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Abstract. Brain signal-based affective computing has recently drawn
considerable attention due to its potential widespread applications. Most
existing efforts exploit emotion similarities or brain region similarities to
learn emotion representations. However, the relationships between emo-
tions and brain regions are not explicitly incorporated into the represen-
tation learning process. Consequently, the learned representations may
not be informative enough to benefit downstream tasks, e.g., emotion
decoding. In this work, we propose a novel neural decoding framework,
Graph Emotion Decoding (GED), which integrates the relationships be-
tween emotions and brain regions via a bipartite graph structure into
the neural decoding process. Further analysis shows that exploiting such
relationships helps learn better representations, verifying the rationality
and effectiveness of GED. Comprehensive experiments on visually evoked
emotion datasets demonstrate the superiority of our model1.

Keywords: Neural decoding · Graph neural networks · Brain · Emotion.

1 Introduction

Human emotions are complex mental states closely linked to the brain’s re-
sponses to our diverse subjective experiences. Generally, emotions can be per-
ceived in various ways, such as visual signals [5], audio signals [4], physiological
signals [10], or functional neuroimaging techniques [16]. Since functional mag-
netic resonance imaging (fMRI) has a high spatial resolution and allows a direct,
comprehensive assessment of the functions of individual brain regions, it is widely
used to explore the relationships between emotions and brain regions.

Recently, Horikawa et al. [8] exploited linear regression to design a neural en-
coding and decoding model (Fig. 1), building a bridge between emotional expe-
riences and the corresponding brain fMRI responses. The emotional experiences
1 The code is publicly available at https://github.com/zhongyu1998/GED.

https://github.com/zhongyu1998/GED
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Fig. 1. Encoding and decoding visually
evoked emotional responses in fMRI.
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Fig. 2. A toy case of an emotion-brain bipar-
tite graph and the connectivity information
captured by embedding propagation layers.

are evoked by videos, and each video was previously annotated by multiple raters
using 34 emotion categories (e.g., joy, fear, and sadness; multi-label). As shown
in Fig. 1, the decoding process aims to predict scores of individual emotions for
presented videos from fMRI recordings, and the encoding process aims to predict
responses of individual voxels for presented videos from emotion scores.

Although Horikawa et al. [8] make great progress in emotion understanding,
their linear regression model processes emotions independently and thus ignores
their interconnections. A psychoevolutionary theory proposed by Plutchik [17]
shows that different emotions are interrelated. For example, “amusement” is
closer to “joy” and “satisfaction” than “horror” and “sadness”. Thus, in multi-
label emotion classification tasks, emotions with high correlations tend to be la-
beled together. A pioneering work [21] exploits Graph Neural Networks (GNNs)
to model the dependencies between different emotions, and similarly, we can
improve the emotion decoding tasks by incorporating such emotion correlations.

In addition, since we use the brain responses to decode emotions, it is intu-
itive to exploit the associations between different brain regions to promote our
emotion decoding tasks. For example, previous studies [12,16] demonstrate that
the perception of aversive emotions (e.g., fear, anxiety) is processed in similar
brain regions, such as the insula, amygdala, and medial thalamus. Accordingly,
in fMRI-based emotion classification tasks, we can leverage the functional con-
nectivity to analyze the associations between brain regions and construct brain
networks [1]. In this way, different emotion categories correspond to different
brain networks with more distinguishable graph topological properties and graph
structural features. Several latest advances [3,13,15,22] apply similar ideas and
achieve remarkable results in analyzing brain diseases and neurological disorders.

Despite their effectiveness, these approaches are insufficient to learn satisfac-
tory emotion representations (or embeddings) for downstream emotion decoding
tasks. The primary reason is that only the emotion similarities (i.e., correlations
between different emotions) or brain region similarities (i.e., associations be-
tween different brain regions) are considered in the learning process. However,
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the embedding function lacks the explicit modeling of the relationships between
emotions and brain regions. As a result, the learned embeddings may not be
informative enough to benefit emotion decoding.

In this work, we propose to integrate the relationships between emotions
and brain regions into the representation learning process. Inspired by Wang et
al. [18], we construct an emotion-brain bipartite graph (as shown in Fig. 2(a))
to model such relationships and design a GNN to propagate embeddings recur-
sively on this graph. In this way, each embedding propagation layer in the GNN
can refine the embedding of an emotion (or a brain region) by aggregating the
embeddings of its connected brain regions (or emotions). After stacking multi-
ple (k) embedding propagation layers, the high-order (kth-order) connectivity
information (as shown in Fig. 2(b)) can be captured by the learning process and
incorporated into the embeddings.

Next, we explain how decoding tasks benefit from high-order connectivity in-
formation with a toy case illustrated in Fig. 2(a), where the green and blue nodes
denote emotions and brain regions, respectively. Suppose we are interested in an
emotion e1 and aim to decode for e1. Stacking one embedding propagation layer
helps e1 learn from its 1-hop neighbors b1, b2, and b3 (immediately connected
brain regions). And stacking two layers helps e1 capture the information from its
2-hop neighbors e2 and e3 (potentially related emotions, since they have com-
mon neighbors b2 and b3, respectively). Now the emotion correlations between
e1 and e2 (e3) are captured, and the associations between different brain regions
can be captured in a similar way. After stacking multiple layers, e1 can capture
most of the high-order connectivity information and perceive most nodes in the
graph, thereby aggregating their embeddings and integrating the relationships
between them into the neural decoding process. For example, after stacking four
layers, all the emotions and brain regions have been perceived by e1, and their
information has been passed along the connected path, as shown in Fig. 2(b).
Although we mainly take this idea for decoding tasks in this work, it can be
similarly applied to encoding tasks, which is left for future work.

Our contributions can be summarized into three folds:

• We highlight the significance of exploiting the relationships between emo-
tions and brain regions in neural decoding.

• We propose a novel neural decoding framework, Graph Emotion Decoding
(GED), which builds a bridge between emotions and brain regions, and cap-
tures their relationships by performing embedding propagation.

• We verify the rationality and effectiveness of our approach on visually evoked
emotion datasets. Experimental results demonstrate the superiority of GED.

2 Methodology

In this section, we present our proposed approach in detail. The pipeline of our
approach is illustrated in Fig. 3. We first construct an emotion-brain bipartite
graph with the fMRI recordings and emotion scores on the training set and ini-
tialize embeddings for all nodes. Then we stack multiple embedding propagation
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Fig. 3. The pipeline of Graph Emotion Decoding (GED). The component below illus-
trates how to propagate the information and predict an accurate emotion score se1 by
stacking multiple embedding propagation layers. Each colored panel shows the results
of k iterations of propagation starting from node e1, where the colored nodes indicate
that their information has been received by e1, and the red arrows show the direction
of information flow when aggregating neighborhoods from the previous layer.

layers and refine the embeddings by integrating the relationships between nodes
on the graph. At last, the refined emotion embeddings are fed into downstream
emotion decoding tasks to predict the decoded emotion scores.

2.1 Constructing an Emotion-Brain Bipartite Graph

Let G = (U, V,E) denote an emotion-brain bipartite graph. The vertex set of
G consists of two disjoint subsets U and V , where U denotes the emotion set,
and V denotes the brain region set. We use each vertex in U and V to represent
an emotion category and a brain region, respectively. There are 34 emotion
categories in our decoding task, and a total of 370 brain regions consisting of
360 cortical areas (180 cortical areas per hemisphere; defined by the Human
Connectome Project (HCP) [6]) and 10 subcortical areas. The complete list of 34
emotion categories and 10 subcortical areas is presented in Table 2 of Appendix.

Lindquist et al. [14] find that when participants are experiencing or perceiv-
ing an emotion category, the activation in corresponding brain regions is greater
than in a neutral control state. This evidence guides us to construct the edge
set E in G as follows. First, on the training set, we classify each stimulus into
the corresponding emotion category set according to its highest emotion score.
If a stimulus gets the highest score in multiple emotion categories, it will be
assigned to these sets simultaneously. Then, for each stimulus in each emotion
category set, we sort brain regions in descending order by the average response
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of each brain region and select l brain regions corresponding to the top l average
responses. Next, the potentially active brain regions for each emotion category
are selected by voting. More specifically, the brain regions that got the top m
votes among all stimuli in an emotion category set are taken as the potentially
active ones for this emotion category. Thus we construct m edges for each emo-
tion vertex, and each edge connects this emotion category (a vertex in U) to one
of the potentially active brain regions (vertices in V ). In our experiments, we
treat l and m as hyper-parameters and select them based on the performance in
one random training fold, see Fig. 4 in Appendix for details.

2.2 Initializing Embeddings for Emotions and Brain Regions

Our emotion decoding task takes the voxels in brain regions of interest from
fMRI recordings as the initial input. Since each brain region contains a different
number of voxels, we use the average pooling to reduce the feature size of each
brain region to the same dimension. Specifically, each brain region is surrounded
by a cuboid and divided into n equal parts along each axis of the cuboid. The
responses of all voxels in each sub-cuboid are then averaged, and the average
result is taken as the value of this sub-cuboid. If there are no voxels in a sub-
cuboid, we simply take 0 as the value of this sub-cuboid. As a result, we initialize
an embedding vector h

(0)
b ∈ Rd for each brain region b, where d = n × n × n

denotes the embedding size. For each emotion e, we use Glorot initialization [7]
to initialize its embedding vector h(0)

e ∈ Rd, which can be refined by propagating
embeddings on graph G and optimized in an end-to-end manner.

2.3 Embedding Propagation Layers

In general, GNNs follow a neighborhood aggregation strategy. They iteratively
update the embedding of a node by aggregating embeddings of its neighbors, and
each layer increases the size of the influence distribution by aggregating neighbor-
hoods from the previous layer [20]. After k iterations of aggregation (stacking k
layers), a node’s embedding captures the structural information within its k-hop
network neighborhood [19]. Hence, we can leverage GNNs to perform embedding
propagation between the interrelated emotions and brain regions, thus refining
their embeddings by integrating the relationships into the learning process.

For an emotion e and each of its connected brain regions u ∈ Ne, where Ne

denotes the set of 1-hop neighbors of emotion e in graph G, we take their embed-
dings he and hu as the information to be propagated. Specifically, we consider
e’s own information he to retain its original features, and aggregate the infor-
mation hu along each edge (e, u) from e’s neighborhood to refine e’s embedding.
We simply take the element-wise mean of the vectors in {he} ∪ {hu, u ∈ Ne} as
our aggregation mechanism, commonly known as the “MEAN aggregator” [19].
Formally, the kth embedding propagation layer is:

a(k)
e = MEAN

({
h(k−1)

e

}
∪
{
h(k−1)

u , u ∈ Ne

})
, h(k)

e = ReLU
(
W (k) · a(k)

e

)
(1)



6 Z. Huang et al.

where h
(k)
e ∈ Rdk is the hidden representation (embedding vector) of emotion e

at the kth iteration/layer, and dk is the embedding size of layer k with d0 = d;
h
(k−1)
e ,h

(k−1)
u ∈ Rdk−1 are embedding vectors of emotion e and brain region u

generated from the previous layer, respectively; W (k) ∈ Rdk×dk−1 is a learnable
weight matrix. And for a brain region b, we can similarly obtain the embed-
ding by aggregating information from its connected emotions. In this way, each
embedding propagation layer can explicitly exploit the first-order connectivity
information between emotions and brain regions. After stacking multiple embed-
ding propagation layers, the high-order connectivity information can be captured
by the representation learning process and incorporated into the embeddings.

After propagating with K layers, we obtain a set of intermediate embeddings
{h(0)

e ,h
(1)
e , · · · ,h(K)

e } from different layers for emotion e. Since the embeddings
obtained in different layers reflect different connectivity information, they can
flexibly leverage different neighborhood ranges to learn better structure-aware
representations [20]. Thus, we combine these intermediate embeddings together
to get the decoded emotion score se for emotion e, formulated as follows:

se = σ

(
K∑

k=0

vT
(k)h

(k)
e

)
(2)

where v(k) ∈ Rdk denotes a learnable scoring vector for embeddings obtained
in the kth iteration/layer, shared by all emotions; σ is the logistic sigmoid non-
linearity, used to convert the result

∑
k v

T
(k)h

(k)
e into an emotion score se ∈ [0, 1]

(also can be interpreted as the probability of the existence of emotion e).

3 Experiments

3.1 Dataset Description

We conduct experiments on visually evoked emotion datasets [8], which provide
the measured fMRI responses to 2,196 visual stimuli (2,181 unique emotionally
evocative short videos + 15 duplicates). For visual stimuli, the videos were orig-
inally collected by Cowen and Keltner [2]. Each video was previously annotated
by a wide range of raters using self-report scales of 34 emotion categories (e.g.,
joy, fear, and sadness; multi-label). The human raters used binarized scores to
report whether these emotions exist in each video, and the final emotion category
scores were averaged among these raters, ranging between 0 and 1. The value
of each emotion category score can be viewed as the intensity of this emotion.
For fMRI responses, we use the fMRI data preprocessed by Horikawa et al. [8],
where the value of each voxel represents the activity information of this voxel.

3.2 Experimental Setup

In general, there are two manners for emotion decoding, i.e., predict the emotion
categories in a multi-label manner or predict the emotion scores in a regressive
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manner. Since human emotions are subjective mental states, different people
usually have different feelings for the same stimulus. Even the same person may
have different feelings for the same stimulus at different time periods. In view of
these facts, we believe that it is more appropriate to predict the emotion score
than the existence of a specific emotion. Accordingly, our experiments take the
emotion scores obtained in Section 3.1 as the prediction targets and transform
the multi-label classification task into a more rigorous regression task.

Evaluation Protocol. We perform decoding analyses between the fMRI re-
sponses to each visual stimulus and its emotion scores in a cross-validated
manner. Specifically, we perform the 10-fold cross-validation on 2,196 pairs of
{fMRI recordings, emotion scores} for each subject (a within-subject design). In
each trial of 10-fold cross-validation, we use 1,976 random pairs (9 folds) as the
training set to train a model and then take the remaining 220 pairs (1 fold)
as the validation set (a.k.a. testing set) to evaluate the model. We repeat this
process 10 times and use each fold as the testing set exactly once.

Evaluation Metric. We take the Mean Absolute Error (MAE) as our eval-
uation metric, which is widely used in regression tasks, defined as follows. Let
yi ∈ Rc and ŷi ∈ Rc denote the true and predicted (or decoded) emotion cate-
gory scores for stimulus i, respectively, where c is the number of emotion cate-
gories. Let yij and ŷij denote the true and predicted score of a specific emotion
ej in stimulus i, respectively, where ŷij = sej is calculated by Eq. (2). The MAE
value (a.k.a. L1-norm) α is calculated as:

α =
1

N

N∑
i=1

c∑
j=1

|yij − ŷij | (3)

where N denotes the number of stimuli.

Baselines. We compare our proposed model GED with several state-of-the-art
baselines: Fully-connected Neural Network (FNN), Graph Convolutional Net-
work (GCN) [11], BrainNetCNN [9], and BrainGNN [13]. FNN directly takes
fMRI recordings as the input, mainly used to verify the effectiveness of other
graph-based models. GCN takes a random graph as the input graph to verify
the rationality of the graph construction in Section 2.1. The last two are state-
of-the-art brain-network-based models, which are treated as our main baselines.

3.3 Performance Comparison

Table 1 presents a summary of the emotion decoding results. All models are
evaluated using the standard 10-fold cross-validation procedure. We report the
average and standard deviation of testing MAEs across the 10 folds (or 10 tri-
als). The results show that our model achieves outstanding performance and
outperforms baselines by a considerable margin in most subjects. Furthermore,
we have the following observations and conclusions:
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Table 1. Emotion decoding results (MAE, lower is better) in five distinct subjects.

Model Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

FNN 2.053 ± 0.059 2.071 ± 0.079 2.078 ± 0.086 2.039 ± 0.065 2.065 ± 0.078
GCN 1.817 ± 0.036 1.822 ± 0.028 1.819 ± 0.032 1.821 ± 0.028 1.818 ± 0.034
BrainNetCNN 1.723 ± 0.031 1.719 ± 0.034 1.736 ± 0.032 1.740 ± 0.031 1.741 ± 0.029
BrainGNN 1.678 ± 0.027 1.675 ± 0.026 1.684 ± 0.029 1.693 ± 0.026 1.681 ± 0.024

GED-1 2.010 ± 0.087 1.992 ± 0.076 2.014 ± 0.073 1.950 ± 0.092 2.010 ± 0.099
GED-2 1.755 ± 0.024 1.753 ± 0.028 1.769 ± 0.022 1.775 ± 0.022 1.778 ± 0.023
GED-3 1.675 ± 0.028 1.673 ± 0.029 1.684 ± 0.024 1.694 ± 0.027 1.698 ± 0.024
GED-4 1.643 ± 0.028 1.647 ± 0.029 1.659 ± 0.026 1.668 ± 0.028 1.674 ± 0.027

• FNN shows poor performance in all subjects, which indicates that tradi-
tional neural networks are insufficient to capture the complex relationships
between emotions and brain regions. Other graph-based models consistently
outperform FNN in all cases, demonstrating the importance of incorporating
the relationships into the learning process.

• The brain-network-based models and GED all surpass GCN, which takes
a random graph as the input graph. This fact highlights the importance of
graph construction and verifies the rationality of our construction in Sec. 2.1.

• GED-4 significantly outperforms brain-network-based models in most cases
(except Subject 5). This justifies the rationality of the analysis in Section 1
and the effectiveness of our model. However, GED performs on par with
BrainGNN in Subject 5. The reason might be that Subject 5 was reluctant
to use the custom-molded bite bar to fix his head, thus causing some potential
head movements during fMRI scanning (see [8] for details). As a result, the
head movements introduce noise to the collected fMRI responses and further
affect the graph construction, leading to the sub-optimal performance.

3.4 Ablation Study

As the embedding propagation layer plays a pivotal role in GED, we perform ab-
lation studies on GED to investigate how the layer size affects the performance.
Specifically, we search the layer size in {1, 2, 3, 4} and report the correspond-
ing results in Table 1, where the suffix “-k” indicates the number of layers is
k. As shown in Table 1, GED-1 exhibits better performance than FNN in all
cases. Such improvement verifies that exploiting the relationships between emo-
tions and brain regions can help learn better representations, thereby enhancing
the decoding performance. After stacking two layers, GED can implicitly ex-
ploit both the emotion correlations and the associations between brain regions
(as explained in Section 1), and thus GED-2 achieves substantial improvement
over GED-1. Moreover, GED-2, GED-3, and GED-4 are consistently superior to
GED-1 in all cases, and their performance gradually improves with the increase
of layers. These facts justify the effectiveness of stacking multiple embedding
propagation layers and empirically show that the high-order connectivity infor-
mation can significantly facilitate the emotion decoding tasks.
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4 Conclusion and Future Work

In this work, we propose a novel neural decoding framework, Graph Emotion
Decoding (GED), which integrates the relationships between emotions and brain
regions via a bipartite graph structure into the neural decoding process. Further
analysis verifies the rationality and effectiveness of GED. In conclusion, we take
an important step forward to better understand human emotions by using graph-
based neural decoding models. It would be interesting to apply the proposed
idea to the neural encoding process, and we leave the explorations of emotion
encoding tasks for future work.

Acknowledgements. This work was supported in part by the National Nat-
ural Science Foundation of China (61976209, 62020106015), CAS International
Collaboration Key Project (173211KYSB20190024), and Strategic Priority Re-
search Program of CAS (XDB32040000).

References

1. Bullmore, E., Sporns, O.: Complex brain networks: Graph theoretical analysis of
structural and functional systems. Nature Reviews Neuroscience 10(3), 186–198
(2009)

2. Cowen, A.S., Keltner, D.: Self-report captures 27 distinct categories of emotion
bridged by continuous gradients. Proceedings of the National Academy of Sciences
114(38), E7900–E7909 (2017)

3. Cui, H., Dai, W., Zhu, Y., Li, X., He, L., Yang, C.: BrainNNExplainer: An inter-
pretable graph neural network framework for brain network based disease analysis.
In: ICML 2021 Workshop on Interpretable Machine Learning in Healthcare (2021)

4. Dellaert, F., Polzin, T., Waibel, A.: Recognizing emotion in speech. In: Proceeding
of the 4th International Conference on Spoken Language Processing. vol. 3, pp.
1970–1973 (1996)

5. Ekman, P.: Facial expression and emotion. American Psychologist 48(4), 384
(1993)

6. Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub,
E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., et al.: A multi-
modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)

7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics. pp. 249–256 (2010)

8. Horikawa, T., Cowen, A.S., Keltner, D., Kamitani, Y.: The neural representation
of visually evoked emotion is high-dimensional, categorical, and distributed across
transmodal brain regions. iScience 23(5), 101060 (2020)

9. Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., Grunau, R.E.,
Zwicker, J.G., Hamarneh, G.: BrainNetCNN: Convolutional neural networks for
brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–
1049 (2017)

10. Kim, J., André, E.: Emotion recognition based on physiological changes in music
listening. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(12),
2067–2083 (2008)



10 Z. Huang et al.

11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: Proceedings of the 5th International Conference on Learning Repre-
sentations (2017)

12. von Leupoldt, A., Sommer, T., Kegat, S., Baumann, H.J., Klose, H., Dahme, B.,
Büchel, C.: Dyspnea and pain share emotion-related brain network. NeuroImage
48(1), 200–206 (2009)

13. Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D.,
Staib, L.H., Ventola, P., Duncan, J.S.: BrainGNN: Interpretable brain graph neural
network for fMRI analysis. Medical Image Analysis 74, 102233 (2021)

14. Lindquist, K.A., Wager, T.D., Kober, H., Bliss-Moreau, E., Barrett, L.F.: The brain
basis of emotion: A meta-analytic review. The Behavioral and Brain Sciences 35,
121–202 (2012)

15. Ma, J., Zhu, X., Yang, D., Chen, J., Wu, G.: Attention-guided deep graph neural
network for longitudinal alzheimer’s disease analysis. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 387–396
(2020)

16. Phan, K.L., Wager, T., Taylor, S.F., Liberzon, I.: Functional neuroanatomy of emo-
tion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage
16(2), 331–348 (2002)

17. Plutchik, R.: A general psychoevolutionary theory of emotion. In: Theories of Emo-
tion, pp. 3–33. Elsevier (1980)

18. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval. pp. 165–174 (2019)

19. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: Proceedings of the 7th International Conference on Learning Representations
(2019)

20. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representa-
tion learning on graphs with jumping knowledge networks. In: Proceedings of the
35th International Conference on Machine Learning. pp. 5453–5462 (2018)

21. Xu, P., Liu, Z., Winata, G.I., Lin, Z., Fung, P.: EmoGraph: Capturing emotion
correlations using graph networks. arXiv preprint arXiv:2008.09378 (2020)

22. Zhang, Y., Tetrel, L., Thirion, B., Bellec, P.: Functional annotation of human
cognitive states using deep graph convolution. NeuroImage 231, 117847 (2021)


	Graph Emotion Decoding from Visually Evoked Neural Responses

