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Abstract. Despite the impressive performance under the single-domain
setup, current fully-supervised models for person re-identification (re-ID)
degrade significantly when deployed to an unseen domain. According to
the characteristics of cross-domain re-ID, such degradation is mainly at-
tributed to the dramatic variation within the target domain and the
severe shift between the source and target domain. To achieve a model
that generalizes well to the target domain, it is desirable to take both
issues into account. In terms of the former issue, one of the most suc-
cessful solutions is to enforce consistency between nearest-neighbors in
the embedding space. However, we find that the search of neighbors is
highly biased due to the discrepancy across cameras. To this end, we
improve the vanilla neighborhood invariance approach by imposing the
constraint in a camera-aware manner. As for the latter issue, we propose
a novel cross-domain mixup scheme. It alleviates the abrupt transfer by
introducing the interpolation between the two domains as a transition
state. Extensive experiments on three public benchmarks demonstrate
the superiority of our method. Without any auxiliary data or models,
it outperforms existing state-of-the-arts by a large margin. The code is
available at https://github.com/LuckyDC/generalizing-reid.

Keywords: Domain Adaptation, Person Re-Identification, Camera-Aware
Invariance Learning, Cross-Domain Mixup

1 Introduction

Person re-identification (re-ID) aims to associate images of the same person
across non-overlapping camera views. As the fundamental component of intel-
ligent surveillance systems, it has drawn wide attention both in the industry
and academia. With the surge of deep learning techniques, recent years have
witnessed great progress in fully-supervised person re-ID [34,38,52,13,33,20,51].
However, the success of this paradigm relies heavily on enormous annotated data
in the target domain, which is usually prohibitive to acquire in practice. To by-
pass the scarcity of annotations, one can train the model with a relevant labeled

https://github.com/LuckyDC/generalizing-reid
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Fig. 1. The illustration cross-domain person re-ID. We consider intra-domain variation
and inter-domain shift simultaneously. In terms of the former, cross-camera variations
lead to a biased retrieval. As for the latter, the discrepancy between the source domain
and the target domain hiders the effective adaptation.

dataset, a.k.a. the source domain. Unfortunately, due to the dramatic shift in
data distribution, such a model would suffer a severe degradation in performance
when directly deployed to the target domain. For this reason, it is desirable to
investigate the problem of cross-domain person re-ID.

Given labeled source data and unlabeled target data, cross-domain re-ID
dedicates to learn a model that generalizes well to the target domain. Compared
with conventional unsupervised domain adaptation (UDA), it is characterized
by the open-set setup and the domain hierarchy. The former implies the disjoint
label space between the source domain and the target domain, which breaks the
underlying assumption of most UDA methods. As for the latter, each domain can
be further divided into multiple camera sub-domains, since the style of images
is distinct across different cameras. According to such a hierarchy of domains,
we impute the poor transfer performance to two factors, intra-domain variation
and inter-domain shift. Wherein, the first factor is mainly derived from camera
divergence. These issues are illustrated in Fig. 1. To achieve superior transfer
performance, it is desirable to take both issues into account.

Recently, some studies [57,45,10,58] have verified the effectiveness of neigh-
borhood invariance in coping with the intra-domain variation of the target do-
main. Equipped with a memory bank, these methods search neighbors of each
probe throughout the whole dataset and impose a consistency constraint be-
tween them. However, due to the lack of supervision in the target domain, the
model cannot suppress well the impact of inter-camera variation (including il-
lumination, viewpoint, and background). In this case, the neighbor search is
easily biased towards the candidates from the same camera as the probe. To be
more specific, positive inter-camera matches are more likely to be arranged be-
hind many negative intra-camera matches in the ranking list, which confuses the
model learning. To address the issue, we improve the neighborhood invariance by
imposing the constraint separately for intra-camera matching and inter-camera
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matching. Despite the simplicity, this proposal leads to considerable improve-
ment over its vanilla counterpart.

To alleviate the adverse effect of inter-domain shift, early works [40,9] employ
extra generative models to transfer the image style across domains, which is
essentially an advanced interpolation between the source and target manifold.
By introducing stylized images as an intermediate domain, these methods expect
to avoid the issues caused by the abrupt transfer between two very different
domains. Along this insight, we explore to achieve the same goal by interpolating
the samples from the two domains directly. Different from style transfer, the
direct mixture in the pixel level leads to the change of content. Therefore, the
identity label should also be mixed accordingly. This is exactly a mixup [49]
process. However, it is nontrivial to employ vanilla mixup [49] in our case since
it is initially customized for the closed-set classification problem. To make it
applicable to open-set cross-domain re-ID, we augment mixup with a dynamic
classifier. It can cover the label space of the input source-target pairs adaptively
without the access to the exact label space of the target domain.

In summary, the contribution of this work is three-fold:

– To bypass the bias in the neighbor search, we impose the neighborhood
invariance in a camera-aware way. Despite the simplicity, this approach leads
to a significant improvement over its camera-agnostic counterpart.

– We propose a novel cross-domain mixup scheme to smooth the transition
between the source domain and the target domain. It improves the transfer
performance significantly with negligible overhead.

– Extensive experiments validate the effectiveness of our method. It achieves
state-of-the-art performance on Market-1501, DukeMTMC-reID and MSMT17
datasets.

2 Related Work

Supervised person re-identification has made significant progress in recent
years, thanks to the advent of deep neural networks [17,15,5] and large scale
datasets [53,54,29,40]. The research in this field mainly focuses on the develop-
ment of discriminative loss functions [48,16,22] or network architectures [61,34,28,37].
In term of the former direction, a series of deep metric learning methods [31,6,16,3,47]
been proposed to enhance intra-class compactness and inter-class separability in
the manifold. As for the customization of architecture, PCB [34] and its follow-
ups [34,38,52,13] dominate the trend. Apart from the two directions mentioned
above, some methods [33,20,51] attempt to involve auxiliary data for the fine-
grained alignment of the human body. Despite their success in the single domain,
these fully-supervised methods suffer from poor generalization ability, which pre-
vents them from the practical application.

Cross-domain person re-identification pursues high performance in the
target domain with the access to labeled source data and unlabeled target data.
Early works [40,9,25,19] focus on reducing the domain gap between the two do-
mains at the image level. They perform the image-to-image translation [62,7]
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from the source domain to the target domain and then train the model with
translated images. Besides, some methods [39,18] attempt to connect the two
domains with common auxiliary tasks. Wang et al . [39] share knowledge across
domains through attribute classification. Huang et al . [18] perform human pars-
ing and pose estimation on both domains simultaneously to enhance alignment
and model generalization. Recently, some studies [46,57,45,10] recognize the im-
portance of mining discriminative cues in the target domain. Yu et al . [46] mine
underlying pairwise relationships according to the discrepancy between feature
similarity and class probability. They then use a contrastive loss to enforce the
mined relationships. Zhong et al . [57] investigate the impact of intra-domain
variations and impose three types of invariance constraints on target samples,
i.e. exemplar-invariance, camera-invariance [59], and neighborhood-invariance.
Yang et al . [45] further introduce the idea of neighborhood-invariance to the
patch level. Current leading methods [11,42,12,32,50,14] adopt a pseudo label
estimation scheme. They label target samples by a clustering algorithm and
then train the model accordingly. Such an operation will be performed repeat-
edly until the model converges, which results in a heavy computational burden.

MixUp [49] is a data augmentation technique initially proposed for the su-
pervised classification problem. Afterwards, it was extended to random hidden
layers by Verma et al . [35]. MixUp enhances the smoothness of the learned man-
ifold by applying convex combinations of labeled samples for training. It has
demonstrated its effectiveness on several classification benchmarks. Recently,
MixUp has been successfully adapted to the field of semi-supervised learn-
ing [36,1] and domain adaptation [26,30]. Without the access to the ground-
truths of unlabeled/target data, these methods conduct MixUp based on the
prediction of original samples. Unfortunately, all of them focus on the closed-set
scenario and cannot be applied to cross-domain re-ID directly. In parallel with
our work, Zhong et al . [60] extend MixUp scheme to the open-set scenario where
the number of target classes is given. They explain the insight from the view-
point of the label reliability and achieve very positive results on CIFAR [21] as
well as ImageNet [8].

3 Method

In the context of cross-domain person re-ID, we have access to a labeled source
domain S = {Xs, Ys} and an unlabeled target domain T = {Xt}. The source
domain contains Ns images of P persons. Each sample xsi ∈ Xs is associated
with an identity label ysi . The target domain consists of Nt images {xti}

Nt
i=1 whose

identity annotations are absent. In addition, the camera indices of images (i.e.
Cs = {csi}

Ns
i=1 and Ct = {cti}

Nt
i=1) are also available in both domains. Given such

information, the goal is to learn a model that generalizes well to the target
domain.
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Fig. 2. The framework of our method. Firstly, mixed data is generated by the convex
combination between source-target pairs. Then, it is fed into the network together with
target data to acquire image embeddings. After the normalization by a BN layer, each
type of embeddings is assigned to its corresponding component. (1) With the help of an
augmented memory, the learning of target embeddings is supervised by intra-camera
and inter-camera neighborhood consistency. (2) As for mixed embeddings, we maintain
a dynamic classifier to cover the label space of each source-target pair adaptively.

3.1 Overview

As illustrated in Fig. 2, we feed-forward target samples and mixed samples into
the network simultaneously. Wherein, each mixed sample is generated by interpo-
lating between a source-target pair. For target data, we maintain a memory bank
M ∈ RNt×d, where each slot mi ∈ Rd stores the feature of the corresponding
sample xti. The memory is updated in a running-average manner during training:

mi ← σmi + (1− σ) f
(
xti
)
, mi ←mi/‖mi‖2, (1)

where σ denotes the momentum of the update, f (xti) ∈ Rd represents the l2-
normalized feature of xti extracted by the current model. In practice, the memory
bank behaves as a non-parametric inner-product layer [44], by which we can
obtain pairwise similarities between each input sample and all target instances
on the fly. On the basis of such pairwise similarities, we can retrieve nearest-
neighbors of each input image and impose a consistency constraint between them.
As for mixed data, we compose a dynamic classifier to cover the label space of
each source-target pair adaptively. It is built upon the source prototypes and the
feature of the target instance. In the sequel, we will elaborate on the learning
tasks customized for target data and mixed data.

3.2 Camera-Aware Neighborhood Invariance

Without the knowledge of the label space (i.e. identity annotations and the
number of identities), it is infeasible to figure out the class assignment of target
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Fig. 3. The visualization of ranking lists in intra-camera matching and inter-camera
matching. We perform retrieval on DukeMTMC-reID using a model pre-trained on
Market-1501. The green frame indicates positive matches, while the red frame indicates
negative matches. The score on the top of each gallery image represents its cosine
similarity with the probe.

samples directly. In this case, the pairwise relationship is a potential cue to
guide the feature learning in the target domain. In representation learning, it
is generally assumed that each sample shares the same underlying label with
its nearest-neighbors at a high probability. Equipped with the memory bank
mentioned above, we can obtain the probability that xti share the same identity
with xtj on the fly:

pij =
exp

(
s ·mT

j f (xti)
)∑Nt

k=1 exp
(
s ·mT

k f (xti)
) , (2)

where s is a scaling factor that modulates the sharpness of the probability dis-
tribution. According to the above assumption, ECN [57] proposes to maximize
such probabilities between each probe image and its nearest-neighbors in the
whole dataset:

Lag = −
∑
j

wi,j log pij , wi,j =

{
1
|Ωi| , j 6= i

1, j = i
, ∀j ∈ Ωi, (3)

where Ωi represents the nearest-neighbors of xti throughout the whole tar-
get domain. |Ω(xti)| denotes the size of the neighbor set. For convenience, we
term this loss function as camera-agnostic neighborhood loss, since it treats all
candidates equally regardless of their camera indices while searching neighbors.

Due to the scene variation across cameras, there is a significant discrepancy in
similarity distribution between inter-camera matching and intra-camera match-
ing [41]. The average pairwise similarity of inter-camera matching is smaller than
that of intra-camera matching. As a result, intra-camera candidates can easily
dominate the top ranking list, whether or not they are positive matches. In this
case, it is problematic to employ Eq. (3), since it would push inter-camera posi-
tive matches away from the probe. For clarity, we visualize an example in Fig. 3.
From the figure, we observe that even the first positive inter-camera match has a
lower similarity score than many negative intra-camera matches. When sorting
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all candidates in a camera-agnostic manner, positive inter-camera matches can
be easily excluded from a pre-defined neighborhood range. An intuitive solution
is to choose a larger neighborhood range. However, such a practice would involve
more negative matches inevitably, which is detrimental to feature learning.

To bypass this dilemma, we propose to enforce neighborhood invariance sep-
arately for intra-camera matching and inter-camera matching. Suppose Ointra

i

denotes the set of instances that share the same camera as xti and Ointer
i repre-

sents the set of instances whose camera indexes are different from xti. For sample
xti, intra-camera matching and inter-camera matching only have access to the
instances in Ointra

i and Ointer
i , respectively. Therefore, the probability that xti

shares the same identity with an intra-camera candidate xtj is formulated as
follows:

pintrai,j =
exp

(
s ·mT

j f (xti)
)∑

k∈Ointra
i

exp
(
s ·mT

k f (xti)
) (4)

The definition of the probability that xti shares the same identity with an inter-
camera candidate is similar:

pinteri,j =
exp

(
s ·mT

j f (xti)
)∑

k∈Ointer
i

exp
(
s ·mT

k f (xti)
) (5)

Accordingly, we replace the original camera-agnostic loss function Eq. (3) with
the following two camera-aware loss functions:

Lintra = −
∑
j

wi,j log pintrai,j , ∀j ∈ Ωintra
i .

Linter = −
∑
j

wi,j log pinteri,j , ∀j ∈ Ωinter
i .

(6)

where Ωintra
i and Ωinter

i denote the neighbor sets of xti throughout Ointra
i and

Ointer
i , respectively. Different from ECN [57] that adopts fixed top-k nearest-

neighbors, we define the neighborhood based on the relative similarity ratio to
the top-1 nearest neighbors:

Ωi = {j|sim(xi, xj) > ε · sim(xi, top-1 neighbor of xi)} (7)

Moreover, without the disturbance of cross-camera variations, the mined
neighborhood for intra-camera matching is much more reliable than that for
inter-camera matching. Thus, it is much easier to learn a discriminative intra-
camera representation first, which can encourage accurate inter-camera match-
ing. For this reason, we propose to employ Lintra before the involvement of Linter

in practice.

Remarks. Some related works [23,4,63,41,43] adopt a similar two-stage learning
scheme. They focus on spreading the given local association (i.e. tracklet [23,4]
or identity [63,41] within the same camera) to the global. They do not pay
attention to the discrepancy in similarity distribution between the intra-camera
matching and inter-camera matching.
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3.3 Cross-Domain Mixup

In order to push the transfer performance ahead, it is desirable to handle the
shift between the source domain and the target domain. Early efforts in this
direction perform image-to-image translation from the source style to the target
style. They introduce the stylized domain as an intermediate state to mitigate the
performance loss of direct transfer. However, the style transfer process demands
cumbersome generative models. Can we achieve the same goal in a more concise
fashion?

Essentially, style transfe is an advanced interpolation between the source
and target manifold. Considering that mixup [49] also conducts interpolation on
the data manifold, we explore to employ it as the substitute for style transfer.
According to the formulation of mixup [49], we mix samples and their labels
simultaneously:

λ ∼ Beta(α, α) (8)

xm = λxs + (1− λ)xt ym = λys + (1− λ)yt (9)

where α is a hyper-parameter of Beta distribution. (xs, ys) ∈ S and (xt, yt) ∈ T
denote samples from the source domain and the target domain, respectively.
However, we have no access to the target annotation yt in the context of cross-
domain re-ID. Besides, the label space is disjoint between the two domains.
Thus, it is infeasible to apply mixup operation directly. To address the issue, we
propose to maintain a dynamic classifier that covers the label space of source-
target pair adaptively. With the knowledge of the source label space, we can first
define a classifier to identify P persons in the source domain. Then, we append
a virtual prototype vector wvirt ∈ Rd to the source classifier W ∈ RP×d:

W ′ ← [W ,wvirt] wvirt =
‖wys‖2 · f (xt)

‖f (xt) ‖2
, (10)

where [·] denotes the concatenate operation, wys
denotes the prototype vector

of the ys-th identity, W ′ ∈ R(P+1)×d is the parameter matrix of the composed
classifier. As expressed in the above equation, the dynamically created virtual
prototype vector is derived from the feature of the target instance of the mixed
pair. It has the same angular as the target feature and the same norm as the
source prototype vector. The composed classifier can distinguish (P+1) identities
apart. Wherein, the (P + 1)-th identity corresponds to the target individual
of the source-target pair. To make the labels compatible with the composed
classifier, we pad one-hot labels of source samples to (P + 1)-d with the zero
value. As for the labels of target samples, the final element of this (P +1)-d one-
hot vector is always activated. Since without specific class assignment, target
samples should always be identified as themselves. The feature learning of the
mixed data is constrained by the cross-entropy loss between the prediction of
the newly composed classifier and the mixed label:

Lm = − 1

Ns

Ns∑
i=1

P+1∑
j=1

ymi,j log p(j|xmi ;W ′), (11)
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where ymi,j denotes the j-th element of the mixed label ymi , p(j|xmi ;W ′) denotes
the probability predicted by the compose classifier that xmi belongs to the j-
th identity. Empirically, we find that replacing the up-to-date feature f (xt) in
Eq. (10) with its counterpart in the memory can benefit the stability of the
training. Therefore, we adopt this practice in the following experiments. Our
supplementary material provides detailed experimental results.

Remarks. Both our method and Virtual Softmax [2] introduce the concept of
the virtual prototype. However, they are different in motivation and implementa-
tion. In terms of motivation, Virtual Softmax introduces the virtual prototype to
enhance the discrimination of learned features under the fully-supervised setup.
By contrast, our method uses it to adjust the label space of the classifier dy-
namically according to the input source-target pair. As for implementation, the
direction of the virtual prototype is equal to that of the input feature in Vir-
tual Softmax. Whereas in our method, the classifier operates on mixed samples.
The virtual prototype has the same direction as the target instance of the input
mixed pair.

3.4 Overall Loss Function

Neighborhood invariance for intra-camera matching and inter-camera-matching
composes the supervision for the target domain, i.e., Lt = Lintra + Linter. By
combining it with the proposed constraint on the mixed data, we can obtain the
final loss function for the model training:

L = Lt + Lm. (12)

One may ask why not impose a constraint (e.g . classification loss or triplet loss)
on the source domain, just as other methods do. We remind that Lm already
contains moderate supervision for the source domain. When the interpolation
coefficient λ in Eq. (8) is sampled close to 1, Lm degrades to the classification loss
on the source data. For experimental results, see our supplementary material.

4 Experiment

4.1 Dataset and Evaluation Protocol

We evaluate the performance of the proposed method on three public bench-
marks, i.e. Market-1501 [53], DukeMTMC-reID [54,29], MSMT17 [40]. During
training, we adopt two of the three datasets as the source domain and the target
domain, respectively. During testing, we evaluate Cumulated Matching Charac-
teristics (CMC) at rank-1, rank-5, rank-10 and mean average precision (mAP)
in the testing set of the target domain.
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4.2 Implementation Details

We adopt ResNet-50 [15] pre-trained on ImageNet [8] as the backbone of our
model. The last downsampling operation of ResNet is discarded, which leads to
an overall stride of 16. Lintra and Linter are involved into the training at 10th

and 30th epoch, respectively. In terms of optimizer, we employ Stochastic Gra-
dient Descent (SGD) with a momentum of 0.9 and a weight decay of 1e−5. The
learning rate is set to 0.01 and 0.05 for the backbone layers and newly added
layers, respectively. It is divided by 10 at 60th epoch. The whole training process
lasts for 70 epochs. As for data, each mini-batch contains 128 source images and
128 target images. All input images are resized to 256×128. Random horizontal
flip, random crop and random erasing [55] are utilized for data augmentation.
Unless otherwise specified, we follow the setting of scaling factor s = 10, neigh-
borhood range ε = 0.8, momentum of memory updating σ = 0.6, and parameter
of Beta distribution α = 0.6. During testing, we adopt the output of the final
Batch Normalization layer as the image embedding. Cosine similarity is used as
the measure for retrieval. All experiments are conducted on two NVIDIA TITAN
V GPUs using Pytorch [27] platform.

4.3 Parameter Analysis
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Fig. 4. Evaluation with different values of ε in Eq. (7).

Neighborhood range ε. To analyze the effect of ε, we vary its value in a rea-
sonable scope and evaluate the performance under these settings. As illustrated
in Fig. 4, both rank-1 accuracy and mAP first improve as ε decreases. Assigning
too small value to ε may introduce considerable false positives, which is harmful
to the learning of discriminative features. We obtain the optimal performance
around ε = 0.8. Our method is somewhat sensitive to the setting of neighborhood
range. For detailed analysis, see our supplementary material.
Beta distribution parameter α. The parameter α determines the distribution
of interpolation coefficient λ. Assigning a larger value to α leads to an stronger
regularization. To investigate its effect, we vary the parameter α to five different
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Fig. 5. Evaluation with different values of the Beta distribution parameter α in Eq. (8).

s
Duke→ Market Market→ Duke

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

6 80.3 90.1 92.9 60.1 75.3 84.0 86.7 58.5
8 86.4 93.3 95.4 67.5 78.9 88.0 90.9 64.1
10 88.1 94.4 96.2 71.5 79.5 88.3 91.4 65.2
12 84.6 92.7 94.9 67.8 79.7 89.1 91.6 65.2
14 74.4 89.1 93.0 57.1 76.1 87.0 89.6 61.0

Table 1. Evaluation with different values of the scaling factor s in Eq. (2).

values and evaluate the performance under these settings. As shown in Fig. 5,
both rank-1 accuracy and mAP fluctuate very slightly with the variation of α.
This indicates that our method is relatively robust to the setting of cross-domain
mixup.
Scaling factor s. The scaling factor s in Eq. (2) is crucial to the final per-
formance. Large s can sharpen the probability distribution and ease the opti-
mization. However, assigning too large value may make the task too trivial to
learn discriminative features. We train the model under five different values of
s and report their results in Tab. 1. As shown in Tab. 1, we obtain the optimal
performance at s = 10 on Market-1501 and s = 12 on DukeMTMC-reID. The
performance degrades dramatically when s gets too large or too small.

4.4 Ablation Study

In this section, we conduct extensive ablation studies on the adaptation between
Market-1501 and DukeMTMC-reID. For the variants that do not involve cross-
domain mixup loss Lm, the supervision on the source data is necessary to ensure
meaningful representations. Thus, we perform a classification task in the source
domain just as ECN [57] and its follow-ups [58,10] do. Suppose p(ysi |xsi ) denotes
the predicted probability that xsi belongs to the identity ysi . The loss function for

the source data is defined as Ls = − 1
Ns

∑Ns

i=1 log p(ysi |xsi ). See our supplementary
material for ablation studies on other datasets.
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Methods
Duke→Market Market→Duke

R-1 R-5 R-10 mAP R-1 R-5 R-1 mAP

Supervised Learning 90.7 96.6 98.0 74.8 82.7 91.0 93.7 66.4
Direct Transfer 48.9 65.1 71.8 19.8 30.0 44.9 50.9 15.0

Ls + Lag 60.9 73.1 77.8 35.3 49.8 63.0 68.1 34.5
Ls + Lintra 70.6 83.9 88.6 44.6 70.0 82.4 86.0 52.1
Lm + Lintra 76.8 89.0 92.4 54.9 73.7 84.2 88.1 57.3
Ls + Lintra + Linter 81.2 91.7 94.2 59.2 76.2 87.5 90.4 59.6
Lm + Lintra + Linter 88.1 94.4 96.2 71.5 79.5 88.3 91.4 65.2

Table 2. Ablation studies on Market-1501 and DukeMTMC-reID. Supervised
Learning: Model trained with labeled target data. Direct Transfer: Model trained
with only labeled source data.

Performance bound. As reported in the first two rows of Tab. 2, the model
achieves promising performance when trained and tested in the same domain
(termed Supervised Learning). However, such a model performs poorly when
directly deployed to an unseen domain (termed Direct Transfer). Specifically,
the model trained on DukeMTMC-reID achieves only 48.9% rank-1 accuracy on
Market-1501, which is 41.8% lower than its single-domain counterpart. Super-
vised Learning and Direct Transfer behave as the upper-bound and lower-bound
of the transfer performance, respectively.
Effect of camera-aware invariance learning. To investigate the effect of
camera-aware invariance learning, we impose neighborhood invariance separately
for intra-camera matching and inter-camera matching. From Row 3-4 in Tab. 2,
we observe a considerable improvement when replacing camera-agnostic neigh-
borhood loss Lag with its intra-camera counterpart Lintra. To be specific, rank-1
accuracy improves from 60.9% to 70.6% and 49.8% to 70.0% on Market-1501
and DukeMTMC-reID, respectively. This is interesting since Lintra even omits
massive inter-camera candidates during the optimization. Such a phenomenon
verifies our hypothesis mentioned in Sec. 3.2. That is, the discrepancy between
intra-camera matching and inter-camera matching makes camera-agnostic neigh-
borhood constraint ambiguous for the optimization. Besides, a discriminative
intra-camera representation is beneficial for the cross-camera association. Fur-
thermore, we add inter-camera neighborhood loss Linter to the supervisory signal
to validate its effectiveness. As shown in Row 6 of Tab. 2, the injection of inter-
camera neighborhood loss improves the performance significantly. It leads to
a 10.6% and 6.2% gain in rank-1 accuracy on Market-1501 and DukeMTMC-
reID, respectively. Without the proposed cross-domain mixup component, such
a concise variant is already on par with existing state-of-the-art methods.
Effect of cross-domain MixUp. We further investigate the effect of cross-
domain mixup by incorporating it into the training. As shown in Tab. 2, the
involvement of Lm improves the variant “Ls+Lintra” by 6.2% and 3.7% in terms
of rank-1 accuracy on Market-1501 and DukeMTMC-reID, respectively. The gain
is 6.9% and 3.3% when applying Lm to the variant “Ls+Lintra+Linter”. Such a
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Methods
Market-1501 DukeMTMC-reID

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

PTGAN [40] 38.6 - 66.1 - 27.4 - 50.7 -
SPGAN [9] 51.5 70.1 76.8 22.8 41.1 56.6 63.0 22.3

TJ-AIDL [39] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0
CamStyle [59] 58.8 78.2 84.3 27.4 48.4 62.5 68.9 25.1

HHL [56] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2
MAR [46] 67.7 81.9 - 40.0 67.1 79.8 - 48.0
PAUL [45] 68.5 82.4 87.4 40.1 72.0 82.7 86.0 53.2
ARN [24] 70.3 80.4 86.3 39.4 60.2 73.9 79.5 33.4
ECN [57] 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4
UDA [32] 75.8 89.5 93.2 53.7 68.4 80.1 83.5 49.0
PAST [50] 78.4 - - 54.6 72.4 - - 54.3
SSG [12] 80.0 90.0 92.4 58.3 73.0 80.6 83.2 53.4
AE [10] 81.6 91.9 94.6 58.0 67.9 79.2 83.6 46.7

ECN++ [58] 84.1 92.8 95.4 63.8 74.0 83.7 87.4 54.4
MMT [14] 87.7 94.9 96.9 71.2 78.0 88.8 92.5 65.1

Ours 88.1 94.4 96.2 71.5 79.5 88.3 91.4 65.2

Table 3. Comparison with state-of-the-art cross-domain methods on Market-1501 and
DukeMTMC-reID. Red indicates the best and Blue the runner-up.

significant improvement validates the effectiveness of cross-domain mixup. It is
noteworthy that the rank-1 accuracy of our final variant is only 2.6% and 3.2%
lower than the supervised counterpart on Market-1501 and DukeMTMC-reID,
respectively.

4.5 Comparison with State-of-the-art Methods

Results on Market-1501 dataset. We evaluate the performance of our method
on Market-1501 using DukeMTMC-reID as the source domain. We compare the
result with representative works of different directions, including the methods
based on style transfer [40,9,25], the methods based on pseudo-label estima-
tion [32,12,14], and those mining intra-domain cues [45,46,57,10]. As reported in
Tab. 3, our method performs favorably against current leading methods in rank-
1 accuracy and mAP. Note that both ECN [57] and its follow-ups [10,58] benefit
a lot from CamStyle [59] augmentation, which requires an extra StarGAN [7].
MMT [14], the nearest rival, employs computationally intensive clustering oper-
ation and four ResNet-50 models in total (2 students and 2 teachers) to achieve
the similar performance.
Results on DukeMTMC-reID dataset. We adopt Market-1501 as the source
domain and evaluate the performance of the proposed approach on DukeMTMC-
reID. As shown in the right part of Tab. 3, our methods is competitive against
other state-of-the-arts. Both SSG [12] and PAUL [45] mine discriminative cues at
the part level, which is orthogonal to our concerns. It has been widely validated
in the field of supervised re-ID that part models are more powerful than their
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vanilla counterparts in discrimination. Even so, our method achieves much higher
performance than the two competitors. Compared with MMT [14], our method
is superior in rank-1 and mAP with much less computational overhead.
Results on MSMT17 dataset. We further evaluate the transfer performance
of our method on MSMT17. MSMT17 is characterized by large scale and abun-
dant variations, which makes it much more challenging. As shown in Tab. 4,
the proposed approach outperforms MMT [14] while using DukeMTMC-reID as
the source domain. However, the performance is far inferior to MMT when the
source domain is Market-1501. This is mainly attributed to the training insta-
bility induced by the unreliable neighborhood search at the early stage. We will
investigate this issue in the future work.

Methods
Market→MSMT Duke→MSMT

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

PTGAN [40] 10.2 - 24.4 2.9 11.8 - 27.4 3.3
ECN [57] 25.3 36.3 42.1 8.5 30.2 41.5 46.8 10.2
AE [10] 25.5 37.3 42.6 9.2 32.3 44.4 50.1 11.7
SSG [12] 31.6 - 49.6 13.2 32.2 - 51.2 13.3

ECN++ [58] 40.4 53.1 58.7 15.2 42.5 55.9 61.5 16.0
MMT [14] 49.2 63.1 68.8 22.9 50.1 63.9 69.8 23.3

Ours 43.7 56.1 61.9 20.4 51.7 64.0 68.9 24.3

Table 4. Comparison with state-of-the-art cross-domain methods on MSMT17. Red
indicates the best and Blue the runner-up.

5 Conclusion

In this paper, we propose a superior model for cross-domain person re-identification
that takes both intra-domain variation and inter-domain shift into account. We
adopt a neighborhood invariance approach to supervise feature learning in the
target domain. However, we find that the neighbor search is highly biased due
to the dramatic discrepancy across cameras. To avoid this issue, we propose to
impose the constraint in a camera-aware manner. Furthermore, we devise a novel
cross-domain mixup scheme to bridge the gap between the source domain and
the target domain. To be more specific, it introduces the interpolation between
the two domains as an intermediate state of the transfer. Extensive experiments
validate the effectiveness of each proposal. By taking the two proposals together,
our method outperforms existing state-of-the-arts by a large margin.
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