed video. Besides, the probability
that each frame is a boundary frame or action frame is often used. For example, BSN (Lin, Zhao, Su, Wang, & Yang, 2018) predicts
the starting boundary, ending boundary and action probabilities of each temporal location and chooses the temporal points with
high boundary probabilities. It can generate many action proposals by combining the starting points and the ending points. With
the help of action probability, BSN (Lin et al., 2018) extracts proposal features to predict their actionness scores and finally obtains
flexible action proposals. However, it is inefficient due to choosing and combining boundary points. To solve this problem, BMN (Lin
et al., 2019) presets dense temporal anchors, i.e., use action proposals by combining each pair of different temporal points. It
produces a 2D proposal feature map and predicts the actionness scores of each proposal in the 2D map. Besides, it also predicts
the probabilities of starting boundary and ending boundary for each location like BSN (Lin et al., 2018). Finally, it combines the
actionness scores and the corresponding boundary probabilities to obtain high-quality proposals. Afterward, many actionness-based
TAL methods (Lin et al., 2020; Su, Gan, Wu, Qiao, & Yan, 2021; Qing et al., 2021; Yang et al., 2022; Wang et al., 2022) follow
it and use dense anchors to predict action instances by different actionness evaluation strategies. For example, RCL (Wang et al.,
2022) adopts a fully continuous and scale-invariant sampling strategy to generate dense action anchors, and recurrently predicts
the action instances in the untrimmed videos. Although these actionness-based TAL methods can achieve high performances, the
cost of computing a large number of dense anchors is very high.

Anchor-based TAL methods. Anchor-based TAL methods use a top-down way to predict action proposals. These methods preset
certain number of temporal anchors for each temporal location and regress action boundaries based on these pre-defined anchors.

nspired by the object detection method (Ren, He, Girshick, & Sun, 2015), R-C3D (Xu et al., 2017) use pre-defined anchors to generate
roposal features by 3D fully convolution operations. Then it produces the results by feature pooling and classifying. TAL (Chao
t al., 2018) focuses on the receptive fields of anchors with different scales and improves the performance through the multi-tower
ramework and multi-stream fusion feature. To solve the robustness problem caused by pre-defined anchor scales, GTAN (Long
t al., 2019) uses the Gaussian kernels to help its model generate action proposals with different duration flexibly. For capturing
lobal temporal context information, RapNet (Gao et al., 2020) uses the relation-aware attention blocks to produce a series of multi-
cale temporal pyramid features and generate anchor-based proposals for each location. It can achieve high performance through
oundary adjustment and proposal ranking. Although these anchor-based TAL methods can generate good action predictions,
omplex hyperparameters setting of pre-defined anchors limits their applications. Due to being freedom of pre-defined anchors,
ur method is more efficient than the anchor-based TAL methods.
Anchor-free TAL methods. Anchor-free TAL methods detect action instances by regressing the distances between the location

nd two action boundaries for each temporal location. These methods only generate a small number of action proposals without
re-defined anchors, which need fewer hyperparameters and lower computational costs. AFSD (Lin et al., 2021) designs a boundary
ax-pooling strategy and uses an end-to-end method to train the TAL model. Compared with many actionness-based and anchor-

ased methods, it obtains comparable performances. TRA (Zhao et al., 2022) focuses on the utilization of temporal relations in
nchor-free methods. To capture temporal-aware information, it designs three temporal modeling modules including a temporal self-
ttention module, a multiple temporal aggregation module and a graph relation module. Both AFSD and TRA adopt a coarse-to-fine
ramework to detect action instances in untrimmed videos. Unlike AFSD and TRA, Actionformer (Zhang et al., 2022) uses an efficient
ransformer framework to detect action instances and directly produces the final prediction results without a refinement stage. With
he help of the transformer framework, it achieves exciting performances on the main datasets. Although existing anchor-free TAL
ethods achieve high performance, they still suffer from inaccurate action boundary predictions.

To solve this problem, we propose a novel anchor-free TAL model named progressive boundary-aware boosting network.
ompared with AFSD (Lin et al., 2021) and TRA (Zhao et al., 2022), our method focuses on instance features instead of entire
ideo features when refining the action predictions. Besides, our model adopts a progressive boundary-aware boosting strategy to
3
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Fig. 1. An overview of our proposed PBBNet. The PBBNet consists of the video encoder, the temporal context-aware module, the instance-wise boundary-aware
module and the frame-wise progressive boundary-aware module. The video encoder is used to extract the video feature from an untrimmed video. The temporal
context-aware module is used to aggregate the temporal context information. The instance-wise boundary-aware module generates multi-scale features and
predicts action instances coarsely. The frame-wise progressive boundary-aware module generates instance features corresponding to the predictions and uses
𝑁-step progressive boundary-aware boosting to refine the boundary predictions with supervision from weak to strong. Finally, we can obtain high-quality action
instance predictions. The coarse-grained and fine-grained predicting flows are yellow and blue. The demo video has two ‘‘snatch’’ action instances, which can
be detected by our method accurately.

et al., 2022), we use a transformer framework to build our model. With a useful refinement module, our method can obtain
better predictions than Actionformer. Moreover, we design a valid temporal context-aware module to fully use temporal context
information. Combined with the above, our model has a strong ability to capture temporal context information and can generate
high-quality boundary predictions through the progressive boosting strategy. Hence, our method can achieve better performance
compared with the existing anchor-free TAL methods.

3. Method

In this section, our proposed Progressive Boundary-aware Boosting Network (PPBNet) is introduced in detail. As shown in Fig. 1,
our PBBNet consists of the video encoder, the temporal context-aware module, the instance-wise boundary-aware module and the
frame-wise progressive boundary-aware module. Given an untrimmed video, we first extract the original feature by a video encoder.
We use the temporal context-aware module to capture temporal context information. It outputs coarse-grained and fine-grained
feature sequences for the instance-wise boundary-aware module and frame-wise progressive boundary-aware module, respectively.
The instance-wise boundary-aware module uses a pyramid network to process the coarse-grained feature sequences and generates
action predictions by a classification head and a boundary regression head. The frame-wise progressive boundary-aware module
boosts the action boundary predictions step by step with supervision from weak to strong. In each step, it extracts the instance
features corresponding to the action predictions and uses multiple regression heads to refine the predictions in the frame level.
Finally, we obtain high-quality predictions of action instances.

3.1. Video encoding

Denote an untrimmed video as 𝑽 = {𝐼𝑖}
𝑁𝑓
𝑖=1. 𝑁𝑓 is the number of video frames. The temporal boundaries and classes of action

instances are labeled. For video encoding, we first set a frame sampling interval 𝑁𝜎 to spilt the untrimmed video into a series of
video snippets {𝒔 }𝑁𝑠 , where 𝒔 = {𝐼 }𝑁𝜎 and 𝑁 = 𝑁 ∕𝑁 . Following previous methods (Zhang, Li, Zhao, Zhang, & Yan, 2016;
4
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Lin et al., 2021; Qing et al., 2021; Zhang et al., 2022; Wang et al., 2022), we use the state-of-the-art action recognition models
(such as I3D (Carreira & Zisserman, 2017) and SlowFast (Feichtenhofer et al., 2019)) to extract feature 𝑭𝑠𝑛𝑖𝑝𝑝𝑒𝑡 ∈ R1×𝐶𝑜 from each
video snippet. 𝐶𝑜 is the number of feature channels. We concatenate these consecutive snippet features as original feature sequence
𝑭𝑜 ∈ R𝑁𝑠×𝐶𝑜 . Following previous methods (Alwassel, Giancola, & Ghanem, 2021; Liu, Bai, & Bai, 2022), we use different video
ncoders for different untrimmed videos datasets. More details will be given in the experiment section.

.2. Temporal context-aware module

As each snippet feature is encoded independently, it only considers the temporal context information in the video snippet level.
he temporal relationship between video clips remains to be explored. In other words, we need to capture the temporal context

nformation of the entire untrimmed video. Inspired by the advanced previous methods (Zhang, Li, et al., 2017; Xie, Girshick,
ollár, Tu, & He, 2017; Liu, Hu, et al., 2021; Qing et al., 2021; Zhang et al., 2022), we utilize the combination of convolution and

elf-attention operations to construct the temporal context-aware module.
Denote 𝑭 ∈ R𝑇×𝐶 as the input feature sequence. We use a temporal sliding window to sample a series of consecutive feature

sequences {𝑭𝑤}
𝑁𝑤
𝑖=1 without overlap, where 𝑭𝑤 ∈ R𝐿𝑊 ×𝐶 , 𝐿𝑤 is the length of sliding window and 𝑇 = 𝐿𝑊 × 𝑁𝑤. Concatenating

these feature sequences in chronological order, a higher dimensional feature 𝑭 ′ ∈ R𝑁𝑤×𝐿𝑊 ×𝐶 is generated. Setting different sliding
windows to extract the high-dimensional features, we use a group of 2D convolution layers with different kernel sizes to generate
a elementary temporal-correlated feature. It can be written by

𝑭𝑙𝑜𝑐𝑎𝑙 = 𝑓𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑓 1
𝑐𝑜𝑛𝑣2𝑑 (𝑭

′
1 , [𝐾ℎ1 , 𝐾𝑤1

]) + 𝑓 2
𝑐𝑜𝑛𝑣2𝑑 (𝑭

′
2 , [𝐾ℎ2 , 𝐾𝑤2

]) +⋯ + 𝑓𝑚
𝑐𝑜𝑛𝑣2𝑑 (𝑭

′
𝑚, [𝐾ℎ3 , 𝐾𝑤3

])), (1)

where 𝑭 ′
𝑖 is generated by a length 𝐿𝑊𝑖

sliding window and [𝐾ℎ𝑖 , 𝐾𝑤𝑖
] is the kernel size of 2D convolution layer 𝑓 𝑖

𝑐𝑜𝑛𝑣2𝑑 (𝑖 = 1, 2,… , 𝑚).
With the flatten operation 𝑓𝑓𝑙𝑎𝑡𝑡𝑒𝑛, the shape of generated feature 𝑭𝑙𝑜𝑐𝑎𝑙 is R𝑇×𝐶′ and 𝐶 ′ is the number of output channels in the last 2D
convolution layer. To improve efficiency, we use the 2D deformable convolution operation (Dai et al., 2017) to perform this instead
of both sliding window and 2D convolution operations. The offset sizes of deformable convolution are set according to the length
of sliding windows and the kernel sizes. Simultaneously, multiple groups of 2D deformable convolution operations are adopted
to improve the performance. Finally, we use two convolution kernels with kernel sizes 1 × 3 and 3 × 3. Three sliding windows
are adopted with lengths 3, 6 and 9. With the set of sliding window lengths {𝐿𝑊𝑖

}4𝑖=1 = {3, 3, 6, 9}, a 2D deformable convolution
operation can be written by 𝑓𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑓 1

𝑐𝑜𝑛𝑣2𝑑 (𝑭
′
1 , [1, 3]) + 𝑓 2

𝑐𝑜𝑛𝑣2𝑑 (𝑭
′
2 , [3, 3]) + 𝑓 3

𝑐𝑜𝑛𝑣2𝑑 (𝑭
′
3 , [3, 3]) + 𝑓 4

𝑐𝑜𝑛𝑣2𝑑 (𝑭
′
4 , [3, 3])). We stack 3 groups of

these 2D deformable convolution operations, where the output channel dimensions are set to 384, 512 and 512, respectively.
By the above mentioned, we capture the correlations between adjacent and non-adjacent snippet features under different

sizes of receptive fields, and aggregate the local temporal contextual information. We further use the self-attention mecha-
nism (Vaswani et al., 2017; Wang, Girshick, Gupta, & He, 2018) to model the global temporal context information. The advanced
temporal-correlated feature is generated by the following formula:

𝑭𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑓𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑭𝑙𝑜𝑐𝑎𝑙𝑴𝑄(𝑭𝑙𝑜𝑐𝑎𝑙𝑴𝐾 )𝑇

4
√

𝐶𝑄 × 𝐶𝐾
)𝑭𝑙𝑜𝑐𝑎𝑙𝑴𝑉 , (2)

where 𝑭𝑔𝑙𝑜𝑏𝑎𝑙 ∈ R𝑇×𝐶′ and 𝑓𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is the softmax operation. 𝑴𝑄 ∈ R𝐶′×𝐶𝑄 , 𝑴𝐾 ∈ R𝐶′×𝐶𝐾 and 𝑴𝑉 ∈ R𝐶′×𝐶𝑉 are the projection
matrices and 𝐶𝑄 = 𝐶𝐾 . The feature 𝑭𝑔𝑙𝑜𝑏𝑎𝑙 is taken as output.

Specially, for the original feature sequence 𝑭𝑜 from Section 3.1, we first re-scale its temporal length to coarse-grained size 𝑇𝑐
and fine-grained scale 𝑇𝑓 , where 𝑇𝑐 < 𝑇𝑓 . Aggregating the local and global temporal context information, we finally generate a
coarse-grained feature 𝑭𝑐 ∈ R𝑇𝑐×𝐶𝑐 and a fine-grained feature 𝑭𝑓 ∈ R𝑇𝑓×𝐶𝑓 for the instance-wise boundary-aware module and frame-
wise progressive boundary-aware module, respectively. For reducing computing costs, we use 1D temporal convolution operation
instead of the operations in formula (1) when generating the coarse-grained feature. This controls the number of anchor points in
the coarse-grained prediction and ensures sufficient temporal resolution in the fine-grained prediction. Besides, it also reduces the
amount of calculation.

3.3. Instance-wise boundary-aware module

The instance-wise boundary-aware module is used to generate coarse prediction of temporal action instances. Given a video
feature sequence, we utilize the pyramid network to generate multi-scale feature sequences and detect the action instances by
boundary and class heads.

Pyramid Network We use 𝑁𝐿 depthwise 1D convolution layers as downsampling operators to construct the pyramid networks.
Following advanced methods (Wu et al., 2021; Touvron, Cord, Sablayrolles, Synnaeve, & Jégou, 2021; Zhang et al., 2022), we add
a local self-attention layer (Choromanski et al., 2020) before each convolution layer. As shown in Algorithm 1, we input the feature
𝑭𝑐 ∈ R𝑇𝑐×𝐶𝑐 and obtain a set of the multi-scale feature sequences {𝑭 (0),𝑭 (1),… ,𝑭 (𝑁𝐿)}, where 𝑭 (𝑖) ∈ R𝑇 (𝑖)×𝐶 , (𝑖 = 0, 1,… , 𝑁𝐿).

Boundary Head The boundary head is built by the 1D convolution layers. To achieve better performance, multiple 2D
convolution groups from Formula (1) are used. For each feature sequences from the pyramid network, we detect each location
𝑗 on the temporal dimension and predict the distances (𝑑𝑗𝑠 , 𝑑

𝑗
𝑒 ) from each location to the starting and ending boundary of an action

instance. For example, given the feature sequence 𝑭 (𝑖) ∈ R𝑇 (𝑖)×𝐶 , 𝑇 (𝑖) pairs of starting and ending boundary prediction results are
generated and can be written by

𝑹(𝑖) = {𝑷 𝑗 = (𝑡 − 𝑑𝑗 , 𝑡 + 𝑑𝑗 )}𝑇
(𝑖)
. (3)
5

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑗 𝑠 𝑗 𝑒 𝑗=1
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Algorithm 1: Pyramid Network to generate multi-scale video features.
Input:

Feature sequence F 𝑖𝑛𝑝𝑢𝑡 ∈ R𝑇×𝐶 .
Output:

Multi-scale feature sequences {F (0),F (1),⋯ ,F (𝑁𝐿)} and F (𝑖) ∈ R
𝑇
2𝑖
×𝐶 (𝑖 = 0, 1,⋯ , 𝑁𝐿).

1: Set  = {} and 𝑖 = 1;
2: Let F (0) = F 𝑖𝑛𝑝𝑢𝑡 and add F (0) into ;
3: Let learnable factors 𝛼1 and 𝛼2 be initialized to 0;
4: while 𝑖 <= 𝑁𝐿 do
5: F𝑚 = 𝑓𝐿𝑁 (F (𝑖−1)); # 𝑓𝐿𝑁 is the LayerNorm operation.

6: F𝑚 = 𝛼1𝑓𝑆𝐴(F𝑚) + F𝑚; # 𝑓𝑆𝐴 is the Self-Attention operation and 𝛼1 is learnable factor.

7: F𝑚 = 𝑓𝐿𝑁 (F𝑚);

8: F𝑚 = 𝛼2𝑓𝑀𝐿𝑃 (F𝑚) + F𝑚; # 𝑓𝑀𝐿𝑃 is the combination of fully-connected layers and GELU operations.

9: F (𝑖) = 𝑓𝑐𝑜𝑛𝑣1𝑑 (F𝑚); # 𝑓𝑐𝑜𝑛𝑣1𝑑 is the depthwise 1D convolution operation for downsampling.

10: Add F (𝑖) into  and 𝑖 = 𝑖 + 1;

11: end while
12: return Pyramid feature set .

Class Head The main architecture of class head is similar to the boundary head. For each feature sequences from the pyramid
network, we also examine each location 𝑗 on the temporal dimension. The difference is that the class head predicts the probability
of 𝑁𝑐 action classes. For the feature sequence 𝑭 (𝑖) ∈ R𝑇 (𝑖)×𝐶 , 𝑇 (𝑖) probability sequences are generated and can be written by

𝑹(𝑖)
𝑐𝑙𝑎𝑠𝑠 = {𝑷 𝑗

𝑐𝑙𝑎𝑠𝑠 = (𝑝𝑗1, 𝑝
𝑗
2,… , 𝑝𝑗𝑁𝑐

)}𝑇
(𝑖)

𝑗=1. (4)

Supervision Given an untrimmed video, all action instances that it contains are annotated with the boundary locations and
lass id. For every temporal location 𝑗 of the multi-scale feature sequences, the instance-wise boundary-aware module outputs the
oundary prediction 𝑷 𝑗

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 and category prediction 𝑷 𝑗
𝑐𝑙𝑎𝑠𝑠. The loss function is given by

𝐿𝑐𝑜𝑎𝑟𝑠𝑒 =
∑

(

𝑓𝑏(𝑗)
𝑁+

𝑡
𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝑷

𝑗
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑷

𝐺
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) +

1
𝑁𝑡

𝐿𝑐𝑙𝑎𝑠𝑠(𝑷
𝑗
𝑐𝑙𝑎𝑠𝑠,𝑷

𝐺
𝑐𝑙𝑎𝑠𝑠)

)

(5)

where 𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 is the advanced IoU loss (Rezatofighi et al., 2019; Zheng et al., 2020) and 𝐿𝑐𝑙𝑎𝑠𝑠 is the focal loss (Lin, Goyal, Girshick,
He, & Dollár, 2017). 𝑷𝐺

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 and 𝑷𝐺
𝑐𝑙𝑎𝑠𝑠 are the groundtruth of action boundaries and classes, respectively. 𝑓𝑏(𝑗) is a two-value

function. If the temporal point 𝑗 is located in an action region, the point 𝑗 is considered as a positive sample and 𝑓𝑏(𝑗) = 1. Otherwise,
it is a negative sample and 𝑓𝑏(𝑗) = 0. 𝑁𝑡 is denoted as the total number of temporal points and 𝑁+

𝑡 is the number of points regarded
as positive samples.

3.4. Frame-wise progressive boundary-aware module

The frame-wise progressive boundary-aware module (FPBM) is used to refine the coarse boundary predictions from IBM.
Compared with IBM, the FPBM focuses on action instance features instead of video features and uses more supervision information.
Inspired by the advanced methods (Nie et al., 2019; Qing et al., 2021; Pan, Li, Zhang, & Tang, 2021; Wang et al., 2022), we adopt a
progressive boundary-aware boosting strategy to refine the boundary predictions step by step with supervision from weak to strong.
In each boundary-aware boosting step, the boundary-aware boosting block first extracts the instance features corresponding to
action predictions and uses multiple regression heads to refine the results through various types of supervision information. Besides,
with the fine-grained video feature, the action boundary predictions can be boosted in the frame level. The specific structure of
boundary-aware boosting block is described as follows.

Instance Feature Generator For boundary-aware boosting, we construct the instance features by temporal boundary context
and action internal context. Three types of instance features including starting boundary feature, ending boundary feature and
center feature are generated. Given the fine-grained video feature 𝑭𝑓 ∈ R𝑇𝑓×𝐶𝑓 and boundary predictions 𝑷𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = (𝑡𝑠, 𝑡𝑒), the
uration of predicted action instance is 𝑑 = 𝑡𝑒 − 𝑡𝑠. The starting boundary region, ending boundary region and center region are set
o [𝑡𝑠 −

𝑑
2 , 𝑡𝑠 +

𝑑
2 ], [𝑡𝑒 −

𝑑
2 , 𝑡𝑒 +

𝑑
2 ] and [𝑡𝑠, 𝑡𝑒], respectively. We extract the feature sequences corresponding to these temporal regions

from 𝑭𝑓 and obtain 𝑭𝑠𝑡𝑎𝑟𝑡 ∈ R𝑑×𝐶𝑓 , 𝑭𝑒𝑛𝑑 ∈ R𝑑×𝐶𝑓 and 𝑭𝑐𝑒𝑛𝑡𝑒𝑟 ∈ R𝑑×𝐶𝑓 . As the duration of boundary predictions maybe different, all
6

nstance features are projected to the same shape by RoI Align (He, Gkioxari, Dollár, & Girshick, 2017).
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Multi-Head Block Multiple groups of 1D convolution layers construct the multi-head block. Each group of 1D convolution layers
is used to regress a fine-grained offset. We consider the deviations in terms of starting, ending, center position, and duration. Given
the instance features, the fine-grained predictions can be written by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝑡𝑠 = 𝑓𝑐𝑜𝑛𝑣1𝑑 (𝑓𝑅𝑒𝐿𝑢(𝑓𝑐𝑜𝑛𝑣1𝑑 (𝑭𝑠𝑡𝑎𝑟𝑡)))

𝛥𝑡𝑒 = 𝑓𝑐𝑜𝑛𝑣1𝑑 (𝑓𝑅𝑒𝐿𝑢(𝑓𝑐𝑜𝑛𝑣1𝑑 (𝑭𝑒𝑛𝑑 )))

𝛥𝑡𝑐 = 𝑓𝑐𝑜𝑛𝑣1𝑑 (𝑓𝑅𝑒𝐿𝑢(𝑓𝑐𝑜𝑛𝑣1𝑑 (𝑭𝑠𝑡𝑎𝑟𝑡‖𝑭𝑐𝑒𝑛𝑡𝑒𝑟‖𝑭𝑒𝑛𝑑 )))

𝛥𝑑 = 𝑓𝑐𝑜𝑛𝑣1𝑑 (𝑓𝑅𝑒𝐿𝑢(𝑓𝑐𝑜𝑛𝑣1𝑑 (𝑭𝑠𝑡𝑎𝑟𝑡‖𝑭𝑐𝑒𝑛𝑡𝑒𝑟‖𝑭𝑒𝑛𝑑 )))

(6)

where ⋅ ∥ ⋅ means the temporal concatenation operation. Then, we fuse these predictions and obtain the final results. Given the
coarse starting boundary 𝑡𝑠 and starting boundary offset 𝛥𝑡𝑠, a new starting boundary 𝑡′𝑠1 can be computed by (𝑡𝑠 − 𝛥𝑡𝑠 ⋅ 𝑑). Besides,
we can obtain the coarse duration prediction 𝑑 = 𝑡𝑒− 𝑡𝑠 and the coarse center location 𝑡𝑠+𝑡𝑒

2 . Given the center offset 𝛥𝑡𝑐 and duration
ffset 𝛥𝑑, new center location and duration prediction can be written by 𝑡𝑠+𝑡𝑒

2 − 𝛥𝑡𝑐 ⋅ 𝑑 and 𝑑 ⋅ 𝑒𝑥𝑝(𝛥𝑑). We can also obtain a new
tarting boundary 𝑡′𝑠2 = 𝑡𝑠+𝑡𝑒

2 − 𝛥𝑡𝑐 ⋅ 𝑑 − 𝑑⋅𝑒𝑥𝑝(𝛥𝑑)
2 . The final starting boundary 𝑡′𝑠 is computed by 1

2 (𝑡
′
𝑠1
+ 𝑡′𝑠2 ). In the same way, we can

et the ending boundary prediction 𝑡′𝑒. Finally, the fine-grained prediction can be written by

𝑡′𝑠 =
1
2
(𝑡𝑠 − 𝛥𝑡𝑠 ⋅ 𝑑) +

1
2
(
𝑡𝑠 + 𝑡𝑒

2
− 𝛥𝑡𝑐 ⋅ 𝑑 −

𝑑 ⋅ 𝑒𝑥𝑝(𝛥𝑑)
2

) =
3𝑡𝑠 + 𝑡𝑒 − (2𝛥𝑡𝑠 + 2𝛥𝑡𝑐 + 𝑒𝑥𝑝(𝛥𝑑)) ⋅ 𝑑

4
, (7)

𝑡′𝑒 =
1
2
(𝑡𝑒 − 𝛥𝑡𝑒 ⋅ 𝑑) +

1
2
(
𝑡𝑠 + 𝑡𝑒

2
− 𝛥𝑡𝑐 ⋅ 𝑑 +

𝑑 ⋅ 𝑒𝑥𝑝(𝛥𝑑)
2

) =
𝑡𝑠 + 3𝑡𝑒 − (2𝛥𝑡𝑠 + 2𝛥𝑡𝑐 − 𝑒𝑥𝑝(𝛥𝑑)) ⋅ 𝑑

4
. (8)

In previous methods (Lin et al., 2019, 2020; Qing et al., 2021), temporal intersection over union (tiou) between the action
nstance proposal and the groundtruth is regard as the actionness probability of this predicted action instance. To achieve
etter performance, we also predict the actionness probability 𝑦 to re-rank the predicted action instances, where 𝑦 = 𝑓𝑐𝑜𝑛𝑣1𝑑

(𝑓𝑅𝑒𝐿𝑢(𝑓𝑐𝑜𝑛𝑣1𝑑 (𝑭𝑠𝑡𝑎𝑟𝑡‖𝑭𝑐𝑒𝑛𝑡𝑒𝑟‖𝑭𝑒𝑛𝑑 ))).
Supervision Given the 𝑖th predicted action instances (𝑡𝑖𝑠, 𝑡

𝑖
𝑒) from the coarse predictions and the corresponding groundtruth

(𝑡𝐺𝑖
𝑠 , 𝑡𝐺𝑖

𝑒 ). The supervision information is given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝑡𝐺𝑖
𝑠 =

𝑡𝑖𝑠 − 𝑡𝐺𝑖
𝑠

𝑡𝑖𝑒 − 𝑡𝑖𝑠
, 𝛥𝑡𝐺𝑖

𝑒 =
𝑡𝑖𝑒 − 𝑡𝐺𝑖

𝑒

𝑡𝑖𝑒 − 𝑡𝑖𝑠
, 𝛥𝑡𝐺𝑖

𝑐 =
𝑡𝑖𝑐 − 𝑡𝐺𝑖

𝑐

𝑡𝑖𝑒 − 𝑡𝑖𝑠
, 𝛥𝑑𝐺𝑖 = 𝑙𝑛(

𝑡𝐺𝑖
𝑒 − 𝑡𝐺𝑖

𝑠
𝑡𝑖𝑒 − 𝑡𝑖𝑠

)

𝑦𝐺𝑖 =
𝑚𝑖𝑛{𝑡𝑖𝑒, 𝑡

𝐺𝑖
𝑒 } − 𝑚𝑎𝑥{𝑡𝑖𝑠, 𝑡

𝐺𝑖
𝑠 }

𝑡𝑖𝑒 + 𝑡𝐺𝑖
𝑒 − 𝑡𝐺𝑖

𝑠 − 𝑡𝑖𝑠 − 𝑚𝑖𝑛{𝑡𝑖𝑒, 𝑡
𝐺𝑖
𝑒 } − 𝑚𝑎𝑥{𝑡𝑖𝑠, 𝑡

𝐺𝑖
𝑠 }

(9)

Then, the loss function is designed as

𝐿𝑟𝑒𝑓𝑖𝑛𝑒 =
∑

𝑖

(

𝑓 ′
𝑏(𝑖)

𝑁+
𝑝

∑

𝑥
𝐿𝑟𝑒𝑔(𝑥𝑖, 𝑥𝐺𝑖 ) + 1

𝑁𝑝
𝐿𝑟𝑒𝑔(𝑦𝑖, 𝑦𝐺𝑖 )

)

, 𝑥 ∈ {𝛥𝑡𝑠, 𝛥𝑡𝑒, 𝛥𝑡𝑐 , 𝛥𝑑} (10)

where 𝐿𝑟𝑒𝑔 is the SmoothL1 loss. 𝑓 ′
𝑏(𝑖) is a two-value function. If the groundtruth 𝑦𝐺𝑖 is larger than a positive threshold 𝜏, the 𝑖th

predicted action instance is considered as a positive sample and 𝑓𝑏(𝑗) = 1. Otherwise, 𝑓𝑏(𝑗) = 0. 𝑁𝑝 is denoted as the number of all
predicted action instances and 𝑁+

𝑝 is the number of the positive samples. We set the positive threshold 𝜏 from low to high, which
can progressive boosting the boundary predictions. In ablation studies, we discuss the importance of progressive boosting strategy
and explore the impact of positive thresholds.

4. Experiments

In this section, the main results and analysis of our proposed PBBNet are described in detail. We conducted experiments on the
publicly recognized datasets, including THUMOS14, ActivityNet-v1.3 and HACS.

4.1. Dataset and evaluation metric

THUMOS14 dataset (Jiang et al., 2014) It provides 413 untrimmed videos, where 20 classes of action instances are labeled. The
duration of total videos comes to 30 h and the number of total action instances is 6365. Specially, 200 labeled untrimmed videos
are used for training and 213 labeled untrimmed videos are used for testing.

ActivityNet-v1.3 dataset (Caba Heilbron, Escorcia, Ghanem, & Carlos Niebles, 2015) It provides about 20k untrimmed videos,
where 200 classes of action instances are labeled. The duration of total videos comes to about 700 h and the number of total action
instances is about 30k. Specially, 50% of untrimmed videos are used as training set, 25% of untrimmed videos are used as validation
set, and 25% of untrimmed videos are used as testing set. In particular, the annotation information of the testing set is not publicly
available.

HACS dataset (Zhao et al., 2019) It provides about 50k untrimmed videos, where 200 classes of action instances are labeled.
The duration of total videos comes to about 2k hours and the number of total action instances is about 140k. Specially, about 38k
untrimmed videos are used as training set, 6k untrimmed videos are used as validation set, and 6k untrimmed videos are used as
testing set. In particular, the annotation information of the testing set is also not publicly available.
7
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Evaluation Metric Following previous works (Lin et al., 2019; Tan et al., 2021; Zhang et al., 2022), we use the mean Average
recision (mAP) under a series of Temporal Intersection over Union (tIoU) thresholds to evaluate the TAL models. For THUMOS14
ataset, tIoU thresholds is set to {0.3, 0.4, 0.5, 0.6, 0.7}. For ActivityNet-v1.3 and HACS datasets, tIoU thresholds are set to {0.5,
.75, 0.95} and the average mAP is computed under tIoU thresholds from 0.5 to 0.95 with step size of 0.05.

.2. Implementation details

Following previous methods (Lin et al., 2021; Zhang et al., 2022; Qing et al., 2021), we choose the two-stream I3D network,
SP network and SlowFast network as video encoders for THUMOS14, ActivityNet-v1.3 and HACS datasets, respectively. We choose
dam as the optimizer. For the stabilization of training, we first optimize the network with the loss function in formula (5). For
HUMOS14 dataset, batch size, epoch number, learning rate and weight decay are set to 2, 55(including 5 linear warm-up epochs),
0−5 (with a cosine decay) and 10−4, respectively. 𝑇𝑐 and 𝑇𝑓 are set to 2304 and 3500, respectively. For ActivityNet-v1.3 and HACS
ataset, we set batch size, epoch number, learning rate and weight decay to 16, 15 (including 5 linear warm-up epochs), 10−3

nd 10−4, respectively. We set 𝑇𝑐 to 768 and let 𝑇𝑓 be 1000. Then, we train the network using the loss function in formula (10).
or efficiency, we select top-K coarse predictions for training through multi-class non-maximum suppression. As the THUMOS14
ataset has only a small number of untrimmed videos, we add some external dropout operations to avoid overfitting. Following
revious methods (Lin et al., 2021; Zhang et al., 2022), we use the external classifier to improve the accuracy of classification on
ctivityNet-v1.3 and HACS datasets. For THUMOS14 dataset, batch size, epoch number, learning rate and weight decay are set to 4,
, 10−6 and 10−5, respectively. For ActivityNet-v1.3 and HACS datasets, we set batch size, epoch number, learning rate and weight
ecay to 16, 9, 10−4 and 10−5, respectively.

.3. Comparison with the state-of-the-art TAL methods

Performance comparison experiments between our PPBNet and other the state-of-the-art TAL methods are performed on
HUMOS14, ActivityNet-v1.3 and HACS datasets. There are different video feature encoders utilized in existing TAL methods,

ncluding TSN (Simonyan & Zisserman, 2014), C3D (Tran, Bourdev, Fergus, Torresani, & Paluri, 2015), I3D (Carreira & Zisserman,
017), P3D (Qiu, Yao, & Mei, 2017), Slowfast (Feichtenhofer et al., 2019) and TSP (Alwassel et al., 2021). For clarity, we indicate
he video features used for each experimental result.
Performance comparison on THUMOS14 dataset
Table 1 gives the comparison results on THUMOS14 dataset. Our proposed PPBNet achieves state-of-the-art performance with

2.6% mAP at tIoU=0.3, 79.1% mAP at tIoU=0.4, 72.5% mAP at tIoU=0.5, 59.5% mAP at tIoU=0.6 and 45.4% mAP at tIoU=0.7.
ur method outperforms other SOTA temporal action localization methods, including actionness-based TAL methods (Shou et al.,
017; Zhao, Xiong, et al., 2017; Lin et al., 2018, 2019, 2020; Xu et al., 2020; Bai et al., 2020; Zhao et al., 2020; Sridhar et al.,
021; Tan et al., 2021; Yang et al., 2021; Su et al., 2021; Liu, Hu, et al., 2021; Liu, Wang, et al., 2021; Yang et al., 2022; Wang
t al., 2022), anchor-based TAL methods (Xu et al., 2017; Chao et al., 2018; Long et al., 2019; Liu & Wang, 2020), anchor-free
ethods (Yang et al., 2020; Lin et al., 2021; Zhao et al., 2022; Zhang et al., 2022), and other TAL methods (Shou et al., 2016; Zeng

t al., 2019; Zhu et al., 2021; Zhao, Thabet, & Ghanem, 2021; Chen et al., 2022; Liu et al., 2022). Especially, our PBBNet improve
2.5% mAP and 21.2% mAP over the best actionness-based model (Yang et al., 2022) and anchor-based TAL model (Su et al., 2020)
t tIoU threshold 0.5, respectively.

In anchor-free TAL methods, both AFSD (Lin et al., 2021) and TRA (Zhao et al., 2022) adopt a coarse-to-fine framework to detect
ction instances in untrimmed videos. Due to full utilization of temporal information, TRA (Zhao et al., 2022) perform 1.9% mAP
t tIoU=0.5 higher than AFSD (Lin et al., 2021). However, they ignore the importance of progressive refinement and only give their
odels one chance to refine the predictions. Considering this issue, our PBBNet uses a progressive boosting strategy to refine the

esults step by step. Thus, our method can gain 17% and 15.1% mAP improvement over AFSD (Lin et al., 2021) and TRA (Zhao et al.,
022), respectively. Besides, Actionformer (Zhang et al., 2022), an efficient transformer anchor-free TAL model, has powerful time-
eries information acquisition capability and obtains impressive performance crossing the 70% mAP at tIoU=0.5 for the first time.
ut lacking an effective refinement module limits its performance. We focus on both the utilization of temporal context information
nd boosting the prediction results progressively. Therefore, our PBBNet can still outperform Actionformer (Zhang et al., 2022) by
.5% mAP at tIoU=0.5.
Performance comparison on ActivityNet-v1.3 dataset In Table 2, our method is compared with actionness-based meth-

ds (Shou et al., 2017; Lin et al., 2018, 2019; Xu et al., 2020; Bai et al., 2020; Zhao et al., 2020; Su et al., 2021; Tan et al., 2021; Liu,
u, et al., 2021; Liu, Wang, et al., 2021; Qing et al., 2021; Sridhar et al., 2021; Yang et al., 2022; Wang et al., 2022), anchor-based
ethods (Xu et al., 2017; Chao et al., 2018; Long et al., 2019; Liu & Wang, 2020; Su et al., 2020), anchor-free methods (Yang

t al., 2020; Lin et al., 2021; Zhao et al., 2022; Zhang et al., 2022), and others (Zeng et al., 2019; Zhu et al., 2021; Zhao, Thabet, &
hanem, 2021; Chen et al., 2022; Liu et al., 2022). our PBBNet achieve 55.7 mAP at tIoU=0.5, 38.2 mAP at tIoU=0.75, 7.5 mAP
t tIoU=0.95, and 37.1% average mAP, which is a good result compared with other SOTA TAL methods.

In anchor-free TAL methods, Actionformer (Zhang et al., 2022) uses I3D features to obtain a high performance (35.6% average
AP) and outperforms the SOTA anchor-free methods (AFSD (Lin et al., 2021) and TRA (Zhao et al., 2022)) by 1.2% average mAP.
ith the help of the pre-training TAL feature encoder TSP (Alwassel et al., 2021), Actionformer (Zhang et al., 2022) get a better result

nd achieves 36.0% average mAP. For a fair comparison, we also use TSP feature for our PBBNet. Due to progressive refinement
8

nd fully using temporal context information, our method exhibits 1.1% average mAP improvement over Actionformer (Zhang
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Table 1
Performance comparison between our proposed PPBNet and other SOTA temporal action localization methods on THUMOS14 dataset in terms of mAP at differnt
IoU thresholds.

Method Feature mAP at different tIoUs

0.3 0.4 0.5 0.6 0.7

Others

S-CNN (Shou, Wang, & Chang, 2016) C3D 36.3 28.7 19.0 10.3 5.3
P-GCN (Zeng et al., 2019) I3D 63.6 57.8 49.1 – –
P-GCN (Zeng et al., 2019) TSP 69.1 63.3 53.5 40.4 26.0
ContextLoc (Zhu, Tang, Wang, Zheng, & Hua, 2021) I3D 68.3 63.8 54.3 41.8 26.2
VSGN (Zhao, Thabet, & Ghanem, 2021) TSN 66.7 60.4 52.4 41.0 30.4
DCAN (Chen, Zheng, Wang, & Lu, 2022) TSN 68.2 62.7 54.1 43.9 32.6
E2E-TAD (Liu et al., 2022) I3D 59.6 54.5 47.0 37.8 26.5
E2E-TAD (Liu et al., 2022) Slowfast 69.4 64.3 56.0 46.4 34.9

Actionness-based

CDC (Shou, Chan, Zareian, Miyazawa, & Chang, 2017) C3D 40.1 29.4 23.3 13.1 7.9
SSN (Zhao, Xiong, et al., 2017) TSN 51.0 41.0 29.8 – –
BSN (Lin et al., 2018) TSN 53.5 45.0 36.9 28.4 20.0
BMN (Lin et al., 2019) TSN 56.0 47.4 38.8 29.7 20.5
DBG (Lin et al., 2020) TSN 57.8 49.4 39.8 30.2 21.7
G-TAD (Xu, Zhao, Rojas, Thabet, & Ghanem, 2020) TSN 54.5 47.6 40.3 30.8 23.4
BC-GNN (Bai et al., 2020) TSN 57.1 49.1 40.4 31.2 23.1
TAL-MR (Zhao et al., 2020) I3D 53.9 50.7 45.4 38.0 28.5
BMN-CAS (Sridhar et al., 2021) TSN 64.4 58.0 49.2 38.2 27.8
RTD-Net (Tan et al., 2021) I3D 68.3 62.3 51.9 38.8 23.7
BackTAL (Yang et al., 2021) I3D 54.4 45.5 36.3 26.2 14.8
BSN++ (Su et al., 2021) TSN 59.9 49.5 41.3 31.9 22.8
MUSES (Liu, Hu, et al., 2021) I3D 68.9 64.0 56.9 46.3 31.0
TadTR (Liu, Wang, et al., 2021) I3D 62.4 57.4 49.2 37.8 26.3
TCANet (Qing et al., 2021) TSN 60.6 53.2 44.6 36.8 26.7
BCNet (Yang et al., 2022) TSN 66.5 60.0 51.6 41.0 29.2
BCNet (Yang et al., 2022) I3D 71.5 67.0 60.0 48.9 33.0
RCL (Wang et al., 2022) TSN 70.1 62.3 52.9 42.7 30.7

Anchor-based

R-C3D (Xu et al., 2017) C3D 44.8 35.6 28.9 – –
TAL-Net (Chao et al., 2018) I3D 53.2 48.5 42.8 33.8 23.4
GTAN (Long et al., 2019) P3D 57.8 47.2 38.8 – –
PBRNet (Liu & Wang, 2020) I3D 58.5 54.6 51.3 41.8 29.5
PCG-TAL (Su, Xu, Sheng, & Ouyang, 2020) I3D 65.1 59.5 51.2 – –

Anchor-free

A2Net (Yang, Peng, Zhang, Fu, & Han, 2020) I3D 58.6 54.1 45.5 32.5 17.2
AFSD (Lin et al., 2021) I3D 67.3 62.4 55.5 43.7 31.1
TRA (Zhao et al., 2022) I3D 70.0 64.3 57.4 46.2 31.1
Actionformer (Zhang et al., 2022) I3D 75.5 72.5 65.6 56.6 42.7
Actionformer (Zhang et al., 2022) TSP 69.5 63.8 56.3 44.8 30.8
Actionformer (Our reproduce) I3D 82.1 77.8 71.0 59.4 43.9
Ours I3D 82.6 79.1 72.5 59.5 45.4

et al., 2022). Thus, our PBBNet obtains the third-place performance in Table 2. There are only two actionness-based methods
(TCANet (Qing et al., 2021) and RCL (Wang et al., 2022)) better than our PBBNet at average mAP. Both TCANet (Qing et al.,
2021) and RCL (Wang et al., 2022) use dense anchors to predict action instance with a recurrent refinement method. But our
method still outperforms TCANet (Qing et al., 2021) and RCL (Wang et al., 2022) by 1.4% and 0.5% mAP at tIoU=0.5, respectively.

Performance Comparison on HACS Dataset Since HACS is a new-formed large-scale dataset, there are a small number of
xperimental results reported by existing TAL methods. We evaluate our PBBNet and Actionformer (Zhang et al., 2022) on HACS
ataset and compare the performance between our PBBNet and some TAL methods (Zhao, Xiong, et al., 2017; Zhang et al., 2019;
in et al., 2019; Xu et al., 2020; Liu, Wang, et al., 2021; Qing et al., 2021; Liu et al., 2022; Zhang et al., 2022). The results
re shown in Table 3. Our methods can achieve second-place performance with 38.26% average mAP. In anchor-free methods,
e observe that our PBBNet obtain 1.75% average mAP improvement over Actionformer (Zhang et al., 2022) on the large-scale
ataset. We assume that our method will benefit from more training data. In actionness-based methods, BMN (Lin et al., 2019)
resets dense anchors to generate a large number of action proposals and find out some of them with high actionness scores. With
igh-quality action proposals from BMN (Lin et al., 2019), TCANet (Qing et al., 2021) can perform exciting performances. In Table 3,
e reproduce TCANet (Qing et al., 2021) using open source codes and pre-trained model weights. According to the reproduce results,
ur PBBNet can achieve comparable performances. Especially, our method has 1.38% mAP improvement at tIoU=0.5 compared with
CANet (Qing et al., 2021).

.4. Ablation study

To systematically evaluate the effectiveness of our method, we construct the ablation studies of our proposed PPBNet on
9

ctivityNet-v1.3 dataset.
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Table 2
Performance comparison between our proposed PPBNet and other SOTA temporal action localization methods on ActivityNet-v1.3 dataset in terms of average
mAP. ‘‘Average’’ indicates the average mAP under tIoU thresholds from 0.5 to 0.95 with step size of 0.05.

Method Feature mAP at different tIoUs

0.50 0.75 0.95 Average

Others

P-GCN (Zeng et al., 2019) I3D 48.3 33.2 3.3 31.1
ContextLoc (Zhu et al., 2021) I3D 56.0 35.2 3.6 34.2
VSGN (Zhao, Thabet, & Ghanem, 2021) TSN 52.4 36.0 8.4 35.1
VSGN (Zhao, Thabet, & Ghanem, 2021) I3D 52.3 35.2 8.3 34.7
VSGN (Zhao, Thabet, & Ghanem, 2021) TSP 53.3 36.8 8.1 35.9
DCAN (Chen et al., 2022) TSN 51.8 36.0 9.5 35.5
E2E-TAD (Liu et al., 2022) I3D 49.6 35.2 9.9 34.4
E2E-TAD (Liu et al., 2022) Slowfast 50.1 35.8 10.5 35.1

Anctionness-based

CDC (Shou et al., 2017) C3D 45.3 26.0 0.2 23.8
BSN (Lin et al., 2018) TSN 46.5 30.0 8.0 30.0
BMN (Lin et al., 2019) TSN 50.1 34.8 8.3 33.9
G-TAD (Xu et al., 2020) TSN 50.4 34.6 9.0 34.1
G-TAD (Xu et al., 2020) TSP 51.3 37.1 9.3 35.8
BC-GNN (Bai et al., 2020) TSN 50.6 34.8 9.4 34.3
TAL-MR (Zhao et al., 2020) I3D 43.5 33.9 9.2 30.2
BSN++ (Su et al., 2021) TSN 51.3 35.7 8.3 34.9
RTD-Net (Tan et al., 2021) I3D 47.2 30.7 8.6 30.8
MUSES (Liu, Hu, et al., 2021) I3D 50.0 35.0 6.6 34.0
TadTR (Liu, Wang, et al., 2021) I3D 49.1 32.6 8.5 32.3
TCANet (Qing et al., 2021) TSN 52.3 36.7 6.9 35.5
TCANet (Qing et al., 2021) Slowfast 54.3 39.1 8.4 37.6
BMN-CAS (Sridhar et al., 2021) TSN 52.4 36.2 5.2 35.4
BCNet (Yang et al., 2022) TSN 53.2 36.2 10.6 35.5
RCL (Wang et al., 2022) TSN 51.5 35.3 8.0 34.4
RCL (Wang et al., 2022) I3D 54.2 36.2 9.2 36.0
RCL (Wang et al., 2022) TSP 55.2 36.2 8.3 37.7

Anchor-based

R-C3D (Xu et al., 2017) C3D 26.8 – – –
TAL-Net (Chao et al., 2018) I3D 38.2 18.3 1.3 20.2
GTAN (Long et al., 2019) P3D 52.6 34.1 8.9 34.3
PBRNet (Liu & Wang, 2020) I3D 54.0 35.0 9.0 35.0
PCG-TAL (Su et al., 2020) I3D 44.3 29.9 5.5 28.9

Anchor-free

A2Net (Yang et al., 2020) I3D 43.6 28.7 3.7 27.8
AFSD (Lin et al., 2021) I3D 52.4 35.3 6.5 34.4
TRA (Zhao et al., 2022) I3D 52.4 35.1 7.2 34.4
Actionformer (Zhang et al., 2022) I3D 53.5 36.2 8.2 35.6
Actionformer (Zhang et al., 2022) TSP 54.1 36.3 7.7 36.0
Ours TSP 55.7 38.2 7.5 37.1

Table 3
Performance comparison between our proposed PPBNet and other SOTA temporal action localization methods on HACS dataset in terms of average mAP.

Method Feature mAP at different tIoUs

0.50 0.75 0.95 Average

Actionness-based

SSN (Zhao, Xiong, et al., 2017) TSN 28.82 18.80 5.32 18.97
2019-Winner (Zhang, Peng, Yang, Fu, & Luo, 2019) Slowfast – – – 23.49
BMN (Lin et al., 2019) Slowfast 52.49 36.38 10.37 35.76
G-TAD (Xu et al., 2020) I3D 41.08 27.59 8.34 27.48
TadTR (Liu, Wang, et al., 2021) I3D 45.16 30.70 11.78 30.83
TadTR (Liu, Wang, et al., 2021) TSM 30.69 18.94 5.26 18.28
TCANet[SW] (Qing et al., 2021) Slowfast 54.14 37.24 11.32 36.79
TCANet[BMN] (Qing et al., 2021) Slowfast 56.74 41.14 12.15 39.77
TCANet[BMN] (our reproduce) Slowfast 55.30 39.47 11.65 38.54
E2E-TAD[TadTR] (Liu et al., 2022) I3D 40.32 24.97 7.71 25.70

Anchor-free *Actionformer (Zhang et al., 2022) Slowfast 54.53 36.94 10.86 36.51
Ours Slowfast 56.68 38.66 11.42 38.26

Impact of components in PBBNet In Table 4, we compare ablation models of our PBBNet to demonstrate the usefulness of each
modules, where ‘‘IBM’’, ‘‘TCM’’ and ‘‘FPBM’’ indicate the instance-wise boundary-aware module, temporal context-aware module and
frame-wise progressive boundary-aware module, respectively. It should be noted that we use 1D temporal convolution operations to
capture temporal context information like AFSD (Lin et al., 2021) if no using temporal context-aware module (TCM). Our baseline
method is the PPBNet model only using IBM, which achieves 36.25% average mAP. ‘‘PPBNet w/o FPBM’’ means that we use PPBNet
10

model without FPBM to detect action instances, which obtain 0.25% improvement over the baseline method on average mAP. It
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Table 4
Ablation study of our PBBNet components on ActivityNet-v1.3 dataset in terms of average mAP. ‘‘IBM’’ indicates Instance-
wise Boundary-aware Module, ‘‘TCM’’ indicates Temporal Context-aware Module and ‘‘FPBM’’ indicates Frame-wise Progressive
Boundary-aware Module.

Methods IBM TCM FPBM mAP at different tIoUs

0.5 0.75 0.95 Average

Baseline ✓ 54.56 37.22 7.85 36.25
PBBNet w/o FPBM ✓ ✓ 54.75 37.59 7.84 36.45
PBBNet w/o TCM ✓ ✓ 55.30 37.69 7.32 36.53
PBBNet ✓ ✓ ✓ 55.66 38.16 7.47 37.05

Table 5
Ablation study about the number of pyramid layers in instance-wise boundary-aware module on ActivityNet-v1.3 dataset.
𝑁𝐿 Input Output mAP at different tIoUs

0.50 0.75 0.95 Average

0 𝐹 ∈ R𝑇×𝐶 {𝐹 (0)}, 𝐹 (0) ∈ R𝑇×𝐶 52.84 36.42 7.33 35.29
2 𝐹 ∈ R𝑇×𝐶 {𝐹 (0) , 𝐹 (1) , 𝐹 (2)}, 𝐹 (𝑁𝑖 ) ∈ R

𝑇
2𝑖
×𝐶 54.11 37.15 7.42 35.93

5 𝐹 ∈ R𝑇×𝐶 {𝐹 (0) , 𝐹 (1) ,… , 𝐹 (𝑁6 )}, 𝐹 (𝑁𝑖 ) ∈ R
𝑇
2𝑖
×𝐶 55.66 38.16 7.47 37.05

Table 6
Ablation study about the progressive boundary-aware boosting strategy on ActivityNet-v1.3 dataset.

ID Methods Supervision mAP at different tIoUs

0.50 0.75 0.95 Average

1 PBBNet w/o boundary-aware boosting – 54.75 37.59 7.84 36.45

2 PBBNet w/ 1-step boundary-aware boosting tIoU = 0.5 55.39 38.06 7.65 36.80
3 PBBNet w/ 1-step boundary-aware boosting tIoU = 0.6 55.29 38.00 7.93 36.85
4 PBBNet w/ 1-step boundary-aware boosting tIoU = 0.7 55.39 38.01 8.17 36.88
5 PBBNet w/ 1-step boundary-aware boosting tIoU = 0.8 55.29 37.74 8.36 36.75
6 PBBNet w/ 1-step boundary-aware boosting tIoU = 0.9 55.26 37.59 8.06 36.60

7 PBBNet w/ 2-step boundary-aware boosting tIoUs = [0.5,0.6] 55.53 38.05 7.66 36.91
8 PBBNet w/ 2-step boundary-aware boosting tIoUs = [0.5,0.7] 55.76 38.03 7.67 36.99
9 PBBNet w/ 2-step boundary-aware boosting tIoUs = [0.5,0.8] 55.51 38.04 7.92 36.91
10 PBBNet w/ 2-step boundary-aware boosting tIoUs = [0.5,0.9] 55.45 38.08 7.86 36.88

11 PBBNet w/ 3-step boundary-aware boosting tIoUs = [0.5,0.5,0.5] 55.73 37.68 6.70 36.67
12 PBBNet w/ 3-step boundary-aware boosting tIoUs = [0.7,0.7,0.7] 55.53 38.19 7.72 36.94
13 PBBNet w/ 3-step boundary-aware boosting tIoUs = [0.9,0.9,0.9] 55.38 37.77 8.56 36.87
14 PBBNet w/ 3-step boundary-aware boosting tIoUs = [0.5,0.6,0.7] 55.66 38.16 7.47 37.05
15 PBBNet w/ 3-step boundary-aware boosting tIoUs = [0.5,0.7,0.9] 55.59 38.14 7.88 37.02

Table 7
Results of our PBBNet at different stages on ActivityNet-v1.3 dataset. The 3-step progressive
refinement method and supervision information tIoUs = [0.5,0.6,0.7] are used.

Stage mAP at different tIoUs

0.50 0.75 0.95 Average

IBM stage 54.75 37.59 7.84 36.45
FPBM (1st step) stage 55.58 38.16 7.69 36.93
FPBM (2nd step) stage 55.65 38.15 7.41 37.02
FPBM (3rd step) stage 55.66 38.16 7.47 37.05

can prove that our TCM has a stronger ability to utilize temporal context information compared with 1D temporal convolutions.
‘‘PPBNet w/o TCM’’ means that we combine IBM and FPBM to localize action instances, which outperforms our baseline by 0.28%
on average mAP. It shows the effectiveness of our FPBM. With all the modules including IBM, TCM and FPBM, PBBNet achieves
0.85% average mAP improvement over our baseline method. Noteworthy, PBBNet outperforms ‘‘PPBNet w/o TCM’’ by 0.52% on
average mAP. It proves the effectiveness of our TCM again, especially in our progressive coarse-to-fine framework.

Impact of the number of pyramid layers The pyramid network of instance-wise boundary-aware module is used to generate
multi-scale video features to predict action instances at different scales. 𝑁𝑇 is the number of pyramid layers in instance-wise
boundary-aware module. In Table 5, we explore the effect of 𝑁𝑇 on ActivityNet-v1.3 dataset. It can be seen that our PPBNet obtains
the best performances when 𝑁𝑇 = 5. Thus, we set 𝑁𝑇 to 5. We also try to interact the features of adjacent pyramid layers likes (Kim,
Kook, Sun, Kang, & Ko, 2018), but it offers little performance improvement.

Impact of progressive boundary-aware boosting strategy To better evaluate the effectiveness of our frame-wise progressive
boundary-aware module, in Table 6, we construct a ablation study to explore the effect of different progressive boundary-aware
11
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Fig. 2. Sensitivity analysis of AFSD (Lin et al., 2021) and our PBBNet on THUMOS14 dataset.

oosting strategies. From Table 6, we can obtain the following observations: (1) The performance of all models with boundary-
ware boosting is higher than the model without boundary-aware boosting. (2) Using boundary-aware boosting with more steps,
ur PBBNet models can obtain better results. For example, the id-14 model using 3-step boundary-aware boosting and tIoUs =
0.5,0.6,0.7] outperforms the id-6 model using 1-step boundary-aware boosting and tIoUs = [0.7] by 0.45% average mAP. (3)
ocusing on ids from 11 to 15, models using supervision information from weak to strong achieve better results compared with
odels using invariable supervision information. For example, the id-14 model using tIoUs=[0.5,0.6,0.7] as supervision performs
.38% average mAP improvement over the id-11 model with supervision of tIoUs = [0.5,0.5,0.5]. (4) As the number of boundary-
ware boosting increases, the performance improvement from each additional boundary-aware boosting decreases. For example,
omparing the best models, the performance improvement is 0.43% average mAP with the number of steps from 0 to 1, while the
erformance improvement is 0.06% average mAP with the number of steps from 2 to 3. Based on these observations, we finally
dopt the 3-step boundary-aware boosting strategy with supervision of tIoUs = [0.5,0.6,0.7], i.e., the id-14 model in Table 6.
Results of PBBNet at different stages
Table 7 shows the results of our PBBNet at different stages, where the 3-step progressive refinement method and supervision

nformation tIoUs = [0.5,0.6,0.7] are used. It can be seen that the performances of our PBBNet are improved stage by stage with the
rogressive boundary-aware boosting. , temporal context-aware module and frame-wise progressive boundary-aware module The
esults of IBM stage means the predictions from the instance-wise boundary-aware module. The results of FPBM (1st step), FPBM (2nd
tep) and FPBM (3rd step) are corresponding to three predictions from the 3-step frame-wise progressive boundary-aware module,
espectively. Interestingly, the results of FPBM (1st step) and FPBM (2nd step) are higher than the 1-step and 2-step boundary-aware
odels that are in Table 6, respectively.

.5. Analysis

Following previous works (Zhang et al., 2022; Wang et al., 2022), we evaluate our method using a temporal action localization
nalysis tool named DETAD (Alwassel, Heilbron, Escorcia, & Ghanem, 2018). In the DETAD, three characteristic measurements are
esigned to evaluate the comprehensive performance of TAL models, including coverage, length, and instance. To be specific, the
12

overage metric focuses on the ratio of action duration to the duration of the whole video, which splits untrimmed videos into
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Fig. 3. False negative analysis of AFSD (Lin et al., 2021) and our PBBNet on THUMOS14 dataset.

Fig. 4. Visualization of top-3 results generated by AFSD (Lin et al., 2021) and our PBBNet on THUMOS14 dataset.

extra small (XS), small (S), medium (M), large (L), and extra large (XL) with multiple thresholds [0.02, 0.04, 0.06, 0.08]. Unlike the
coverage metric, the length metric classifies videos into five categories using the absolute duration of action instances with a series
of duration thresholds [3 s, 6 s, 12 s, 18 s]. Furthermore, the instance metric categorizes videos by the number of action instances
they contain, where the thresholds are set to [2, 40, 80].

For sensitivity analysis, we test the performances of AFSD (Lin et al., 2021) and our PBBNet under different types of untrimmed
videos that are categorized by the metric of coverage, length or instance number. As shown in Fig. 2, the comprehensive performance
of our PPBNet outperforms AFSD by 17.94% average mAP. Moreover, the relative change of our PBBNet is smaller than AFSD in
each characteristic evaluation. We also analyze the false negative of AFSD (Lin et al., 2021) and our PBBNet in the same way. In
Fig. 3, it can be seen that the false negative rates of our PPBNet are all lower than AFSD. In particular, our method reduces the
false negative rate of untrimmed videos that contain action instances with extra large lengths from 54.1% to 16.2%.

To further analyze the predicted results, we show the top 3 action instances predicted by AFSD (Lin et al., 2021) and our PBBNet
using THUMOS14 dataset in Fig. 4. The video named ‘‘0000560’’ is used, which contains 3 action instances (groundtruth). It can be
seen that both AFSD and our PPBNet predict the right class of each action instance. However, when predicting the boundaries of
action instance continuing from 20.0s to 20.8s, the result of AFSD deviates significantly from the groundtruth. The action instance
is predicted to continue from 20.4s to 21.4s by AFSD with a confidence score 0.57. Compared with AFSD, our PBBNet generates a
better result (from 19.9s to 21.1s). Besides, our method produces a more accurate boundary result than AFSD for the action instance
that continues from 8.9s to 9.7s. These demonstrate the effectiveness of our method in boosting boundary predictions.
13
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5. Conclusion

This paper introduced a Progressive Boundary-aware Boosting Network (PBBNet) for anchor-free temporal action localization,
hich could predict high-quality action predictions. We focused on the inaccurate action boundary predictions of anchor-free
ethods and designed an instance-wise boundary-aware module and frame-wise progressive boundary-aware module to boost the

oundary predictions. Besides, we developed a temporal context-aware module to capture temporal context information, which
elped our model obtain better results. Extensive experiments on THUMOS14, ActivityNet-v1.3, and HACS datasets proved the
ffectiveness of our PBBNet. Our method outperforms all existing anchor-free models in temporal action localization. In particular,
he PBBNet achieves state-of-the-art performance on THUMOS14 dataset.
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