
TRANSFERING LOW-FREQUENCY FEATURES FOR DOMAIN ADAPTATION

Zhaowen Li1,2, Xu Zhao1, Chaoyang Zhao1,3, Ming Tang1 and Jinqiao Wang1,2

1 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, China

2 School of Artificial Intelligence, University of Chinese Academy of Sciences,
Beijing, China

3 Development Research Institute of Guangzhou Smart City
{zhaowen.li,xu.zhao,chaoyang.zhao,tangm,jqwang}@nlpr.ia.ac.cn

ABSTRACT

Previous unsupervised domain adaptation methods did not
handle the cross-domain problem from the perspective of fre-
quency for computer vision. The images or feature maps of
different domains can be decomposed into the low-frequency
component and high-frequency component. This paper pro-
poses the assumption that low-frequency information is more
domain-invariant while the high-frequency information con-
tains domain-related information. Hence, we introduce an
approach, named low-frequency module (LFM), to extract
domain-invariant feature representations. The LFM is con-
structed with the digital Gaussian low-pass filter. Our method
is easy to implement and introduces no extra hyperparame-
ter. We design two effective ways to utilize the LFM for do-
main adaptation, and our method is complementary to other
existing methods and formulated as a plug-and-play unit that
can be combined with these methods. Experimental results
demonstrate that our LFM outperforms state-of-the-art meth-
ods for various computer vision tasks, including image clas-
sification and object detection.

Index Terms— domain adaptation, unsupervised, fre-
quency learning

1. INTRODUCTION

Unsupervised domain adaptation (UDA) methods can trans-
fer a learner for the target domain data while manual annota-
tions are only provided in source domain data. The principal
idea of UDA methods is to mitigate the domain shift in data
distributions. For the UDA image classification task, some
previous work [1, 2] minimize the domain-discrepancy to ob-
tain domain-invariant feature representations in convolutional
neural networks (CNNs), where the domain-discrepancy is
measured by Maximum Mean Discrepancy (MMD) [1] or
Joint MMD (JMMD) [2]. Another popular idea for UDA
is to adopt an adversarial learning method to obtain domain-
invariant features. RevGrad [3] is a representative of these

adversarial learning methods by back-propagating the reverse
gradients of the domain classifier. These methods mainly fo-
cus on learning a global domain shift, aligning the global
source and target distributions without considering the cat-
egory information in both domains. Recently, some re-
searchers considered that making use of pseudo label can help
the network to better align domain-invariant features. For ex-
ample, based on MMD, CAN [4] proposed a contrastive adap-
tation network, which optimizes contrastive domain discrep-
ancy explicitly modeling the intra-class domain discrepancy
and the inter-class domain discrepancy. Additionally, there
are some methods that are specifically designed for object
detection. The authors of [5] presented two domain adap-
tation components, image-level adaptation and instance-level
adaptation. They adopt domain adversarial approach using
a discriminator for each component. The similar motivation
was used to align feature representation across domains on
enlarged positive regions [6]. Mean Teacher with object re-
lations [7] was also considered, which addressed the adaptive
detection from the viewpoint of graph-structured consistency.
However, the above methods do not handle the domain adap-
tation problem from the perspective of frequency.

It is well known [8, 9, 10] that a single natural image or
feature map can be decomposed into a low-frequency com-
ponent that describes the smoothly changing structure, and a
high-frequency component that describes the rapidly chang-
ing fine details.This paper proposes an assumption that the
low-frequency information of the same class in different do-
mains has domain-invariant characteristics. To better present
this statement, in Fig. 1, we visualize the distribution of orig-
inal image data and low-frequency data obtained from origi-
nal data processed by the digital Gaussian low-pass filter [9].
Fig. 1 illustrates the data distributions of the W domain and
A domain of the Office-31 dataset. The W domain and A do-
main consist of the images of the same classes. On the left
side of Fig. 1, the domain-discrepancy of the two distinct do-
mains using the whole-frequency information is large. In con-
trast, on the right, the domain-discrepancy of the two domains



Fig. 1: t-SNE [14] visualization of the distribution of original
image data and low-frequency data in the Amazon (A) do-
main and Webcam (W) domain of the Office-31 dataset [15].
Left: t-SNE of original image data. Right: Low-frequency
data. The A domain consists of 2817 images (yellow point)
and W domain consists of 795 images (red point).

utilizing the low-frequency information is reduced. Hence, it
is reasonable to assume that the low-frequency information
is more domain-invariant than the whole-frequency informa-
tion contained in datasets. Meanwhile, the high-frequency
information suppressed by the digital Gaussian low-pass fil-
ter contains domain-related information and easily affects the
alignment of the data distribution.

To improve the generalization performance of the net-
work, in this paper, we propose a simple yet effective method
called low-frequency module (LFM). The LFM is constructed
with the digital Gaussian low-pass filter. It can enhance the
generalization performance of models by utilizing the inher-
ent low-frequency information of feature maps. This method
is straightforward to implement, and introduces no extra hy-
perparameter. Experimental results on various benchmarks
demonstrate the effectiveness of our method. To summarize,
our contributions are as follows:

1. We propose a novel domain adaptation technique called
LFM. We show that the LFM can help CNNs achieve
better generalization performance by utilizing the in-
herent low-frequency information of feature maps in
various domain adaptation tasks.

2. We propose two different ways to utilize the LFM and
validate the effectiveness of our method on standard
benchmarks for different tasks, such as image classi-
fication and object detection.

3. Our method achieves state-of-the-art performance on
VisDA-2017 [11] and Cityscapes [12] to FoggyCi-
tyscapes [13].

2. APPROACH

In this section, we first introduce the domain adaptation prob-
lem and provide a discussion about the characteristics of the
low-frequency information. Then, we reveal the relation-
ship between the domain adaptation problem and the low-

frequency information. Finally, we analyze our proposed
LFM and how to use the LFM.

2.1. Domain Adaptation

The domain adaptation problem can be viewed as aligning
part or global feature representations in the learned feature
extractor. For example, we consider classification tasks where
X is the input space and Y is the set of possible labels. In fact,
we have two different distributions over X × Y , called the
source and the target domains. An UDA learning algorithm
is provided with labeled samples drawn from the source do-
main, and unlabeled samples drawn from the target domain.
The purpose of the UDA algorithm is to make the samples of
the same annotation in different domains eventually outputs
similar feature representations eventually.

Researchers [1, 2, 4] take the source-finetune method as
the basic method of domain adaptation. The source-finetune
makes the CNN model directly train on the source domain
data and predict on the target domain data. Taking the clas-
sification task with ResNet [16] as an example, at training
time, the optimization process is given with Eq (1), where
θ̂f , θ̂g are optimized parameters trained on the source do-
main XS × YS . The θg represents the parameters of linear
classification layer g(·), and the θf is the parameter of CNN
encoder f(·). The the global average pooling layer is p(·),
and L(·) is the cross entropy loss.

θ̂f , θ̂g = argminθf ,θg [L (g (p (f(XS , θf ), θg)) , YS)] (1)

The existing UDA methods adopt various methods to
make the parameters θ̂f , θ̂g adapt to the target domain. How-
ever, these methods do not deal with the domain adaptation
from the perspective of frequency.

2.2. Low-frequency Information

According to [8, 9, 10], a single natural image or feature
map can be decomposed into a low-frequency component that
describes the the structure information and a high-frequency
component that describes the rapidly changing fine details and
noise. We propose an assumption that that the low-frequency
components are the key information for cross-domain tasks
for the following reasons: 1) Inspired by the idea above, the
low-frequency information of the image or feature map re-
flects shape information. Although the overall data distri-
bution is different in different domains, the same objects of
the same class label have similar shapes. We hypothesize
that the shape information can represent the intrinsic char-
acteristics of the objects. 2) In addition, from the perspective
of the signal process, the low-frequency information repre-
sents the main components of a two-dimensional signal [8].
Utilizing the low-frequency information does not change the
main components. 3) Moreover, as shown in Fig. 1, we find
that the domain-discrepancy between the W and A domain



Fig. 2: The processing procedure of LFM. The input spatial
feature map obtained by the neural network (NN) is converted
to the distribution of frequency by Discrete Fourier Transform
(DFT) [9].

is reduced by the digital Gaussian low-pass filter. We con-
clude that the low-frequency information is more domain-
invariant than the whole information. The low-pass filter
passes the low-frequency information while suppressing the
high-frequency information. Hence, we argue that the sup-
pressed high-frequency information contains domain-related
information. Simultaneously, we argue that part of the rea-
son for the domain-discrepancy is the significant differences
in high-frequency information between different domains. 4)
Notably, the experimental results also demonstrate our as-
sumption in Experiment 3.2.1.

In conclusion, it is reasonable to assume that the low-
frequency information is more domain-invariant and suitable
for domain adaptation tasks while high-frequency informa-
tion may harm the generalization performance and stability
of the model.

2.3. The Low-Frequency Module for Domain Adaptation

In this section, we propose a low-frequency module (LFM) to
help the network align low-frequency feature representations.

2.3.1. The LFM

The LFM is essentially a digital low-pass filter. The princi-
ple of the low-pass filter is to pass the low-frequency infor-
mation while suppressing the high-frequency information for
two-dimensional discrete signal [9]. In this paper, the digi-
tal low-pass filter adopts the Gaussian low-pass filter [9] with
kernel m × m. Because the Gaussian low-pass filter has no
ringing [9], it makes the quality of extracted low-frequency
information of the whole information better than other low-
pass filters, such as the ideal low-pass filter [9].

As shown in Fig. 2, the spatial feature map obtained by
neural network (NN) is converted to the distribution of fre-
quency by DFT. Assuming the distribution of input feature
map in the frequency domain, the high-frequency information
of the output is filtered out when the input passes through the
Gaussian low-pass filter. Finally, the output feature map is ob-
tained by Inverse Discrete Fourier Transform (IDFT). Hence,
the high-frequency information is suppressed when the value
of frequency exceeds the cut-off frequency.

In order to reduce the calculation, we convert the Gaus-
sian low-pass filter from the frequency domain to the spatial

Fig. 3: An overview of the IE domain adaptation model. IE:
Insert the end of network. LFM: Low-frequency module.

Fig. 4: Visualization of the normal and RSL-equipped bottle-
neck. Left consists of 3 × 3 strided-convolutions and 1 × 1
convolutions. Right consists of the RSL and 1 × 1 convolu-
tion structure. RSL: Replace strided-convolution layers.

domain. The function of the digital spatial Gaussian low-
pass filter G(·) is defined as Eq (2), where −⌊m/2⌋ ≤ x ≤
⌊m/2⌋, −⌊m/2⌋ ≤ y ≤ ⌊m/2⌋.

G (x, y) =
1

2π⌊m/2⌋2
e−(x2+y2)/(2⌊m/2⌋2) (2)

2.3.2. The way to utilize the LFM

The LFM operates on the feature maps to obtain the low-
frequency information of feature maps. There are two ways
to utilize the LFM in the network:
Insert the end of network (IE). We insert the LFM before the
global average pooling layer to extract low-frequency infor-
mation contained in feature maps as shown in Fig 3. This de-
sign can ensure that the feature maps processed by the linear
classification layer are the low-frequency information. The IE
optimization method of the network is given with Eq (3,4).

θ̂f , θ̂g = argmin F (θf , θg) (3)

F (θf , θg) = L (g (p (LFM (f (XS , θf ) , θg))) , YS) (4)

Replace strided-convolution layers (RSL). The down-
sampling operation of CNNs can extract low-frequency in-
formation because the operation can result in reducing the
size of feature map. Nevertheless, it is unstable and prone
to lose crucial information since the operation does not obey
the Nyquist Theorem according to [17]. Hence, we replace
strided-convolution layers with the LFM in the encoder net-
work as shown in Fig 4. Different from strided-convolution,
the LFM performs the low-pass filtering operation on each
input feature map and its parameters are fixed.

2.4. Combined with Other Methods

Different from the existing UDA methods, our method deals
with the domain adaptation problem from the perspective of



Table 1: Results of the different strategies. The mean
accuracy over six tasks on Office-31 is reported based on
ResNet-50 [16]. Our methods are trained with Gaussian
high-pass pre-processing images, Gaussian low-pass pre-
processing images, insert the end of network and replace
strided-convolution layers, respectively.

Dataset High-pass Pre-process Low-pass Pre-process IE RSL Average

Office-31

76.1
✓ 73.2

✓ 78.0
✓ 81.4

✓ 81.6

frequency. Hence, our method is different from other meth-
ods in dealing with problems. Our method is formulated as a
plug-and-play unit that can be used to combine with existing
UDA methods to achieve better generalization performance.
In the Experiments, we apply [4], [18], and [19] to assist our
method, and achieve state-of-the-art performance on multiple
computer vision tasks.

3. EXPERIMENTS

3.1. Experimental Setups

The 3×3 convolution is the current popular structure. Hence,
the m of our LFM sets as 3 by default. To show the effective-
ness of the proposed LFM, we first perform small image clas-
sification experiments for domain adaptation on the Office-
31 [15] dataset to verify our method. On Office-31, similar
to [3, 1], we validate the pairwise domain adaptation perfor-
mance of our method on all six pairs of domains and take
the average accuracy. Then we experiment with a challenging
test-bed for UDA with the domain shift from synthetic data to
real imagery on VisDA-2017 [11]. On VisDA-2017, we fol-
low the full protocol [4] for the training setting but D0 is set as
0.85, unlike the original 1.0. Because D0 represents the clus-
ter limit threshold, our method brings the same classes closer,
and the threshold setting should be stricter. To explore LFM’s
generality further, we also conduct multi-label object detec-
tion experiments from Cityscapes [12] to FoggyCityscapes
[13], and we follow these two settings [19] and [18] and fine-
tune the network for adaptation experiments from Cityscapes
to FoggyCityscapes. All models are trained from scratch on
NVIDIA V100 GPUs with the default data augmentation and
training strategy which are optimized for the vanilla model
and no other tricks are used.

3.2. Ablation Studies

3.2.1. Effect of the different frequency components

The Source-finetune is the baseline method for cross-domain
task. Hence, we first test the result of source-finetune on

Fig. 5: Visualization with t-SNE for different methods. Left:
t-SNE of source-finetune. Right: IE. The input activations
of the last fully-connected layer are used for the computation
of t-SNE. The results are Office-31 task A → D. The same
color represents the same class while different color means
different category.

Office-31 dataset. As shown in the Table 1, the first line shows
the result of baseline method (76.1).

To validate the effect of high-frequency information for
cross-domain problem, we adopt Gaussian high-pass filter-
ing to pre-process the Office-31 datasets. The result reveals
that the high-frequency information of images limits the gen-
eralization ability of the model (from 76.1 to 73.2) in the
second line. It is reasonable that the high-frequency infor-
mation of image data contains domain-related information.
Furthermore, we utilize Gaussian low-pass filtering to pre-
process the Office-31 datasets to verify the effectiveness of
low-frequency information. It can be observed that the result
is better than the source-finetune (from 76.1 to 78.0), which
means the low-frequency information is beneficial to allevi-
ate domain adaptation task. From above results, it proves that
our assumption that the low-frequency information is more
domain-invariant while the high-frequency information con-
tains domain-related information.

3.2.2. Effect of the LFM method

It is noted that we adopt the IE strategy to train models to
further utilize the low-frequency information of the dataset,
as shown in Fig 1. It can be observed that introducing the
IE further improves the adaptation performance and is bet-
ter than the operation of Gaussian low-pass filtering (from
78.0 to 81.4). This phenomenon shows that it is better for
the network to adaptively extract low-frequency features than
the pre-processing dataset. Finally, we also adopt the RSL
strategy to train models, and the result show impressive per-
formance and are sightly better than IE (from 81.4 to 81.6).
The two results demonstrate the effectiveness of our designs.
Meanwhile, we visualize the distribution of learned features
by t-SNE. As shown in Fig. 5, it illustrates a representative
task A → D. Compared to source-finetune, the target feature
representations learned by IE demonstrate higher intra-class
compactness and a much larger inter-class margin. This sug-
gests that utilizing low-frequency information can extract fea-
tures that are invariant to different domains.



3.2.3. Compared with other methods

The LFM method is compared with two existing basic main-
stream methods in the UDA field: RevGrad [3], and DAN
[1], to verify the merit of the proposed LFM. As Table 2
shows, both the IE and RSL methods are better than the
DAN method, and the RevGrad method is slightly better than
the IE and RSL methods. It should be emphasized that our
method alleviates the cross-domain problem from the per-
spective of frequency, and it is different from the existing
methods. Therefore, our method is orthogonal and comple-
mentary to the existing methods. For verifying the conjunc-
tion of our LFM method, we adopt the DAN and RevGrad to
assist our method, respectively.

Firstly, we utilize the DAN method to assist the IE and
the final result is better than the DAN (from 80.4 to 82.3).
Then, we also construct the RSL experiment and its result is
also better than that of DAN (from 80.4 to 82.3). The per-
formance of RSL+DAN is equivalent to that of IE+DAN. Al-
though the performance of IE and RSL is better than that
of DAN, the performance of the combination of the LFM
method and DAN outperforms the single method.

For the RevGrad method, we apply it to assist the IE
method and its performance is better than that of RevGrad
(from 82.2 to 83.1). Similarly, the result of RSL is also better
than the RevGrad (from 82.2 to 83.2). Meanwhile, the result
of RSL+RevGrad is slightly better than that of IE+RevGrad
(from 83.1 to 83.2).

These results show the effect of the LFM method for al-
leviating the domain adaptation problem and prove our low-
frequency assumption.

3.3. Comparison with the State-of-the-art

For fair comparison, we adopt the same backbone and re-
implement them. Our re-implementations achieve compara-
ble performance compared to original papers.

3.3.1. Classification results

VisDA is a challenging testbed for UDA with the domain shift
from synthetic data to real imagery. In total there are ∼280k
images from 12 categories. The images are split into three
sets, a training set with 152,397 synthetic images, a valida-
tion set with 55,388 real-world images, and a test set with
72,372 real-world images. As shown in Table 3, the Average
indicates the classification accuracy of 12 classes on VisDA-
2017 with the validation set as the target domain by utilizing
different UDA methods. Our method outperforms the popu-
lar UDA methods: RevGrad, DAN, self-ensembling (SE) (the
first place in VisDA-2017 competition), and CAN. The mean
accuracy of our RSL method outperforms that of the current
state-of-the-art method CAN by 0.5 (from 86.8 to 87.3) on
the VisDA-2017 validation dataset and the IE+CAN method
is slightly better than the RSL+CAN method (from 87.3 to

Table 2: Classification accuracy (%) for all the six tasks of
Office-31 dataset based on ResNet-50 [16].

Method A → W D → W W → D A → D D → A W → A Average

Source-finetune 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1
DAN [1] 80.5 ± 0.4 97.1 ± 0.2 99.6 ± 0.1 78.6 ± 0.2 63.6 ± 0.3 62.8 ± 0.2 80.4
RevGrad [3] 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2

Ours (IE+Source-finetune) 77.3 ± 0.2 96.7 ± 0.2 99.8 ± 0.2 83.0 ± 0.2 65.8 ± 0.2 65.6 ± 0.2 81.4
Ours (RSL+Source-finetune) 77.5 ± 0.2 97.0 ± 0.2 99.8 ± 0.2 83.2 ± 0.2 66.2 ± 0.2 66.0 ± 0.2 81.6
Ours (IE+DAN) 80.3 ± 0.2 97.0 ± 0.2 99.8 ± 0.2 83.4 ± 0.2 66.8 ± 0.2 66.3 ± 0.2 82.3
Ours (RSL+DAN) 80.4 ± 0.2 97.1 ± 0.2 99.8 ± 0.2 83.2 ± 0.2 67.0 ± 0.2 66.0 ± 0.2 82.3
Ours (IE+RevGrad) 82.6 ± 0.3 96.9 ± 0.2 99.8 ± 0.2 82.8 ± 0.4 68.8 ± 0.3 68.0 ± 0.4 83.1
Ours (RSL+RevGrad) 82.5 ± 0.2 97.3 ± 0.2 99.8 ± 0.2 83.1 ± 0.4 69.1 ± 0.3 67.5 ± 0.4 83.2

Table 3: Classification accuracy (%) on the VisDA-2017 val-
idation set based on ResNet-101 [16].
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Average

Source-finetune 72.3 6.1 63.4 91.7 52.7 7.9 80.1 5.6 90.1 18.5 78.1 25.9 49.4
RevGrad [3] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DAN [1] 68.1 15.4 76.5 87.0 71.1 48.9 82.3 51.5 88.7 33.2 88.9 42.2 62.8
JAN [2] 75.7 18.7 82.3 86.3 70.2 56.9 80.5 53.8 92.5 32.2 84.5 54.5 65.7
GSDA [20] 93.1 67.8 83.1 83.4 94.7 93.4 93.4 79.5 93.0 88.8 83.4 36.7 81.5
SE [21] 95.9 87.4 85.2 58.6 96.2 95.7 90.6 80.0 94.8 90.8 88.4 47.9 84.3
CAN [4] 96.7 90.3 84.2 66.4 96.5 97.1 88.0 83.0 96.1 95.0 87.0 61.3 86.8

Ours (RSL+CAN) 97.5 86.1 84.7 71.7 96.2 98.2 90.6 82.7 96.8 94.8 88.9 59.5 87.3
Ours (IE+CAN) 96.8 85.8 85.3 72.8 95.8 97.3 91.7 84.0 97.3 95.1 87.1 59.8 87.4

87.4). On such a large dataset, the results reveal the potential
and effectiveness of LFM.

3.3.2. Object detection results

To verify the generality of our method, we construct ob-
ject detection experiments, and adopt current state-of-the-art
methods: DA-Faster-ICR-CCR [19] and KR-DA-Faster [18]
as our baseline methods.

First, we train our method with the state-of-the-art method
KR-DA-Faster. Its backbone is widely popular ResNet-50
and the network initializes with Caffe pre-trained weights.
Ultimately, the model achieves the best performance thus
far from Cityscapes to Foggy-Cityscapes by adopting our
method. Table 4 shows the comparison results. Our IE+KR
can boost the performance of KR-DA-Faster by 0.6 mAP
(from 40.8 to 41.4). The RSL+KR method adopts Pytorch
pre-trained weights and still outperforms the KR-DA-Faster
by 1.3 mAP (from 40.8 to 42.1) although Caffe pre-trained
models have better performance than Pytorch pre-trained. In
particular, our RSL can greatly improve the detection results
in the target domain. The results reveal that the RSL is better
than IE in the object detection task. In particular, our method
can greatly improve the detection results for some difficult
categories such as “train”. The RSL method outperforms
the state-of-the-art by 5.1 mAP for the training class. This
clearly verifies the importance of low-frequency information
for cross-domain object detection.

Moreover, DA-Faster-ICR-CCR is an extension method
based on DA-Faster. Its backbone is VGG-16. We combine
our RSL idea with VGG-16 and apply it to the DA-Faster-
ICR-CCR method. As shown in Table 5, we observe that our
method outperforms DA-Faster-ICR-CCR by 2.0 mAP (from
29.9 to 31.9). The result demonstrates that our method is



Table 4: Results (%) on adaptation from Cityscapes to
Foggy-Cityscapes (normal → foggy). The backbone network
is ResNet-50.

Methods person rider car truck bus train motorcycle bicycle mAP
Source-only 26.9 38.2 35.6 18.3 32.4 9.6 25.8 28.6 26.9
SC-DA-Faster [6] 33.8 42.1 52.1 26.8 42.5 26.5 29.2 34.5 35.9
GPA [22] 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5
KR-DA-Faster [18] 36.8 46.4 54.5 27.7 47.3 42.7 32.7 38.6 40.8
Our (IE+KR) 36.8 46.9 52.9 28.9 48.2 47.1 31.7 38.9 41.4
Our (RSL+KR) 37.1 47.6 55.0 28.3 48.5 47.8 32.8 39.8 42.1

Table 5: Results (%) on adaptation from Cityscapes to
Foggy-Cityscapes (normal → foggy). The backbone network
is VGG-16.

Method persn rider car truck bus train mbike bcycle mAP

Source Only 24.1 33.1 34.3 4.1 22.3 3.0 15.3 26.5 20.3
DA-Faster [5] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
DA-Faster-ICR-CCR [19] 29.7 37.3 43.6 20.8 37.3 12.8 25.7 31.7 29.9

Our method (RSL+DA-Faster-ICR-CCR) 30.1 42.9 43.3 24.1 35.2 20.5 25.4 33.6 31.9

compatible with other backbones.

4. CONCLUSION

In this paper, we propose an assumption that low-frequency
information is more domain-invariant and more suitable for
domain adaptation tasks while the high-frequency informa-
tion contains domain-related information in different do-
mains. Meanwhile, we construct massive experiments and
visualization analysis to demonstrate the assumption. Finally,
we introduce a method, named LFM, to combine with exist-
ing UDA methods easily and achieve better performance. Our
method outperforms state-of-the-art methods on VisDA-2017
and Cityscapes to FoggyCityscapes. In future, we will intro-
duce RSL to the current self-supervised methods [23, 24] we
have already explored.
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