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Quantitative research of interdisciplinary fields, including biological and social systems, has attracted great
attention in recent years. Complex networks are popular and important tools for the investigations. Explosively
increasing data are created by practical networks, from which useful information about dynamic networks can
be extracted. From data to network structure, i.e., network reconstruction, is a crucial task. There are many
difficulties in fulfilling network reconstruction, including data shortage (existence of hidden nodes) and time
delay for signal propagation between adjacent nodes. In this paper a deep network reconstruction method is
proposed, which can work in the conditions that even only two nodes (say A and B) are perceptible and all
other network nodes are hidden. With a well-designed stochastic driving on node A, this method can reconstruct
multiple interaction paths from A to B based on measured data. The distance, effective intensity, and transmission
time delay of each path can be inferred accurately.

DOI: 10.1103/PhysRevE.106.014302

I. INTRODUCTION

In recent decades, massive amounts of data in different
systems have been continuously generated with the rapid
development of various experimental technologies, such as,
the huge amounts of data about the neuronal activities in
neural system. Based on data accumulation, analytical quanti-
tative computations enter diverse fields and reveal common
properties of a wide range of systems in nature and soci-
ety [1–5]. To describe systems composed by a large number
of highly interconnected dynamical units, one approach is
to model them as networks whose nodes represent the local
dynamical units, and whose links stand for the interactions
between these units. Various sets of coupled differential equa-
tions are widely used to model the evolution of complex
networks [6,7]. The nodes in a complex network receive
external inputs and interact with each other through connec-
tions, and as a result, the network state evolves to process
information [8,9].

The activities of nodes in a practical complex network
are often measurable. However, the topological structure of
the network is often difficult to detect directly. Thus, ex-
ploring the unknown network topology based on available
node activities, the so-called network reconstruction [10], has
attracted much attention. A number of reconstruction methods
have been proposed, including methods based on external
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perturbation [11,12] and noise-induced correlations [13–18],
the adaptive feedback control, phase modeling approach, and
robust regression [19–22]. Additionally, various sophisticated
statistical inference techniques have entered use for network
reconstruction [23].

Network reconstruction still faces lots of challenges. Previ-
ous studies mainly focus on solving the challenges caused by
the complexity of a network [24,25], the nonlinearity of local
dynamics of nodes [22], and the transmission delay between
adjacent nodes [26–28]. Recently, the challenge of hidden
nodes [29–32] have caused heated discussion. Besides, large
reconstruction errors may also arise due to the mutual inter-
actions between nodes via multiple paths and with different
distances [24], and the lack of prior information about the
network structure [23].

In this paper, we proposed a method for deep network
reconstruction. By deep reconstruction we mean inferring
the interactions between distant nodes along multiple paths,
including the information about the distance, the effective
interaction intensities and the transmission time delay in each
path. We apply an external driving signal to the network. The
driving signal in our method is a well-designed stochastic
signal with short correlation time, and it will be described in
detail in the following section. Through analyzing the network
response to the driving signal, we explore the information
about the network structure and the network dynamics. With-
out knowledge of the underlying system, analyses of data
produced by network activity under driving can be of great
help to understanding the relations between network structure
and network dynamics. It should be emphasized that all the
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FIG. 1. Schematic diagram of the deep network reconstruction
method. The external driving signal is loaded on a node A (A = 1
as an example in the following study), and the response activity of
an arbitrary node B (B = 2) is measurable. All the rest black nodes
are hidden nodes. The task is to reconstruct the multiple interaction
paths from A to B, such as the shortest path (red lines) and the second
shortest paths (blue lines), including information of the correspond-
ing distances, interaction intensities and time delays.

above reconstruction computations can be implemented based
on the activities of a limited number of accessible nodes only
(even two nodes in our analyses), and the rest are hidden
(see Fig. 1).

For the stochastic driving signal, it intuitively plays nega-
tive roles in many fields, especially for the data analyses [33].
However, since the end of the last century, it has been shown
that a dynamical system that is subject to both periodic forcing
and random perturbations may show a resonancelike behavior,
called stochastic resonances (SRs) [34]. A SR-type behav-
ior in excitable systems with aperiodic input signals is also
presented [35], where it is showed that noise can serve to
enhance the response of a nonlinear system to a weak in-
put signal, regardless of whether the signal is periodic or
aperiodic. Furthermore, noise can play a positive role in en-
hancing signals or coherence intensities in nonlinear systems
under some critical conditions, called coherence resonance
(CR) [36,37].

The paper is organized as follows. In Sec. II, we introduce
the deep network reconstruction method theoretically. In Sec.
III, we demonstrate the validity of the method and how to
numerically perform the algorithm in some simple networks.
In Sec. IV, we generalize the method and show explicit results
of complex networks with large size and different types of
local dynamics. Finally, Sec. V summarizes the main results
in our study and gives some insights and perspectives for the
potential applications of our method.

II. DEEP NETWORK RECONSTRUCTION METHOD VIA
STOCHASTIC DRIVING SIGNAL—THE THEORETICAL

ANALYSIS

We consider a networked coupled system of N nodes,
which is described by a set of differential equations where
all functions �i, i = 1, 2, ..., N are a priori unknown (for
convenience, multiple dimensional state variables are not con-
sidered in this section):

ẋi(t ) = �i[ �X i(t )] + �i(t ), i = 1, 2, ..., N, (1a)

where

�X i(t ) = [x1(t − τi1), ..., xi(t ), ..., xN (t − τiN )].

�i is a general form of the dynamical function of node i,
including the settling local dynamics and the interactions from
other nodes in the network ( ∂�i

∂x j
≡ 0 if connection from j is

absent). A positive constant τi j denotes time delay from j
to i. A dynamical model which considers the transmission
time delay is close to practical systems and is capable of
elucidating much richer behaviors in real world. We adopt
a Gaussian white noise �i(t ) for inherent noise disturbances
satisfying

〈�i(t )〉 = 0, 〈�i(t )�i(t + t ′)〉 = Qiδ(t ′), (1b)

where Qi is the noise intensity, a positive constant. The δ

function reflects that correlation time of the noise is much
shorter than the characteristic time of the system dynamics.

We can measure the variable xi(t ) of node i that changes
continuously over time if it is perceptible. Our goal is to
reconstruct the interactions between two perceptible nodes
based on the measurable data. The other variables, such as
the dynamics of all hidden nodes, the connection structure of
network, the transmission time delay between adjacent nodes,
background noise, etc., are unknown.

For reconstructing interaction from one node (say, node A)
to another node (node B), we inject a varying external driving
DA(t ) at node A as

ẋA(t ) = �A[ �XA(t )] + �A(t ) + DA(t ). (2)

Assuming that there is a direct connection from A to B, for
node B we have

ẋB(t ) = �B[ �X B(t )] + �B(t ), (3)

where ∂�B
∂xA

�= 0, called B is distance 1 (d = 1) from A.
To analyze output response in B, first we take the derivative

of two sides of Eq. (3) with respect to t , which gives

ẍB(t ) =
N∑

i=1

∂�B[ �XB(t )]

∂xi(t − τBi )

dxi(t − τBi )

dt
+ �̇B(t )

=
N∑

i=1

∂�B[ �XB(t )]

∂xi(t − τBi )
�i[ �X i(t − τBi )]

+
N∑

i=1

∂�B[ �X B(t )]

∂xi(t − τBi )
�i(t − τBi )

+ ∂�B[ �XB(t )]

∂xA(t − τBA)
DA(t − τBA) + �̇B(t ), (4)
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where ẍB is the second derivative in time of xB and �̇B denotes
an irrelevant noise-induced term with no practical meaning. It
can be concluded that there is only one driving-induced term
which builds a direct quantitative relationship with coupling
function, provided DA(t ) is independent of the system,

∂�B[ �XB(t )]

∂xA(t − τBA)
DA(t − τBA). (5)

We collect the response data of node B with a fixed time
interval (�t � 1), denoted as

[xB(t1), xB(t2), ..., xB(tl ), ..., xB(tL )], (6)

where tl+1 − tl = �t , T = L�t . From data sequence, the first
and the second derivative of xB are given by

ẋB(tl ) ≈ x(1)
B (tl ) = xB(tl+1) − xB(tl )

�t
,

ẍB(tl ) ≈ x(2)
B (tl ) = x(1)

B (tl+1) − x(1)
B (tl )

�t
,

and for μ � 1

d

dtμ+1
xB(tl ) ≈ x(μ+1)

B (tl ) = x(μ)
B (tl+1) − x(μ)

B (tl )

�t
. (7)

To detect the driving component DA, we calculate the cor-
relation function between the driving signal and x(2)

B where
t ′ ∈ [0, T ]

E1,2
AB (t ′) = 1

T − t ′

∫ T −t ′

0
DA(t )x(2)

B (t + t ′)dt

= 1

T − t ′

∫ T−t ′

0

∂�B[ �X B(t )]

∂xA(t − τBA)
DA(t )DA(t + t ′− τBA)dt

+ E1
�B

+ E1
�B

. (8)

This yeilds an intensity spectrum for varying t ′, which is di-
rectly related to the autocorrelation property of driving DA(t ).
There are also two terms E1

�B
and E1

�B
which are evidently

unrelated to t ′.
For the term of E1

�B
, the emergence of noise is bound to

cause a random deviation. From Eqs. (3) and (4), it is known
that the leading deviation component is given by

E1
�B

= 〈
DA�

(1)
B

〉 =
〈
DA(t )

�B(t + �t ) − �B(t )

�t

〉
. (9a)

Additionally, for the term of E1
�B

, the system dynamics can
induce a considerable bias,

E1
�B

=
〈

DA

N∑
i=1

[
∂�B( �X B)

∂xi
�i( �X i )

]〉
. (9b)

According to Eq. (8), the correlation function E1,2
AB (t ′) can be

calculated based on the measured data. It is expected that
the driving signal can be well designed so that both terms,
E1

�B
and E1

�B
, approach to infinitesimal quantities. The driving

signal having the following characteristics can meet the above
requirement.

(a) The driving signal is sampled from a series of quantified
stochast ic numbers DA(t1), DA(t2)..., DA(tl ), ..., DA(tL ), i.e.,

DA(t ) = DA(tl ), t ∈ (tl−1, tl ],

where the tunable time interval tl − tl−1 should be much
smaller than the system characteristic time (so DA(t ) is called
f astvarying driving).

(b) The statistical mean of the driving signal is zero, i.e.,

〈DA(t )〉 = lim
tL→∞

1

tL

L∑
l=1

DA(tl )(tl − tl−1) → 0.

The zero-mean property can help to weaken the effect of the
driving signals on the system and reduce the bias in the corre-
lation function. E�B is proved to be equivalently infinitesimal
as (tl − tl−1) by theoretical derivation and can be ignored,

E�B → O(tl − tl−1).

More detailed analysis are shown in Appendix A. In addi-
tion, the dynamics of the systems not only depend on the
current state but also on the previous states, which may in-
duce complicated or practically important behaviors of system
dynamics (e.g., excitability or chaotic dynamics). Therefore,
the reconstruction of time delay τBA is essential. According
to Eq. (8), to distinguish time delay in the autocorrelation the
driving signal should have the following characteristics,

(c) The driving signal is nonperiodic.
(d) The driving signal has short correlat ion t ime, i.e.,

〈DA(tm)DA(tn)〉 �= 0, m = n,

〈DA(tm)DA(tn)〉 = 0, m �= n.

It is interesting that white noise, which is common and
inherent in many practical systems, satisfies all the above
requirements, such as the neural circuits and technology
networks. Many previous studies on network reconstruction
show that the network can generate rich distinctive data in
the presence of white noises. Thus, we designed a stochastic
sequence to simulate noiselike driving for network reconstruc-
tion:

DA(t ) = DA(tl ), t ∈ (l�tD − �tD, l�tD), (10a)

where the signal changes with a fixed time interval �tD.
The value of DA(tl ) is randomly sampling from a Gaussian
distribution

DA(tl ) ∼ N (0, QDA/�tD), (10b)

where QDA is the intensity. For simplification, we set �tD =
�t in our study, and hence,

lim
L→∞

1

L

L∑
l=1

DA(tl ) → 0,

lim
L→∞

1

L

L∑
l=1

DA(tl )DA(tl )�t → QDA,

and for any k > 0,

lim
L→∞

1

L

L−k∑
l=1

DA(tl )DA(tl + k�t ) → 0.
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Therefore, based on the well-designed stochastic driving
signal, Eq. (8) can be rewritten as

E1,2
AB (t ′) =

{
O(�t ) t ′ �= τBA,

IBA(A → B)QDA + O(�t ) t ′ = τBA,
(11)

where

I (A → B) =
〈

∂�B[ �XB(t )]

∂xA(t − τBA)

〉
, (12)

where I (A → B) is the effective intensity of the interaction
from A to B. We can reconstruct the fundamental informa-
tion of this adjacent link, including the accurate connection
strength and the time delay. However, the interaction between
two direct-connected nodes can only provide limited informa-

tion compared to the overall system, while it has always been a
challenging problem to reconstruct indirect connections in the
network. Intuitively, an indirect interaction from A to B cannot
be inferred with only the measurable data of the destination
node B, since the dynamics of node is also strongly influenced
by other hidden nodes.

Considering a path P : A → j1 → B with one intermediate
node j1, i.e., the distance from A to B is d = 2, and

∂�i( �X i(t ))

∂x j (t − τi j )

{�= 0 (i, j) = (B, j1) or ( j1, A),
= 0 others.

In this case the driving-induced term disappears in ẍB due
to ∂�B[ �X B(t )]/∂xA(t − τBA) ≡ 0. So we calculate the higher-
order derivatives of xB(t ), which is given by,

x(3)
B (t ) ≈ [ẍB(t )](1) = d

dt

(
∂�B[ �XB(t )]

∂x j1 (t − τB j1 )

)
� j1 [ �X j1 (t − τB j1 )] + ∂�B[ �X j1 (t )]

∂x j1 (t − τB j1 )

∂� j1 [ �X j1 (t − τB j1 )]

∂xA(t − τB j1 − τ j1A)
{�A[ �XA(t − τB j1 − τ j1A)]

+�A(t − τB j1 − τ j1A) + DA(t − τB j1 − τ j1A)}. (13)

And the driving signal DA can propagate along the path A →
j1 → B via the following driving-induced term,

∂�B[ �X j1 (t )]

∂x j1 (t − τB j1 )

∂� j1 [ �X j1 (t − τB j1 )]

∂xA(t − τB j1 − τ j1A)
DA(t − τB j1 − τ j1A).

To detect the driving force in xB(t ), we calculate the correla-
tion between DA(t ) and x(3)

B (t ), which is given by

E1,3
AB (t ′) = 1

T − t ′

∫ T −t ′

0
DA(t )x(3)

B (t + t ′)dt

=
{

O(�t ) t ′ �= τB j1 + τ j1A,

I (A → j1 → B)QDA + O(�t ) t ′ = τB j1 + τ j1A,

(14)

where

I (A → j1 → B) =
〈

∂�B[ �X j1 (t )]

∂x j1 (t − τB j1 )

∂� j1 [ �X j1 (t − τB j1 )]

∂xA(t − τB j1 − τ j1A)

〉
.

Finally, we consider the case d > 2, where there are d −
1 different hidden nodes along the path from A to B, where
number ν denotes the distance of intermediate node jν away
from A

P : A → j1 → ... jν → ... → jd−1 → B. (15a)

The structural effective interaction intensity from A to B along
a given path P is defined

IBA(P) =
〈

∂�B

∂x jd−1

·
d−1∏
ν=2

∂� jν

∂x jν−1

· � j1

∂xA

〉
, (15b)

where for i, j = j1, j2, .., jd−1, B

∂�i

∂x j
= ∂�i[ �X i(t + τiA)]

∂x j[t + τ jA(P)]
,

and time delay for jν through P is

τ jνA(P) = τ j1A +
ν∑

μ=2

τ jμ jμ−1 . (15c)

To detect the driving force component, we calculate the cor-
relation between the driving signal DA(t ) and the d + 1th
derivative of xB(t ), which is given by

E1,d+1
AB (t ′) ≈

{
O(�t ) t ′ �= τBA(P),
IBA(P)QDA + O(�t ) t ′ = τBA(P). (16)

The calculation of E1,d+1
AB (t ′) is only dependent on the data of

xB(t ) and DA(t ). According to the theoretical deduction, there
is a discontinuity at t ′ = τBA, which is called the characteristic
discontinuity of the certain path P.

Note that there are two more terms Ed
�B

and Ed
�B

in the cor-
relation function. The leading terms of the random deviation
caused by noises and the bias caused by the system dynamics
are given by

Ed
�B

= 〈
DA(t )�(d )

B

〉
, (17a)

Ed
�B

=
〈

DA(t )
N∑

i, j=1

F d
�

〉
, (17b)

where F d
� is a simplified function given as

F d
�

[
�i,

∂�i

∂x j
,

d

dt

(
∂�i

∂x j

)
, ...,

dd

dtd

(
∂�i

∂x j

)]
.

Under the condition of the well-designed stochastic driving
signal, these two irrelevant quantities become small and neg-
ligible for long time averages (more details are shown in
Appendix A).
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Due to the discretization of measurement time, the above
correlation can be rewritten as

E1,d+1
AB (k�t ) = �t

T − k�t

L−k∑
l=1

DA(tl )x
(d+1)
B (tl + k�t ), (18a)

where �t is the time interval in the recording process. The
reconstructed interaction intensity can be represented by

ĨBA(P) = E1,d+1
AB [τ̃BA(P)]/QDA, (18b)

where τ̃BA(P) is the experimental time delay [ceil(x) means
rounding up number x]

τ̃BA(P) = �t · ceil[τBA(P)/�t]. (18c)

The systematical deep network reconstruction proposed
above can be summarized as follows. To infer the information
of an arbitrary path from A to B, we load a signal DA(t )
on node A, and record the response data of B [xB(t )]. We
then calculate the correlation function E1,n

AB (t ′) (t ′ ∈ [0, T ]).
If a singularity appears at t ′ = τ̃BA(P), it means that the
distance is d = n − 1 and there are n − 2 hidden nodes in
the path from A to B. The transmission delay τ̃BA(P), and
the effective intensity ĨBA(P) can be calculated according to
Eq. (18). Furthermore, multiple paths can be detected if more
singularities are discovered. A schematic figure of a complex
network is shown in Fig. 1, in which the multiple paths to
be reconstructed are colored. In the next section, we apply
the deep network reconstruction to some simple networks
and demonstrate the validity of our method with numerical
simulations.

III. NUMERICAL DEMONSTRATION OF DEEP
NETWORK RECONSTRUCTION METHOD USING SIMPLE

NETWORKS

In this section, we demonstrate the feasibility of the deep
network reconstruction method in networks with small sizes
and linear dynamics.

A. Unnoisy linear system

We consider a linear system without the inherent noise
where an external driving signal is loaded on node A (A = 1
as an example)

ẋA=1(t ) = −αx1(t ) +
∑
j �=1

M1 jx j (t − τ1 j ) + D1(t ), (19a)

and for the other nodes i �= A

ẋi(t ) = −αxi(t ) +
∑
j �=i

Mi jx j (t − τi j ), (19b)

where α = 4 and M̂ is the connection matrix. Node B (B = 2)
is perceptible and the interaction paths from A to B are tested
for deep reconstruction. Both the values of measurement in-
tervals (�t) and the loading interval of driving signal (�tD)
are set to be the same, �tD = �t = 10−2.

First, we consider a network named Net1. The connection
matrix is set to be

Net1 : M̂ =

⎛
⎜⎝

0 0 0 0
0 0 1.2 1.5

1.2 0 0 0
1.5 0 0 0

⎞
⎟⎠.

The transmission delay matrix is shown by

τ̂ =

⎛
⎜⎝

− − − −
− − 0.835 0.779

0.739 − − −
0.604 − − −

⎞
⎟⎠.

In this network, there are two different paths from node
A = 1 to B = 2 P1 : 1 → 3 → 2, P2 : 1 → 4 → 2 as shown
in Fig. 2(a). From Eqs. (15b) and (15c), the theoretical values
of the effective intensities and time delays in these paths are
given by

IBA(P1) = M31M23 = 1.44, IBA(P2) = M41M24 = 2.25,

τBA(P1) = τ31+ τ23 = 1.574, τBA(P2) = τ41+ τ24 = 1.383.

The network activity fluctuates around x∗
i = 0, i =

1, 2, ..., N , which is the stable state of the network. The source
variable x1(t ) fluctuates in a wider range because of the driv-
ing effect while others show weak responses, as shown in
Fig. 2(b). We calculate the correlation E1,n

AB (t ′) at different
n and reasonable range of t ′, two characteristic singularities
emerge until n = 3 as shown in Fig. 2(c), which means there
are two different paths from A to B, and the distances are both
d = 2. The positions t ′ of these singularities correspond to
the transmission time delay in these paths, τ̃BA(P1) = 1.57,
τ̃BA(P2) = 1.38. The corresponding effective intensity of the
path can be calculated via the average of differences between
the amplitude of singularity and the background level, i.e.,

ĨBA(P1) = 1.3031 − 0 + 1.3031 − (−0.1827)

2
= 1.3944,

ĨBA(P2) = 2.1085 − 0 + 2.1085 − (−0.2396)

2
= 2.2283.

The numerical reconstruction results are summarized in
Table I, where the accuracy of the intensity is defined as
ratio = ĨBA/IBA, very close to 1.

According to the above numerical results, a sketch map of
the reconstructed network is shown in Fig. 2(d). Compared
with the structure Fig. 2(a), two paths are well reconstructed,
including two different sandwiched hidden nodes.

In Net1, we reconstruct multiple paths with the same dis-
tance. In the following part, we demonstrate that our method
works in the condition of multiple paths with different dis-
tances. We make some changes to the structure of Net1 and
generate a network with N = 5 named as Net2,

Net2 : M̂ =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 1.2 0 1.5

1.2 0 0 0 0
1.5 0 0 0 0
0 0 0 1.5 0

⎞
⎟⎟⎟⎠.
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(b)

FIG. 2. Reconstruction results of network Net1. The driving intensity is QDA = 1. The measurement time length is T = 10 000, with
�t = 0.01. (a) Schematic diagram of Net1. (b) The response sequences of four nodes in Net1, where the activity of x1(t ) fluctuates in a wide
range due to the driving signal, while the activities of all other nodes stay around the stable state. (c) Plot of the correlation function E 1,3

AB (t ′) in
the range t ′ ∈ [1, 2]. The two characteristic singularities of at t ′ = 1.38 and t ′ = 1.57 mean that there are two different paths from 1 to 2, whose
amplitude value are related to the effective intensity. And the abscissa position of t ′ suggests the transmission delay of the corresponding path,
respectively. (d) Sketch map of the reconstructed network.

The parameters of time delay are as follows:

τ̂ =

⎛
⎜⎜⎜⎝

− − − − −
− − 0.835 − 0.720

0.739 − − − −
0.604 − − − −

− − − 0.945 −

⎞
⎟⎟⎟⎠.

In this case an extra hidden node 5 is considered. There
are two paths from A (A = 1) to B (B = 2) with different
distances, i.e., P1 : 1 → 3 → 2 and P2 : 1 → 4 → 5 → 2, as
shown in Fig. 3(a). To reconstruct the multiple paths, the cor-
relations E1,n

AB (t ′) are calculated based on data from Net2. We
find that a singularity emerges in E1,3

AB (t ′) at t ′ = 1.57 first, as

TABLE I. Reconstructed results of Net1.

d IBA ĨBA ratio τBA τ̃BA

P1 2 1.44 1.3944 0.9683 1.574 1.57
P2 2 2.25 2.2283 0.9904 1.383 1.38

shown in Fig. 3(b), which means there is a shortest path with
d = 2, and a new singularity emerges in E1,4

AB (t ′) at t ′ = 2.27
as shown in Fig. 3(c), informing there is a second shortest path
with d = 3. For convenience, we color the two characteristic
singular peaks in Figs. 3(b) and 3(c) to distinguish the shortest
path and the second shortest path, for the shortest path of
d = 2 and for the second shortest path of d = 3. The hollow
points represent the position of theoretical value IBA and τBA.
Note that the value of E1,4

AB (t ′) at t ′ = 1.57 is much larger than
that in E1,3

AB (t ′). This ia because correlation function comes
from the same data of xB(t ), and correlation in E1,3

AB (t ′) is en-
larged by 1/�t in E1,4

AB (t ′), not considered as a new singularity.
Similarly, the same driving signal exist in multiple paths with
different distances and time delays, which can cause random
background perturbation in E1,4

AB (t ′). Thus, we only consider
the amplitude of singularity at t ′ = 2.27 as the effective in-
tensity of the second shortest path because of the background
perturbation. The reconstructed results are shown in Table II,
and the accuracy of intensities for both paths is very close to
1. According to the above numerical simulation, a sketch map
of the reconstructed network is shown in Fig. 3(d).
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FIG. 3. Reconstruction results of Net2. The same as Fig. 2, QDA = 1, T = 10 000 and �t = 0.01. (a) Schematic diagram of Net2. (b, c)
The correlations E 1,3

AB (t ′) and E 1,4
AB (t ′) in the range of t ′ ∈ [1, 3]. In panel (b) a characteristic singularity (colored in red) emerges at t ′ = 1.57

first, which means the inferred distance of the shortest path is ds = 2, and the amplitude is related to the inferred effective intensity. The circle
indicates the actual interaction intensity IBA(P1) and time delay τBA(P1). IBA(P1) = 1.44 and τBA(P1) = 1.574 are represented by the abscissa
and ordinate of the circle. (c) Another characteristic singularity (colored in blue) emerges at t ′ = 2.27 in E 1,4

AB (t ′), which means the inferred
distance of the second shortest path is 3, and the amplitude is related to the inferred effective intensity. The circle indicates the actual interaction
intensity IBA(P2) and time delay τBA(P2). For the shortest and the second shortest path, theoretical and experimental values meet well with each
other.

Finally, we remove node 3 of Net2 and obtain Net3:

Net3 : M̂ =

⎛
⎜⎜⎜⎝

0 0 0 0 0
1.2 0 0 0 1.5
0 0 0 0 0

1.5 0 0 0 0
0 0 0 1.5 0

⎞
⎟⎟⎟⎠.

The two different paths are changed as shown in Fig. 4(a),
i.e., P1 : 1 → 2 and P2 : 1 → 4 → 5 → 2, where the differ-
ence between two path distances grow larger d1 = 1 and
d2 = 3. The shortest path P1 can be reconstructed via E1,2

AB as
shown in Fig. 4(b). However, the components of stochastic
disturbance in Fig. 4(d) are enlarged once more [much larger
than in Fig. 3(c)]. The higher order correlations are severely
disturbed so that E1,4

AB are very noisy and no singularity can be
found as shown in Figs. 4(c) and 4(d) in Net3. In the following
part of this paper we focus on inference of the shortest and the

TABLE II. Reconstructed results of Net2.

d IBA ĨBA ratio τBA τ̃BA

P1 2 1.44 1.4657 1.0178 1.574 1.57
P2 3 3.375 3.2425 0.9607 2.269 2.27

second shortest paths with distance difference not more than
1 (for example, if the distance of the shortest path is ds, then
the distance of the second shortest path is ds + 1). In principal,
the method is applicable for reconstructing the second shortest
paths of farther distances (larger than ds + 1) with often much
more measured data.

B. Linear system with noises

A linear system with noise is considered, which is given by

ẋ1(t ) = −4x1(t ) +
∑
j �=1

M1 jx j (t − τ1 j ) + �1(t ) + D1(t ),

ẋi(t ) = −4xi(t ) +
∑
j �=i

Mi jx j (t − τi j ) + �i(t ), i �= 1, (20)

where the external signal is loaded on node A = 1, the connec-
tion matrix is the same as Net2, and �i represents the internal
noise on node i.

The shortest interaction path P1 : 1 → 3 → 2 with d = 2
can be reconstructed as shown in Fig. 5(a). However, the
other singularity at t ′ = 2.27 [similar to Fig. 3(c)] related to
the second shortest path P2 : 1 → 4 → 5 → 2 disappears due
to the noise effect as shown in Fig. 5(b). As the theoretical
analysis, reconstruction errors can arise from the noise effect
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FIG. 4. Reconstruction results of Net3. QDA = 1, T = 10 000 and �t = 0.01. (a) Schematic diagram of Net3 (b–d) Plot of the correlation
functions E 1,2

AB (t ′), E 1,3
AB (t ′), E 1,4

AB (t ′) in the range of t ′ ∈ [1, 3]. In panel (b) there is a characteristic singularity at t ′ = 0.64 in E 1,2
AB (t ′), which

means the distance of the shortest path is ds = 1. In panels (c) and (d) no characteristic singularity can be detected. The singularity related to
the second shortest path is embedded in the noisy background in E 1,3

AB (t ′), E 1,4
AB (t ′). The reconstruction of the d = 3 paths fails.

[Eq. (18a)]. There are some small fluctuations in E1,3
AB (t ′) as

shown Fig. 5(a), and the fluctuations are largely enhanced in
E1,4

AB (t ′) to be comparable with the corresponding singularity
value, making reconstruction of the second shortest path fail.

Theoretically, our method is applicable for eliminating the
effects of intrinsic noises under the condition of sufficient
available data. However, the amounts of required data grow
exponentially as the distance of path increases, which causes
difficulties for data collection, storage and calculation in prac-
tice. Fortunately, from Eq. (17a) it is evident that one can
reduce noise-induced deviation effectively by simply increas-
ing �t . So we can reduce the noise-induced deviation from
this direction. The original dataset can be simply rearranged
by replacing �t to �t ′ = k�t (no additional data is required)

x′
i (t1) = xi(tk ), x′

i (t2) = xi(t2k ), ..., x′
i (tL/k ) = xi(tL ),

D′(t1) =
k∑

l=1

D(tl ), D′(t2) =
2k∑

l=k+1

D(tl ),

..., D′(tL/k ) =
L∑

l=L−k+1

D(tl ). (21)

To weaken the noise effect in our study, we increase �t =
0.01 to be �t = 0.02 and �t = 0.04, based on the same
dataset. Then we recalculate E1,4

AB (t ′) with rearranged data of

x′
B and D′

A, shown in Fig. 5(c) (�t = 0.02) and in Fig. 5(d)
(�t = 0.04). The fluctuations are greatly weakened. The sin-
gularity related to the second shortest path in E1,4

AB (t ′) emerges
as shown in Fig. 5(d). The difference is that due to the
data rearrangement there are more than one points together
contribute to the mutation. We properly sum over all these
singular values for correct reconstruction and more details
are shown in Appendix B. The reconstructed results of Net2
in the presence of noises are shown in Table III, which is
satisfactory.

All the above reconstruction results verify the theoretical
predictions of the deep reconstruction algorithms. We demon-
strate the effectiveness of our method in the linear system,
and show that distance, effective intensity, and time delay of
multiple paths can be well inferred in both unnoisy and noisy
conditions, with the help of well designed stochastic driving
signal.

IV. INFERRING INTERACTIONS OF COMPLEX
NETWORKS, SIMULATIONS AND RESULTS

In the above section, linear networks with simple structure
are considered for reconstruction, where specific numerical
calculations are emphasized. In this section, we will demon-
strate the validity of deep network reconstruction in large
networks with various nonlinear local dynamics of nodes,
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FIG. 5. Reconstruction results of Net2 with the presence of inherent noises (Qi = 10−6, for i = 1, 2, 3, 4, 5). The driving intensity is
QDA = 1. The measurement time length is T = 100 000. (a) We set �t = 0.01 in panel (a). Similar to Fig. 3(b), there is a characteristic
singularity at t ′ = 1.56 related to the shortest path. (b–d) The correlation E 1,4

AB (t ′) with �t = 0.01 in panel (b), �t = 0.02 in panel (c) and
�t = 0.04 in panel (d), respectively. The singularity is completely embedded in the noisy disturbances in panel (b), and appear vaguely in
panel (c) while within large fluctuating background. In panel (d) there are several singular points colored in black. These points together
form a mutation peak, which is related to the second shortest path, i.e., P : 1 → 4 → 5 → 2. This multi-node singularity comes from data
rearrangement Eq. (21). The second shortest path can be correctly reconstructed as shown in Table III through summation of the multiple
singularities (detailed analysis are shown in Appendix B).

including chaotic and oscillatory dynamics. We will show
the reconstruction results in more complicated network struc-
ture where nodes are randomly linked with heterogeneous
intensities and time delays. The external driving signal DA(t )
can be loaded on an arbitrary perceptible node A, set A = 1.
Our goal is to reconstruct the distance, effective intensity and
time delay of interaction paths from A to an arbitrary node
B(B �= A), under the condition that only nodes A and B are
perceptible.

The reconstruction for an arbitrary path from A to B is car-
ried out as follows. First, data of the driving signal DA(t ) and
node xB(t ) are recorded simultaneously with a fixed time inter-

TABLE III. Reconstructed results of Net2 in the presence of noises.

d IBA ĨBA ratio τBA τ̃BA

P1 2 1.44 1.44335 1.0023 1.574 1.56
P2 3 3.375 3.07154 0.91008 2.269 2.24

val �t for a duration T . Second, based on the collected data,
correlation functions E1,ν

AB are calculated in suitable range of
t ′ ∈ [0, T ] and increasing ν = 2, 3, 4, ... successively. When a
characteristic discontinuity appears first at certain ν = μ1 and
t ′ = τ1, the shortest distance ds(A → B) is determined ds =
μ1 − 1. Further increasing ν = μ1 + 1, μ1 + 2, ... until a new
discontinuity appears in E1,ν

AB with another ν = μ2, the second
shortest distance is determined as d = μ2 − 1. As is discussed
in the previous section, driving-induced fluctuations in corre-
lation functions can be greatly amplified while detecting the
second shortest distances especially in cases μ2 � μ1 + 2. In
this section we only perform the reconstruction of the paths of
the shortest distances with ds and the second shortest distances
with ds + 1, since the reconstruction of longer distances needs
too large amount of data. With correctly inferred distances, at
last we can search all singularities, each of which infers the
time delay τ̃BA and effective intensity ĨBA of one specific path
from A to B. In this section, if not specified, time step of the
measurement is set �t = 0.002.
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In the following we consider three different networks
with distinctive local node dynamics: excitable Bär network,
chaotic Lorenz network and gene regulatory network.

A. The excitable complex networks

A considerable amount of works in the field of biologi-
cal, chemical, and physical systems have been dedicated to
excitable media. The interest in this topic is motivated by
the fact that wave propagation in these media provides an
efficient mechanism for communication between distant loca-
tions. Seminal examples include the conduction of electrical
impulses along nerve axons. A modified version of FitzHugh-
Nagumo model, called the Bär Model is investigated in this
paper [38], described as follows (δ1,i �=1 = 0, δ1,1 = 1):

dui

dt
= −1

e
ui(ui − 1)

(
ui − vi + b

a

)
+ Wi + D1δ1,i, (22a)

dvi

dt
= f (ui ) − vi, (22b)

f (ui ) =
⎧⎨
⎩

0 ui < 1
3 ,

1 − 6.75ui(ui − 1)2 1
3 � ui � 1,

1 ui � 1,

(22c)

where ui and vi are the membrane potential and inhibitory
currents of the ith node (i = 1, 2, ..., N). Wi is the coupling
effect from other nodes, Wi = ∑N

j=1 Mi ju j (t − τi j ), (i �= j).
Mi j is the connection intensity and τi j is the transmission time
delay between adjacent nodes. The function δ1,i means that
the external signal is loaded on node 1. Parameters of identical
local dynamics for all nodes are a = 0.84; b = 0.07; e = 0.04.

A randomly generated network of size N = 30 is con-
sidered (more details are shown in caption of Fig. 6). The
schematic diagram of the network is shown in Fig. 6(a), where
all the nodes are arranged according to the shortest distance
from A. For example, the shortest distances from node A = 1
to nodes 19 and 26 are d (1 → 19) = 1 and d (1 → 26) = 4.
The driving intensity on node A = 1 is set QDA = 0.1. Ac-
cording to the reconstruction process, we detect the distance
d̃BA B = 2, 3, ..., N based on the collected data from this
excitable network. If the distance of the shortest paths from
A to B are accurately reconstructed, the node B is marked
with white hollow circle in Fig. 6(a), otherwise it is marked
in gray. We can further infer and calculate effective intensity
and time delay for paths with correct distance [Eq. (18)]. Fig-
ure 6(b) presents the reconstructed intensities ĨBA(P) against
the corresponding structural values IBA(P) for all recon-
structed paths together, where the round dots for the shortest
paths and the squares for the second shortest paths. The re-
sults are mostly quite accurate for the shortest paths, however
there are some relatively large errors for the second shortest
paths.

To optimize the experimental results, we increase the
amount of data and recollect Nrun = 20 times different
dataset. In each run the system evolves from different ini-
tial states and the correlation function in the ith dataset
is denoted as E1,d+1

AB,i (t ′). The averaged correlation is thus
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FIG. 6. Reconstruction results of the network of modified
FHN (22). The network of size is N = 30. The connection matrix
is randomly generated, with connection probability 0.1. Each con-
nected link is chosen to be positive or negative randomly. Value of
time delay and strength of a single link is randomly chosen in range
τi j ∈ (0.5, 1) and Mi j ∈ (−1.5, −1) ∪ (1, 1.5). (a) The schematic
diagram of the network. All nodes are arranged according to the
shortest distance from node A (A = 1 here and in all the following
figures). Nodes marked in gray indicate that their shortest distances
are not inferred correctly. (b) The reconstructed interaction inten-
sities ĨBA(P) based on single dataset plotted versus the structural
intensities IBA(P), the red round dots are for the shortest paths and
the blue square dots are for the second shortest paths. (c, d) The
reconstructed effective intensities and time delays ĨBA(P) and τ̃BA(P)
based on 20 different datasets, plotted versus the structural values
IBA(P) and τBA(P). In panel (c) the reconstructed results are greatly
optimized than panel (b).

given by

Ē1,d+1
AB (t ′) = 1

Nrun

Times∑
i=1

E1,d+1
AB,i (t ′). (23)

The new reconstruction results based on the averaged corre-
lation function Ē1,d+1

AB (t ′) are shown in Fig. 6(c), which is
greatly improved where all values are almost distributed on
the diagonals, i.e., ĨBA ≈ IBA. Moreover, we find that more
interaction paths, including the paths related to the nodes
in gray in Fig. 6(a), are correctly inferred. In addition, the
transmission time delays of these paths are perfectly inferred,
shown in Fig. 6(d).

We take the path P : 1 → ... → 2 as an example to il-
lustrate the optimization effect of larger dataset. As shown
in Fig. 7(a), there are one shortest path with distance d =
2, and two second shortest paths with distance d = 3. The
shortest path is well reconstructed via E1,3

12 (t ′) which is cal-
culated with a single dataset, since a singularity is detected
clearly as shown in Fig. 7(b). The multiple second shortest
paths cannot be detected, since the characteristic singular-
ities related to the second shortest paths are embedded in
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FIG. 7. The illustration of the optimization effect of averaging
20 datasets. The time length of each datasets is T = 10 000. (a) The
schematic diagram of paths from A = 1 to B = 2, where the light
red line is the shortest paths and the dark blue lines are the second
shortest paths. (b) E 1,3

12 (t ′) in the range of t ′ ∈ [1.5, 3] based on single
dataset. A singularity can clearly depict the effective intensity and
time delay. (c) E 1,4

12 (t ′) in the range of t ′ ∈ [1.5, 3] based on the
same single dataset. The singularities marked are embedded in the
perturbations. (d) The averaged correlation function Ẽ 1,4

12 (t ′) via 20
different datasets [Eq. (23)]. Two expected singularities emerge, and
the corresponding information of two second shortest paths can be
calculated accurately. In panels (b), (c), and (d) and also in all the
following figures, circles have the same meanings as in Fig. 3.

strong noises as shown in Fig. 7(c). However, two singular-
ities emerge in the Ē1,4

12 (t ′) averaged by Nrun = 20 different
datasets as shown in Fig. 7(d). Comparing the value of two
peaks with the theoretical values denoted by two circles, the
two second shortest paths are well reconstructed by a larger
dataset.

B. The chaotic Lorenz networks

A coupled Lorenz network with chaotic dynamics is con-
sidered, which is given by

ẋi(t ) = σ [yi(t ) − xi(t )] +
N∑

j=1

Mi jx j (t − τi j ) + δi,1D1(t ),

ẏi(t ) = pxi(t ) − qyi(t ) − sxi(t )zi(t ),

żi(t ) = axi(t )yi(t ) − bzi(t ), (24)

where the driving signal is loaded on the variable x of node
A = 1 (with intensity QDA = 1). Parameters of identical lo-
cal dynamics for all nodes are σ = 10, p = 28, q = s = 1,
a = 1, b = 8/3. This network is randomly linked in the same
way as the excitable networks. The same as Fig. 6, we cal-
culate correlation function E (t ′) based on single dataset of
T = 10 000 for reconstruction of the shortest paths, however
for reconstruction of the second shortest paths we calculate
the averaged correlation function Ē (t ′) based on Nrun = 20
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FIG. 8. Reconstruction results of the Lorenz networks Eq. (24).
The parameters of local dynamics are σ = 10, p = 28, q = s = 1,
a = 1, b = 8/3. (a) The schematic diagram of the network. Each
single link is randomly linked in the same way as in Fig. 6. The
value of Mi, j and τi, j are randomly set in range τi j ∈ (0.5, 1) and
Mi j ∈ (−2, −1) ∪ (1, 2). (b) Rearrangement network. All nodes in
the network are rearranged according to the shortest distance from
A = 1. The nodes in gray indicates that their shortest path cannot be
reconstructed even based on 20 different datasets. (c, d) The recon-
structed ĨBA(P) and τ̃BA(P) vs the actual structural IBA(P) and τBA(P),
where the red round dots for the shortest paths and blue square dots
for the second shortest paths. The number of reconstructed paths are
very limited since the distances of the shortest paths of many nodes
cannot be correctly inferred [shown in panel (b)]. (e, f) The improved
results of ĨBA(P) and τ̃BA(P) vs the IBA(P) and τBA(P). The correla-
tion functions are all improved by the multiple iterative difference
approach as Eq. (25). All the paths from A to B are reconstructed by
�2Ē 1,d+1

AB (t ′) successfully based on same data as panels (c, d).

different datasets. Figure 8(a) shows a sketch diagram of the
network structure, and all the nodes are arranged by their
distances from node A = 1 as shown in Fig. 8(b). Distances
of almost all nodes with ds � 3 are failed to be reconstructed
and the corresponding nodes B are marked in gray. Of course,
inferences of other quantities are failed together. Furthermore,
for the nodes near the source node A there are only a few
reconstructed paths, which can be shown by the number of
points in Fig. 8(c).

These limitations of reconstruction are mainly due to the
strong chaotic behavior of single node. The correlations be-
tween the two chaotic trajectories changing violently in a wide
range are bound to be large, and can be further amplified by
the higher-order derivatives of xB(t ). Thus, the singularities
related to the shortest and second shortest paths are embedded
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in strong disturbances of the correlation. It is inefficient to
eliminate them by averaging multiple runs.

Since the dynamic-caused correlation [Eq. (17b)] is irrel-
evant to a small time gap through t ′, we develop a multiple
iterative difference approach to improve the reconstruction
results in our study, which is given by

�1E (t ′) = E (t ′ + �t ) − E (t ′),

�ν+1E (t ′) = �νE (t ′ + �t ) − �νE (t ′). (25)

Either Em,n
AB or Ēm,n

AB obtained after averaging calculation can
combine with this difference operation.

E (t ′) can be either Em,n
AB or the averaged Ēm,n

AB . Through
our test, by using the multiple iterative difference method,
all the distances of node B can be determined correctly in-
cluding those marked in gray in Fig. 8(b). The reconstructed
effective intensities and time delays vs the real are plotted in
Figs. 8(e) and 8(f), and all the values are around the diago-
nals which means the detailed information of these paths are
reconstructed accurately.

To illustrate the validity of the multiple iterative difference
method, we choose the reconstruction of paths from A = 1 to
B = 3 as an example shown in Fig. 9(a), where the distance
of shortest path and second shortest path are d = 3 and d = 4,
respectively. A singularity related to the shortest path emerges
in the correlation E1,4

13 in Fig. 9(b), where large waves are
around the singularity. The singularities related to the second
shortest paths are embedded in the large fluctuations of Ē1,5

13
and cannot be detected as shown in Fig. 9(d). It is evident
that there is a large correlation between the data from any
pair of nodes in this chaotic model, which is independent
of the driving. In Figs. 9(b) and 9(d) waves caused by the
chaotic dynamics fluctuate with large amplitude and change
continuously over time, so that the differential operation in
Eq. (25) can reduce the waves effectively. For a clear illustra-
tion, �2E1,4

13 and �2Ē1,5
13 are calculated as shown in Figs. 9(c)

and 9(e), where the singularities related to the shortest and
second shortest paths emerge apparently, and the fluctuations
in the correlations are well eliminated. The detailed informa-
tion of the multiple paths can be reconstructed accurately.

C. The gene regulatory networks

In the above models, we only consider fixed linear in-
teractions between adjacent nodes. However, many practical
systems have variable-dependent and strong nonlinear inter-
actions. For instance, the following model has been widely
used to describe the dynamics of gene regulatory network
(GRN) [39],

ẋ1(t ) = γ1 +
N∑

j=1

{�1 j[x1(t ), x j (t − τ1 j )]} − x1 + δ1,iD1(t ),

(26)

where

�i j (xi, x j ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, no regulation from j to i,

(1 − xi )
x

hi j
j

x
hi j
j +K

hi j
i j

, active regulation,

−xi
x

hi j
j

x
hi j
j +K

hi j
i j

, repressive regulation,
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FIG. 9. The illustration of the multiple iterative difference ap-
proach. (a) The shortest paths and the second shortest paths from
A = 1 to B = 3 in network of Fig. 8(a). (b) The correlation E 1,4

AB (t ′)
in the range of t ′ ∈ [1, 4]. The singularity related to the shortest path
is detected, but there are large waves around the singularity, which
can cause negative effect on reconstruction. (c) The averaged corre-
lation Ē 1,5

AB (t ′) in the range of t ′ ∈ [1, 4], where the singularities are
embedded in the strong fluctuations. Panels (d) and (e) are calculated
using the multiple iterative difference approach Eq. (25). (d) The
correlation �2E 1,4

AB (t ′). The singularity related to the shortest path
emerges and the background waves are suppressed considerably. (e)
The correlation �2Ē 1,5

AB (t ′). Like panel (d), two singularities emerge
and reconstruct the second shortest paths perfectly.

where xi represents the expression level of gene i, xi ∈ [0, 1],
and �i j describes different kinds of regulations between
proteins, which are strongly nonlinear. The theoretical struc-
tural intensities of any given path should be determined by
Eq. (15b) from long time averages of the instantaneous value
of interaction function, instead of direct product of link ma-
trices. The intensity can be treated as qualitative judgment of
the active or repressive regulation. To maintain the stability of
the system with strong nonlinear interactions, a driving signal
of weak intensity is applied, i.e., QDA = 0.001.

Reconstruction results of GRN are show in Fig. 10. Almost
all the shortest and second shortest paths can be reconstructed
accurately, and only the distance from of node 35 marked in
gray in Fig. 10(b) is not detected.

The reconstructed effective intensities and time delays
versus the theoretical effective intensities and time delays
are plotted in Figs. 10(c) and 10(d), most of the values
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FIG. 10. Reconstruction results of GRN Eq. (26). (a) The
schematic diagram of the network structure. We randomly choose
γi ∈ (0, 0.1), hi j ∈ (1, 10) and Ki j ∈ (0, 1) within their ranges with
equal probabilities. The topological structure with N = 40 is ran-
domly constructed. Each node receives inputs from five other nodes.
Each input link has half chance to be active or repressive. (b–d) The
reconstructed results like in Figs. 6 and 8. Both averaged correlation
of Nrun = 10 and one-order multiple difference method Eq. (25) with
correlation are implemented �1Ē 1,d+1

AB (t ′) for the reconstruction of
GRN. In panel (b), almost all the shortest paths are reconstructed
correctly, and only the shortest path from node 1 to 35 is not detected
(marked in gray). In panels (c) and (d) again ĨBA(P) and τ̃BA(P)
are plotted versus the structural values IBA(P) and τBA(P). Since
the magnitude order of IBA varies greatly, in panel (c) logarithmic
diagram are applied for presentation, where the absolute values |IBA|
and |ĨBA| are shown.

appear around the diagonals, indicating that data-based anal-
yses work well for inferring the nonlinear interactions.
Inevitably, there are still certain errors for some reconstructed
intensities. Multiplication regulations can cause very small
structural interaction intensities and increase difficulties in the
reconstruction. In addition, the stochastic driving may cause
some changes to the GRN dynamics.

D. The larger excitable networks

We further demonstrate the validity of the deep network
reconstruction method in complex systems with much larger
size, and take the excitable system Eq. (22) as an example.
All parameters are set the same as in Eq. (22) and Fig. 6. In
this section, if not specified, time step of the measurement
is set �t = 0.005. The reconstruction is carried on also in
the same way, where the correlation function are averaged
by Nrun = 20 times different dataset, each with T = 10 000.
First, we consider a network with network size N = 60 with a
connection probability p = 0.09. The external driving signal
is loaded on node A = 1, and the rest nodes B (B �= A) are
arranged according to the distance of the shortest path from

FIG. 11. The reconstructed results of complex networks with
larger size. All the networks are constructed in the same way as in
Fig. 6 with considerably enlarged size. (a) The schematic diagram
of an excitable network with N = 60. All the nodes are arranged
according to the distance of the shortest path from A. Only a few
nodes (colored in gray) are not detected, whose distances of the
shortest paths cannot be inferred correctly. (b) The reconstructed ef-
fective intensities ĨAB(P) plotted against IAB(P), of the nodes marked
in white hollow circles in panel (a). (c) The same as panel (b) ĨAB(P)
plotted against IAB(P) for a enlarged network with a size N = 100.
(d) The correct rate of reconstruction results of 6 groups of nodes
with different distances d = 1, 2, 3, 4, 5, 6. The nodes are randomly
chosen from several large excitable networks.

node A in Fig. 11(a). Only a few nodes with large distances
are marked in gray whose distances are not distances inferred.
As shown in Fig. 11(b) intensities of the shortest and second
shortest paths are reconstructed accurately. For path whose
distance and effective intensity are correctly inferred, its time
delay can be certainly inferred. Second, we create an excitable
network with larger size N = 100 with a smaller connection
probability p = 0.03. From statistical analysis, we find that
only distances of 5 nodes are failed to be inferred, which are
the largest distances in the network. The corresponding ĨBA

versus IBA of the shortest and second shortest paths are shown
in Fig. 11(c). In this more sparse and larger network, there are
certain more fluctuation errors appear for the second shortest
paths due to the strong interactions between multiple paths,
since the number of paths with large distances increases a lot.

People usually deal with much larger networks in reality.
Finally, we adopt the following strategy to demonstrate the
validity of deep reconstruction approach. We build up 10
different excitable networks with random and sparse connec-
tions. From node i to another node j, there is a probability
of p = 2/N for existence of an one-way link. The network
size are chosen randomly N ∈ [200, 1000]. The reconstruc-
tion is carried on in the same way, where the correlation
function are averaged by Nrun = 2 of times different dataset,
each with T = 10 000. We randomly select not more than
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100 different nodes in each network and record reconstruction
results of them. According to the distance of the nodes’ cor-
responding shortest path, we group these nodes into 6 groups
ds = 1, 2, 3, 4, 5, 6. If the shortest paths of for a given node
B are detected by characteristic singularities, we define that
this node B is inferred correctly. The correct rates of different
groups are shown in Fig. 11(d). The curve underneath is com-
puted by the correlation Ē without the difference operation
and the upper is improved by one order difference operation
�1Ē in Eq. (25). As shown in Fig. 11(d), the correct rate
decreases as the distance become larger. The correct rate is
kept almost equal to 1 for d � 3. However, the correct rate
decreases rapidly for further increasing d . With the first-order
difference operation, we can infer distances more accurately
and rather high successful rates are kept for large d .

In conclusion, it is more difficult to reconstructed the in-
teraction paths with large distance. The deep reconstruction
is largely independent of the network size if the shortest
distances between any two perceptible nodes is not too large.
However, for larger networks, one has to treat cases of longer
distances and also more interaction paths between any pair of
nodes. Then more data should be measured and the optimiza-
tion method should be introduced.

V. CONCLUSION

In this paper a new deep reconstruction method is
proposed, which is model-free, applicable across system dy-
namics and network topologies. With an external stochastic
driving loaded on a source node A, one can infer representative
information about the direct and indirect interactions from A
to another node B in the network even when all other nodes are
hidden. Rich information can be inferred, including distance
from A to B, the effective intensity, and the transmission time
delay of multiple paths with different distances. This method
can be used to extract rich information because it analyzes
not only the correlation of the available data but also the
correlation of the multi-order derivatives of the data, which
implies the utilization of multidimensional variables and the
expansion of the dimensions of the information included in
the data. Theoretically, all paths with different distances from
A to an arbitrary node B can the reconstructed. In this work,
we only consider the inference of the shortest paths and the
second shortest paths. The accurate inference of paths with
larger distances may need much larger amount of data and
other novel optimization operations.

In this paper, we focus on the positive effect of noiselike
driving signals, with the premise that one should be able to
inject the signal to the source node A. In the future study, ex-
ploring the optimal form of the driving signal and developing
the corresponding detection technology will be an interesting
task in this area. Improving the method based on practicable
driving signals may provide a way to obtain broader insights
for more powerful functions for network reconstruction. Since
in many realistic networks parts of nodes are often not reach-
able, the approach developed in this paper, reconstructing
multiple paths of direct and indirect interactions between two
nodes based on information of these two nodes only, is ex-
pected to be useful to explore rich information of hidden world
of practical networks.

In epilepsy research, detecting system dynamics can tell
us that the brain has entered a critical state earlier, so as to
better predict seizures and find vulnerable brain regions [5].
The most probable applications of our work may be expected
in real neural systems, where in different levels (e.g., single
neuron level, local circuits level and functional area level)
extremely rich data are available for analyses of network
interactions. On the one hand, network structures determine
the specific functions of some local circuits, and on the other
hand, many network units are unknown or not measurable
(hidden) and the approach developed in this paper is hopefully
applicable [23,40–44].
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APPENDIX A: IMPACT OF IRRELEVANT FACTORS

As mentioned above, reconstruction are based on measur-
able data of a targrt node (B) and external driving (on source
node A). Recommending the previous contents of this paper,
data sequences of node B and driving on A are shown as
follows:

xB(t1), xB(t2), ..., xB(tl ), ..., xB(tL ), l = 1, 2, ..., L − 1,

0 < tl+1 − tl = �t � 1, T = L�t, (A1)

D(t1), D(t2), ..., D(tl ), ..., D(tL ). (A2)

It is known that at least 2 × L numbers are recorded. Suffi-
cient theoretical deduction and numerical examples are given
to illustrate the proposed method, where the characteristic
discontinuity can be found in the correlation function with
t ′ scanning and covering enough range. However, there are
several factors that can always influence the test results,
sometimes even greatly. In the Appendix A, effects of these
different impacts are discussed.

1. Random deviation caused by noises

First we use noise-induced deviation for nodes with dis-
tance d = 1 [Eq. (9a)] to give an example:

E1
�B

=
〈
DA(t )

�B(t + �t ) − �B(t )

�t

〉
. (A3)

As mentioned above, �B(t ) denotes the equivalent noise effect
accumulated during a very short time. Note that when measur-
ing data with a fixed step �t at time tk , �B(tk ) represents the
equivalent impact of noise on the measurable quantities in a
very short time �t . The value of �B(tk ) is an uncertain random
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number, but its statistical property can be deduced. According
to Eq. (1b), one can get the expectation of �B(tk )

E (�B(tk )) = lim
�t→0

∫ tk+�t

tk

�B(t )dt = 0, (A4a)

and the variance

V [�B(tk )] = lim
�t→0

∫ tk+�t

tk

[�B(t )]2dt = QB
1

�t
. (A4b)

Therefore, [�B(tk )], k = 1, 2, ..., L are a series of independent
variables of Gauss distribution. The variance of the noise-
induced deviation E1

�B
can be divided into a driving variance

V (〈D(t )〉) and a multiplicative noise variance term

V
(
E1

�B

) = V

(〈
DA(t )

�B(t + �t ) − �B(t )

�t

〉)

= V (〈DA(t )〉)V

(〈
�B(t + �t ) − �B(t )

�t

〉)
,

where

V

(〈
�B(t + �t ) − �B(t )

�t

〉)

= V

(
1

L − 1

L−1∑
k=1

�B(tk + �t ) − �B(tk )

�t

)

= 2QB

(L − 1)�t3
= 2QB

T �t2
. (A5)

In the above equation, K and H are two independent variables,
they have the following properties [for convenience here we
use K to represent �B(tk ) and H to represent �B(th)]

D(K + H ) = 〈(K + H − E (K + H ))2〉
= E (K2) + E (H2) + E2(K ) + E2(H )

+ 2E (K )E (H ) + 2E (K )E (H ) − 2E2(K + H )

= E (K2) − E2(K ) + E (H2) − E2(H )

= D(K ) + D(H ),

and

D

(
1

L − 1
K

)
=

〈(
1

L − 1
K

)2〉
=

(
1

L − 1

)2

D(K ).

Similarly, for reconstruction of farther distances d of
Eqs. (17) and (18)

V
(〈
�

(d )
B

〉) = 2d QB

T �t (2d )
. (A6)

The above deduction proves that noises can cause random
deviation (as shown in Fig. 5)

V
(
�Ed

�B

) = V (〈DA〉)V
(〈
�

(d )
B (t + �t ) − �

(d )
B (t )

〉)
= V (〈DA〉)2

2d QB

T �t (2d )
. (A7)

It is more appropriate and cost-effective to properly increase
�t to weaken noise effects than to increase the time length of
data sequences T only. However, increasing �t excessively

may cause confusion of different characteristic discontinu-
ities.

2. Bias caused by system dynamics

First, for the reconstruction of distance d = 1. In Eq. (9b)
the value of �i[ �XB(t )] is independent of the time delays. For
convenience, in this part parameters of time delay are omitted
(τi j = 0, for arbitrary i, j). So the variables can be simplified
as �X B(t ) → xB(t ). For convenience, Eq. (9b) is also simplified

N∑
i=1

∂�B[xB(t )]

∂xi(t )
�i(xB(t )) → F 1

B [xB(t )],

E1
�B

= 〈
DA(t )F 1

B [xB(t )]
〉
, (A8)

where F 1
B (xB) is a continuous and differentiable function

whose variable xB(t ) changes over time t . According to the
property that the driving is independent of the system dynam-
ics (DA is independent of F 1

B ), the first-order differential of
E1

�B
is given as

�E1
�B

= 〈
DA(t )F 1

B [xB(t + �t )]
〉 − 〈

DA(t )F 1
B (xB(t ))

〉
= 〈

DA(t )
(
F 1

B [xB(t + �t )] − F 1
B (xB(t ))

)〉
= 〈DA(t )〉〈F 1

B [xB(t + �t )] − F 1
B (xB(t ))

〉
. (A9)

Based on the Lagrange Mean Value Theorem,〈
F 1

B [xB(t + �t )] − F 1
B [xB(t )]

〉
= 〈

Ḟ 1
B [xB(t + θ�t )][xB(t + �t ) − xB(t )]

〉
≈ 〈

Ḟ 1
B [xB(t + θ�t )]

〉〈ẋB(t )〉�t

= 〈
Ḟ 1

B [xB(t )]
〉〈�B[xB(t )]〉�t, (A10)

where 0 < θ < 1 and θ�t is omitted again in average calcu-
lation. In conclusion, for reconstruction of distances d = 1,

�E1
�B

= 〈DA(t )〉〈Ḟ 1
B (xB(t ))

〉〈�B(xB(t )〉�t . (A11)

Then, for reconstruction of distances 2

d

dt

(
N∑

i=1

∂�B[xB(t )]

∂xi(t )
�i[xB(t )]

)
→ F 2

B [xB(t )],

E2
�B

= 〈
DA(t )F 2

B [xB(t )]
〉
, (A12)

and

�E2
�B

= 〈DA(t )〉〈Ḟ 2
B [xB(t )]

〉〈�B[xB(t )]〉�t . (A13)

Similarly, for reconstruction of farther distances d

dd−1

dtd−1

(
N∑

i=1

∂�B[xB(t )]

∂xi(t )
�i[xB(t )]

)
→ F 2

B [xB(t )],

Ed
�B

= 〈
DA(t )F d

B [xB(t )]
〉
, (A14)

and

�Ed
�B

= 〈DA(t )〉〈Ḟ d
B [xB(t )]

〉〈�B[xB(t )]〉�t . (A15)

Under ideal conditions, i.e., T → +∞ and so 〈DA(t )〉 →
0, system dynamics contribute no variable component
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�Ed
�B

→ 0 in the correlation function. Under realistic condi-

tions with finite data volume, 〈DA(t )〉 = ∑L
i=1 DA(tL ) �= 0. So

the correlation function E1,d+1
AB (t ′) changes with t ′ and looks

like smooth fluctuations. However, we can effectively weaken
the fluctuations by multiple difference approach Eq. (25) be-
cause �E�B → O(�t ).

Various system dynamics may be so complicated that we
can only give a qualitative estimation roughly about the size
of the bias caused by dynamics. The size of the bias depends
on the system. In the same system the larger the path distance
is, the larger the bias is. If the bias exceeds the amplitude of
the characteristic discontinuity, it may cause some difficulties.
The high-order derivation of data can be a simple metric
for Ed

�B
: 〈

Ed
�B

〉 ∝ 〈
x(d )

i (t )
〉
or

〈∣∣x(d )
i (t )

∣∣〉. (A16)

In summary, system dynamics can cause bias in EAB(t ′),
which changes continuously as t ′. The bias changes randomly
with an averaging rate of an equivalent magnitude which
can grow larger when reconstructing farther distances. So we
choose a nonperiodic driving signal with small �t in this
work, and a differential approach is proposed to effectively
eliminate dynamic-induced bias.

APPENDIX B: IMAGE DISCREPANCY CAUSED BY
NUMERICAL SIMULATION INTERVAL

As is mentioned in the caption of Fig. 5(d), unexpectedly,
there are more than one discontinuous points in correlation
function. This is mainly caused by the rearrangement opera-
tion and systematic feature of numerical simulation.

In this paper, we use the Stochastic Runge-Kutta al-
gorithms [45] for numerical simulation. The numerical
simulation is performed with interval dt . In the numerical
simulation process of variable data, we assume every num-
bers obtained by the numerical simulation is measured and
recorded, i.e., dt = �t .

From the causal relations, driving at time t can affect the
source node with a short delay but cannot affect source node
at the same time:

〈xA(t )DA(t )〉 = 0, (B1a)

〈xA(t + �t )DA(t )〉 �= 0. (B1b)

Besides, for general systems with dissipative property short-
term correlation decays fast (k � 2)

〈xA(t + k�t )DA(t )〉 = 0. (B2)

So there is a discontinuity comes from the correlation about
xA(t + �t ) − xA(t ) and DA(t ), which is also called that driv-
ing component in xA(t + �t ) − xA(t ) comes from DA(t ).

DA(t ) → xA(t + �t ) − xA(t ). (B3)

Driving on node A can also affect other nodes along inter-
action paths. For example, if there is a path A → B → C →
..., then the distance of B from A is d = 1, the distance of C
from A is d = 2, and so on. This constraint can be extended
to node B with a time delay tBA from A. (For convenience,
in the following we talk about situation with zero time delay
tBA = 0, tCB = 0,...) From the above, driving component in

xB(t + �t ) − xB(t ) comes from xA(t ):

xA(t ) → xB(t + �t ) − xB(t )

or

xA(t ) → x(1)
B (t ). (B4)

Similarly, the driving component is propagated

xB(t ) → xC (t + �t ) − xC (t )

or

xB(t ) → x(1)
C (t ). (B5)

When we calculate E1,2
AB (t ′) based on data of node B, one

can find that x(2)
B (t ) only contains driving component of DA(t )

by backstepping

x(2)
B (t ) = 1

�t

[
x(1)

B (t + �t ) − x(1)
B (t )

]
← [xA(t + �t ) − xA(t )] ← DA(t ). (B6)

When we calculate E1,3
AC (t ′) based on data of node C, one

can also find that x(3)
C (t ) only contains driving component of

DA(t ):

x(3)
C (t ) = 1

�t

[
x(2)

C (t + �t ) − x(2)
C (t )

]
= 1

�t2

[
x(1)

C (t + 2�t ) − x(1)
C (t + �t )

]
− 1

�t2

{[
x(1)

C (t + �t ) − x(1)
C (t )

]}
← [

x(1)
B (t + �t ) − x(1)

B (t )
] ← DA(t ). (B7)

In a similar way, there is a one-to-one correspondence
between x(1)

A (t ), x(2)
B (t ), x(3)

C (t ),... and D(t ). Generally the dis-
continuity in correlation function can only come from one
point as shown in most of figures about EAB.

However, it is complex if the original data are rearranged
by Eq. (21) as follows:

x′
i (t1) = xi(tk ), x′

i (t2) = xi(t2k ), ..., x′
i (tL/k ) = xi(tL ),

D′(t1) =
k∑

l=1

D(tl ), D′(t2) =
2k∑

l=k+1

D(tl ), ......,

D′(tL/k ) =
L∑

l=L−k+1

D(tl ). (B8)

For example, if we set k = 2 and initial time as t0 = t

x′
i (t0) = xi(t ), x′

i (t1) = xi(t + 2�t ), x′
i (t2) = xi(t + 4�t ), ...

D′(t1) = D(t ) + D(t + �t ),

D′(t2) = D(t + 2�t ) + D(t + 3�t ),

D′(t3) = D(t + 4�t ) + D(t + 5�t ), ..., (B9)

then we have

x(2)
B (t ) = 1

2�t

{[
x(1)

B (t + 2�t ) − x(1)
B (t )

]}
= 1

(2�t )2
{[xB(t + 4�t ) − xB(t + 2�t )]}
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− 1

(2�t )2
{[xB(t + 2�t ) − xB(t )]}

← [xA(t + 3�t )+ xA(t + 2�t ) − xA(t + �t ) − xA(t )]

← DA(t + 2�t )+ DA(t + �t )+ DA(t + �t )+ DA(t ).
(B10)

This means that rearranged x(2)
B (t ) contains driving component

of DA(t + 2�t ), DA(t + �t ), DA(t ). There is a one-many cor-
respondence between x(2)

B (t ) and DA(t + 2�t ), DA(t + �t ),
DA(t ). By backstepping we find that〈

x(2)
B (t )[D(t ) + D(t + �t )]

〉 �= 0. (B11)

Similarly,

x(2)
B (t − 2�t ) ← DA(t ) + DA(t − �t ) + DA(t − 2�t ),

(B12)

and 〈
x(2)

B (t − 2�t )[D(t ) + D(t + �t )]
〉 �= 0 (B13)

The driving component in two data points x(2)
B (t ) and x(2)

B (t −
2�t ) can be detected by D′

A(t1) = DA(t ) + DA(t + �t ). In
this way, when we calculate E1,2

AB (t ′) based on rearranged
data of node B, in the correlation function the discontinuity
consists of two points close to each other.

Similarly, for node C of distance d = 3,〈
x(3)

C (t )[D(t ) + D(t + �t )]
〉 �= 0,〈

x(3)
C (t − 2�t )[D(t ) + D(t + �t )]

〉 �= 0,〈
x(3)

C (t − 4�t )[D(t ) + D(t + �t )]
〉 �= 0. (B14)

By backstepping there are driving components in three data
points x(3)

C (t ), x(3)
C (t − 2�t ), and x(3)

C (t − 4�t ). So in the cor-
relation function E1,3

AC (t ′) the discontinuity consists of three
points.

By analyzing high-order correlation with rearranged data,
and so on, for node with distance d , in the correlation function
the discontinuity will consists of d + 1 points. It’s compli-
cated to obtain the value of each point. However, the total
driving component are fixed. In conditions when data are not
rearranged, we only calculate discontinuity value based on
one point. In conditions when data are rearranged, we can
calculate the sum of all mutation values. In Fig. 5(d), there
are three section of mutations between four points. From the
point (2.16,0.04136) to (2.2,1.1519), there is an uplift muta-
tion. From the point (2.2,1.1519) to (2.28,−1.2094), there
is a drop mutation. By subtraction of the two minimums in
two sides from the positive maximum 1.1519, the effective
intensity is

ĨBA(P2) = 1.1519 − 0.04136 + 1.1519 − (−1.2094)

= 3.4718.
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