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ABSTRACT
Learning over incomplete multi-modality data is a challeng-

ing problem with strong practical applications. Most existing

multi-modal data imputation approaches have two limitations:

(1) they are unable to accurately control the semantics of im-

puted modalities; and (2) without a shared low-dimensional

latent space, they do not scale well with multiple modalities.

To overcome the limitations, we propose a novel doubly semi-

supervised multi-modal learning framework (DSML) with a

modality-shared latent space and modality-specific genera-

tors, encoders and classifiers. We design novel softmax-based

discriminators to train all modules adversarially. As a uni-

fied framework, DSML can be applied in multi-modal semi-

supervised classification, missing modality imputation and fast

cross-modality retrieval tasks simultaneously. Experiments on

multiple datasets demonstrate its advantages.

Index Terms— Semi-supervised learning, multi-modal

learning, incomplete data, adversarial learning

1. INTRODUCTION

Advances in sensor technologies lead to an increasing in-

terest in acquiring and modeling data with multiple modalities.

Since data from each modality can complement each other,

combining the useful information from multiple modalities can

significantly improve the prediction performance in various

applications, such as emotion recognition [1], object recogni-

tion [2], etc. It is notable that most prior works on multi-modal

learning make a common assumption that all training samples

are with complete modalities and corresponding labels. Nev-

ertheless, this assumption is excessive in practice, as (1) the

data collection process may generate data points with missing

modalities due to unforeseeable sensor malfunction or config-

uration issues; (2) in some applications (e.g., brain decoding

[3]), the acquisition of multi-modality data is very expensive,

while single-modality data is sufficient; and (3) the data label-

ing procedure requires lots of manual efforts, and hence only

a small set of labeled samples is available in most cases.

To address the above incomplete data issues, some cross-

modality data imputation/generation methods have been pro-

posed recently [4, 5]. E.g., [4] developed a multi-view adver-

sarially learned inference model, which formulates the modal-

ity imputation problem as a cross-view encoding-decoding

task. However, these current solutions still have limitations.

First, they are unable to accurately control the semantics of

imputed modalities. Modality imputation is typically regarded

as an unsupervised translation task [6], where we don’t know

what are the semantics of the translated result. How to make

full use of the available semantic information (e.g., category la-

bels) to guide the imputation process still remains challenging.

Second, they do not scale well with multiple modalities. Most

of the existing methods need to build bidirectional translators

for any two modalities. Therefore, for n modalities, n(n− 1)
translators would be needed. This quickly becomes unfeasible

as the number of modalities increases.

In this paper, we model the statistical relationships be-

tween modalities by using modality-specific generators with a

modality-shared latent space. Such a latent space can be benefi-

cial in many ways, e.g., (1) translating data from one modality

to another through the shared latent space is more scalable and

efficient (only 2n low-dimensional mappings are needed) than

direct translations between high-dimensional modalities; (2)

once trained, we can perform efficient similarity computation

in this low-dimensional space for fast cross-modality retrieval;

and (3) fully-paired faking samples generated from the shared

latent space may be used to augment the training set. To con-

trol the semantics of imputated/generated samples, we divide

the shared latent representation into two parts (c, z), where c
contains the designated semantic classes (category labels), and

z encodes the styles. To disentangle c from z, we further build

the modality-specific classifiers and encoders to minimize the

reconstruction error of c and z in the latent space, respectively.

We finally design novel softmax-based discriminators to train

all modules adversarially. In this way, the proposed DSML

framework can not only utilize all available data flexibly, but

also leverage the augmented information from the generated
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data with high controllability. Experiments on multi-modal

semi-supervised classification, missing modality generation

and cross-modality retrieval tasks demonstrate its advantages.

2. RELATED WORK

Generation and inference. Adversarially learned infer-

ence (ALI) [7] and BiGAN [8] proposed an adversarial method

for the joint distribution learning of data and latent code. They

train a generation network and an inference network jointly,

which can produce high-quality samples for both data and

latent code. The ALICE model [9] adopted a similar idea, but

with conditional entropy regularization, which was basically

equivalent to the cycle-consistency principle in CycleGAN [6].

Recently, [4] proposed a multi-view ALI (MALI) model for

cross-domain joint distribution matching. Our DSML model

also draws inspirations from ALI for modality generation and

latent code inference.

Semi-supervised cross-modality translation. Though

ALI/BiGAN was originally designed for data generation and

latent code inference, recent works [10, 11, 9, 12] extended it

to cross-modality translations between two real data domains.

Triangle GAN [11] is a semi-supervised framework that can be

used to learn bi-directional mappings between domain x and

domain y, where x and y can be two data modalities, or data

and the corresponding category label. Similar works includes

TripleGAN [10] and JointGAN [12]. Though encouraging

cross-modality translation results are reported, these models

lack a mechanism to perform latent code inference, which is

useful for many tasks.

Semi-supervised multi-modal classification. Instead of

using GANs, there also exists work that uses variational au-

toencoders (VAEs) [13] for semi-supervised multi-modal

learning [1, 14]. E.g., [1] proposed a semi-supervised in-

complete multi-view VAE model (SiMVAE) by treating the

missing labels/modalities as latent variables and infer them

for unlabeled/incomplete data. Our DSML model is distinct

from SiMVAE in important ways, e.g., we separate the latent

variables into two disentangled parts. Further, SiMVAE only

focuses on the task of multi-modal classification, while DSML

can be applied to a wide range of applications.

3. METHODOLOGY

We consider a doubly semi-supervised learning (SSL) set-

ting, where both labels and modalities are incomplete. For a

given instance, we assume x denotes one modality, y denotes

the other modality, and c denotes its category label.

3.1. Overview

Fig. 1 illustrates the proposed DSML framework. Our key

assumption is that the two modalities x and y of the same

( , )
( , )

(a) Gx, Gy

( )
( )

( )
( )

(b) Cx, Cy , Ex, Ey

Fig. 1. Overview of DSML framework: (a) the generators Gx, Gy;

(b) the classifiers Cx, Cy and the encoders Ex, Ey . The grey and

white units represent the observed and latent variables, respectively.

instance can be generated via two modality-specific genera-

tors Gx and Gy with a shared low-dimensional latent space,

respectively (cf. Fig. 1a). To accurately control the semantics

of generated modalities, we separate the shared latent repre-

sentation into two independent parts (c, z), where c contains

the designated semantics, and z encodes other factors of varia-

tion. Note that, without specific constrains on the generative

processes, c and z might be entangled in training phase. To

overcome this, for each modality we build two separate infer-

ence networks, in which one acts as a classifier and the other

as a common encoder (cf. Fig. 1b). Taking modality x as

example, the classifier Cx and the encoder Ex define two con-

ditional distributions pcx(c|x) and pex(z|x) that are trained

to approximate the true posteriors p(c|x) and p(z|x). In other

words, Cx and Ex are trained to minimize the reconstruction

error of c and z in the latent space, respectively. Similar strat-

egy is adopted for y. We elaborate the generative and inference

processes in supplementary materials (SM) section A.

In practice, all the above modules are implemented as deep

neural networks (DNNs), and their architectures depend on

specific applications, such as deconvolutional neural network

for image generation. Below, we show how to optimize all

modules jointly by using adversarial learning.

3.2. Jointly adversarial learning

3.2.1. The pairs of modality and its latent code.

Following the ALI framework, we first construct an ad-

versarial game to match the distributions of two different

factorizations: pgx(x, z) =
∫
pgx(x|c, z)p(c)p(z)dc and

pex(x, z) = pex(z|x)p(x). Specifically, the objective is to

find the Nash equilibrium for the following minimax game:

min
Gx,Ex

max
Dxz

Lxz = E(x̃,z)∼pgx (x,z)

[
logDxz(x̃, z)

]
(1)

+ E(x,z̃)∼pex (x,z)

[
log

(
1−Dxz(x, z̃)

)]
,

where the discriminator Dxz is trained to distinguish pairs

(x̃, z) ∼ pgx(x, z) from those come from pex(x, z), which

helps Gx and Ex to produce high-quality data samples and la-

tent codes. Eq. (1) reaches optimum if and only if pgx(x, z) =
pex(x, z), and we have similar formulation for modality y (see

SM section B)
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To keep the style information (background, color, etc.) to

be fully captured by z, without being entangled with c, here

we introduce the reconstruction losses to z from the generated

data (x̃, ỹ). Assume ẑx ∼ pex(z|x̃) and ẑy ∼ pey (z|ỹ)
denote the latent code reconstructions via (c, z) → x̃ → ẑx
and (c, z) → ỹ → ẑy, respectively. Then our idea can be

formulated as

min
Gx,Gy,Ex,Ey

Rz = Ec,z,x̃,ỹ,ẑx,ẑy

[‖ẑx − z‖2 + ‖ẑy − z‖2
]
.

Intuitively, minimizing Rz yields small ‖Ex(Gx(c1, z)) −
Ex(Gx(c2, z))‖2 and ‖Ey(Gy(c1, z)) − Ey(Gy(c2, z))‖2,

∀c1, c2 ∼ p(c), which indicates z is disentangled from c.

Such a treatment can also be interpreted as applying the

cycle-consistency principle [6] in the latent space. Besides,

z̃x ∼ pex(z|x) and z̃y ∼ pey (z|y) inferred from the observ-

able paired data (x,y) can be used to improve the training of

encoders before Gx and Gy are able to generate high-quality

data pairs (x̃, ỹ), i.e.,

min
Gx,Gy,Ex,Ey

R∗z = Rz + Ex,y,z̃x,z̃y

[‖z̃x − z̃y‖2
]
. (2)

It can be shown that minimizingR∗z w.r.t. the encoders Ex and

Ey will not change the equilibriums of Lxz and Lyz [15].

3.2.2. The pairs of modality and its semantic label

In semi-supervised classification, the goal is to ensure

that the joint distributions characterized by the generator and

the classifier both converge to the empirical joint distribu-

tion. Taking modality x as example, it is required to match

the distributions of joint pairs (x, c) drawn from p1(x, c) =∫
z
pgx(x|c, z)p(c)p(z)dz, p2(x, c) = p(x)pcx(c|x) and

p3(x, c) = p(x, c), respectively. Note that p3(x, c) is simply

the empirical joint distribution. Naively, one can employ two

binary discriminators to distinguish these three kinds of joint

pairs [11]. However, this may result in possibly conflicting

(real vs. fake) assessments. To distinguish these three kinds

of joint pairs consistently, here the discriminator Dxc is im-

plemented as a neural network with 3-way softmax on the top

layer, i.e.,
∑3

k=1 Dxc(x, c)[k] = 1 and Dxc(x, c)[k] ∈ (0, 1),
where Dxc(x, c)[k] is an entry of Dxc(x, c). The minimax

objective is given by

min
Gx,Cx

max
Dxc

Lxc =
3∑

k=1

Epk(x,c)

[
logDxc(x, c)[k]

]
. (3)

Compared with using two binary discriminators, our softmax-

based discriminator can be considered as sharing the param-

eters between two binary discriminators except the top layer,

thus reducing the number of parameters.

Proposition 1. The equilibrium for the minimax objectiveLxc

is achieved if and only if p1(x, c) = p2(x, c) = p3(x, c) with
the optimal discriminator D∗xc(x, c)[k] =

1
3 .

The proof is provided in SM section C. This conclusion

essentially motivates our design for semi-supervised classifi-

cation. However, it turns out to be very difficult to achieve

the desired convergence in practice, because there is little su-

pervision to tell the generator pgx(x|c, z) what c essentially

represents. As a result, Gx might generate low-quality samples

that are not well aligned with their conditions. To address the

issues, we force the classifier pcx(c|x) to reconstruct c in the

latent space by introducing the following regularizer,

min
Gx,Cx

Rxc = Ep3(x,c)[− log pcx(c|x)]
+ Ep1(x,c)[− log pcx(c|x)]. (4)

Intuitively, it aims to minimize the standard classification loss

(i.e., cross-entropy loss) on both real and generated data, thus

assigning the semantic labels to variable c. Once Gx can

generate high-quality samples that respect the label c, the

generated samples (x, c) ∼ p1(x, c) can be reused to augment

the predictive power of Cx, which proves effective in SSL

[10, 15]. Similar strategy is adopted for modality y, and the

adversarial game Lyc and the regularizer Ryc are provided

in SM section D. Since we have a separate classifier for each

modality, we use the classifier fusion strategy to deal with the

classification of multi-modality data. E.g., the predicted label

for two-modality data can be written as: label = softmax(Ox+
Oy), where Ox and Oy are the outputs before softmax layer

of each classifiers, respectively.

3.2.3. The pair of two modalities

Model performance can be improved by introducing an

additional discriminator Dxy to drive p1(x,y), p2(x,y) and

p3(x,y) to concentrate on the empirical distribution p4(x,y),
where p1(x,y), ..., p4(x,y) denote the distributions of joint

pairs (xfake,yfake), (xfake,yreal), (xreal,yfake) and (xreal,yreal),
respectively (see SM section E). Similar to Eq. (3), here Dxy

can be a 4-way softmax-based discriminator, and the minimax

objective is given by

min
G,E,C

max
Dxy

Lxy =
4∑

k=1

Epk(x,y)

[
logDxy(x,y)[k]

]
, (5)

where G = {Gx, Gy}, E = {Ex, Ey} and C = {Cx, Cy}.
Note that the empirical distribution p4(x,y) might be biased

because it is only characterized by the few paired samples.

Fortunately, once Gx and Gy can generate high-quality sam-

ples, we can reuse the generated samples (x,y) ∼ p1(x,y)
to augment the paired samples.

3.2.4. Full objective function

The overall objective of the proposed DSML framework is

min
G,E,C

max
D
LDSML = Lxz + Lyz + Lxc + Lyc + Lxy

+Rxc +Ryc + λR∗z, (6)
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where D = {Dxz, Dyz, Dxc, Dyc, Dxy}. Note that, various

methods have been proposed to improve and stabilize the

training of GAN, such as Wasserstein GAN [16], etc. Our

framework is orthogonal to these methods, which could also

be used to improve the training process.

3.3. Extensions to multiple modalities

The above formulation scales linearly with the number

of modalities. When scaled to n-modalities, it is easy to see

we need n generators/encoders/classifiers. As for Dxy in this

case, we highlight the importance of our softmax-based design.

Specifically, the input of this discriminator is the joint of all

modalities, and we consider the following (n + 2) kinds of

input: 1) all modalities are true, 2) all modalities are fake, and

3) one of the n modalities is fake and all other modalities are

true. Finally the output layer of this discriminator is similar as

a (n+ 2)-way classifier.

Diferences with StarGAN and RadialGAN. StarGAN

[17] proposes a framework for multi-domain translation, where

each domain represents a different attribute/class. However,

without latent space, its single-generator design is not suitable

when there are significant differences between domains. Radi-

alGAN [18] performs data augmentation for multiple datasets

simultaneously through a shared low-dimensional space. But

its shared space is just used to align the distributions of dif-

ferent datasets rather than the multiple modalities of the same

instance. In contrast, our DSML framework focuses on the

semi-supervised classification of multi-modality data and the

imputation of missing modality through the modality-shared

latent space. Therefore, DSML significantly differs from Star-

GAN and RadialGAN w.r.t. architectures and applications.

4. EXPERIMENTS

For all experiments, the latent variables z are drawn from

a N (0, I) distribution, with the dimension set to 100. We

empirically set the regularization parameter λ = 10. The

Adam optimizer [19] with learning rate 0.0002 is used for

optimization. Many details including the network architectures

and additional experiment results are given in the SM.

4.1. Multi-modal semi-supervised classification

We deploy DSML for RGB-D object recognition on the

RGB-D object dataset [20]. This dataset contains 41,877 RGB-

D images capturing 300 objects from 51 categories. We regard

the color and depth images as two different modalities, and

resize them to 64×64 pixels. Next, we interpolate the missing

values in the depth images with the mean of 5×5 nearest val-

ues. Furthermore, we extend the single channel depth images

to three channels with surface normal processing, which is

consistent with [21]. For each of the 10 random splits of train-

ing/test set provided by [20], we randomly labeled 5% samples

(every class has equal number of labels) of the training set, and

remain the rest unlabeled.

We first compared DSML with strong competitors in the

case of complete modalities. All the experiments in Table 1

were repeated 10 times based on the given 10 different train-

ing/test splits, and the average results were reported for com-

parison. For the competitors, we considered the same setups

(network structure, learning rate, etc.) as our DSML to keep

comparisons fair. For unimodal algorithms, we evaluated their

performance on each modality and the concatenation of two

modalities, respectively. We note that the average accuracy

of DSML significantly surpasses the competitors in multi-

modality case. This is because our method can match the joint

distribution of each modality and its labels adversarially, and

the shared latent space can effectively capture the comment

representation of both modality.

Table 1. Comparisons of semi-supervised classification accuracies

(%) on partially labeled RGB-D dataset (without missing modality).
Methods Algorithms RGB Depth RGB-D

Unimodal
baselines

M2 [22] 85.6±1.6 72.0±1.7 86.4±1.6
SDGM [23] 85.8±1.5 75.4±1.7 86.7±1.5
TripleGAN [10] 86.4±1.7 82.9±1.8 87.2±1.8
Δ-GAN [11] 86.5±1.8 82.6±1.9 87.6±1.7

Multi-modal
baselines

CT+SVM [21] - - 83.7±1.3
DCNN [2] - - 89.2±1.3
AMGL [24] - - 86.4±1.5
SMVAE [1] - - 89.5±1.8

Proposed DSML - - 92.2± 1.7

To simulate the doubly semi-supervised setting, we ran-

domly selected a fraction of instances (from both labeled and

unlabeled training data) to be unpaired examples, i.e., they are

described by only one modality. We varied the missing ratio of

depth modality from 0.1 to 0.9 with an interval of 0.2, while no

missing modality in test sets. We compared DSML with SiM-

VAE [1], CycleGAN [6] and Δ-GAN in Fig. 2, where FullData

means DSML with complete modalities. For Δ-GAN, we first

estimated the missing modalities, and then conducted semi-

supervised classification using Δ-GAN again. We measure

the imputation errors (cf. Fig. 2b) using Normalized Mean

Squared Error (NMSE), NMSE = ‖X−X̂‖F
‖X‖F , where X and X̂

are the original and the recovered data matrices, respectively.

‖ · ‖F demotes the Frobenious norm.

(a) Recognition accuracies (b) Imputation errors

Fig. 2. Comparisons with different missing ratios.

From Fig. 2, we see that DSML has been successful even

with a high missing ratio. With missing ration lower than 0.5,

DSML roughly reaches FullData’s performance. Moreover,

the semi-supervised imputation methods DSML and SiMVAE

outperforms the unsupervised imputation methods CycleGAN
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and Δ-GAN when we have few paired data. This demon-

strates that the label information also plays an important role

in missing modality imputation. Except for utilizing label

information, DSML can synthesize arbitrary number of paired

data, which can also boost its performance.

4.2. Missing modality imputation

We evaluate the controllability of DSML in missing modal-

ity imputation tasks based on two publicly available datasets:

(i) MNIST-to-MNIST-transpose [11], where two modalities

are the MNIST images and their corresponding transposed

ones. (ii) ImageNet-EEG [25], where two modalities are

the ImageNet images and the evoked Electroencephalogram

(EEG) signals (see SM for more data descriptions). Further-

more, we selected all images, belonging to the given image

classes, from the ImageNet database as unpaired image data.

All images are resized to 64×64 pixels. We randomly select

90% of the paired data for training, while the rest 10% for test

(on which we impute the images using given EEG data).

Input:

Output:

Input:

Output:

Fig. 3. Modality imputation results. DiscoGAN [26] does not need

paired data, and we use 10% paired samples for Δ-GAN and DSML.

Input 
EEG

samples 

Generated 
images  

Golf ball 
ImageNet class

Pizza 
ImageNet class

Parachute 
ImageNet class

Watch
ImageNet class

Classes 
and styles

Fig. 4. Predicted images from EEG modality by using our DSML.

On both datasets, we assume only the paired samples have

corresponding class labels in training phase. Results are shown

in Figs. 3 and 4. We observe that DSML generally recov-

ers missing modality with higher visual quality and strictly

following the intrinsic semantics. For supporting quantita-

tive evaluation, we use the pre-trained gold-standard classifier

(Inception-v3 [27] for ImageNet-EEG) to classify the imputed

images, and use the labels of test data as ground truth to calcu-

late the accuracy. Results are displayed in Table 2, averaged

over 5 runs with different random data splits. DSML achieves

significantly better performance than Triple GAN and Δ-GAN,

which indicates its effectiveness in controlling the semantics

of imputed modalities.

Table 2. Classification accuracy (%) of the imputed images.

Algorithms
MNIST-to-MNIST-transpose ImageNet-EEG

100 paired 1000 paired All paired 90% paired

DiscoGAN - - 15.00± 0.20 -
Triple GAN 63.79± 0.85 84.93± 1.63 86.70± 1.52 54.85± 1.21
Δ-GAN 83.20± 1.88 88.98± 1.50 93.34± 1.46 66.02± 1.09

DSML 98.67± 1.43 99.02± 1.41 99.23± 1.30 81.24± 0.98

4.3. Cross-modality retrieval

Another important feature of the proposed DSML is that

its latent space can be used for cross-modality retrieval. Since

the latent representation was separated into c (semantic class)

and z (style) two parts, we conduct cross-modality retrieval

on ImageNet-EEG dataset by considering these two aspects.

Specifically, for each class, we randomly select 5 EEG samples

from the test set as queries. For each selected EEG query,

we find its N ∈ {20, 21, ..., 215} nearest neighbors in the

latent space of DSML, and return the corresponding images

of these neighbors. In similarity search, we first match the

label vector c, and then perform ranking w.r.t. z based on

Euclidean distance for samples with matched c, and finally

perform ranking w.r.t. z for samples with unmatched c. Fig.

5 shows the results, where mean average precision (mAP)

computes the area under the entire precision-recall curve and

evaluates the overall retrieval performance. When evaluating

these metrics, the number of ground truth neighbors is set to

100. The baseline method is that: given an EEG query, we first

find its nearest neighbor in the paired EEG dataset, and then

perform image retrieval based on the corresponding image

representation of that nearest neighbor EEG instance.

(a) precision-recall curves (b) mean average precision

Fig. 5. Comparison of different cross-modal retrieval methods on

the ImageNet-EEG dataset. Results were averaged over six subjects.

It is clear that three joint distribution matching methods

(DSML, ALICE [9] and Δ-GAN) consistently outperform

the baseline method. Further, DSML beats state-of-the-art

methods ALICE and Δ-GAN. We ascribe this to the fact that

DSML can synthesize arbitrary number of paired data based

on the shared latent space, which contributes to the learning of

modality mappings. Finally, the considered competitors can

only perform similarity search in original high-dimensional

space, which is inefficient. A natural advantage of DSML is its

ability to conduct cross-modality retrieval in the latent space,

which reduces the computational complexity effectively.
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5. CONCLUSION

We focus on the issues of incomplete multi-modal learning

in a doubly semi-supervised setting, where both labels and

modalities are incomplete. The proposed DSML is a new

framework for multi-modal jointly adversarial learning. The

disentangled latent space allows DSML to accurately control

the semantics of imputed modalities and synthesize arbitrary

number of samples with complete labels and modalities to

augment the training set. Experimental results demonstrated

the superiorities of our framework over many state-of-the-art

competitors.
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