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Abstract-Simulation of plant structure competing for light 
source has mostly been done by directly modifying plant struc­
ture according to light interception. Functional-structural plant 
models, however, emphasize the influence of light interception 
on biomass production, and consequently plant structure. 
In this paper, we integrate a light distribution model with 
GreenLab model, which used Beer-Law in computing biomass 
production. By replacing Beer-Law with a light interception 
model for biomass production, the combined model was able to 
simulate the effect of light condition on plant structure through 
source-sink regulation. The positive and negative sides of this 
approach are discussed. 
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I. INTRODUCTION 

Light environment plays a key role for plant growth and 
development. Light interception is a key topic not only in 

plant growth modeling [1], but also in plant visualization 
[2]. In plant growth modeling, light interception is com­
puted either by an empirical Beer-Law approach using leaf 

area index, or by sununing up the light interception from 
individual organs, the latter taking into account the detailed 
description of plant structure. 

Functional-Structural Plant Models (FSPMs) [3], are o­
riginated by combining Process-Based Model with 3D sim­

ulation of plant structure. A natural application is the com­
putation of biomass production according to the interception 

light by plant organs [4], which can be used for comparing 
different genotypes [5]. Calibration of virtual light environ­

ment, which is a tedious work, has been done on open 
field for maize [6], rice[7] and greenhouse environment [8]. 
However, light interception is generally computed based on 
observed plant structure, and its feedback on plant structure 

is rarely simulated. 

On the other hand, it is well recognized that light condi­
tion influences on plant structure and function, and efforts 

have been made on simulating plant response to different 

light environment. In plant modeling, Evers et al. [9] linked 
the simulated red: far red ratio in light component to 

numbers of wheat tillers; Kahlen et al. [10] simulated the 

cucumber leaf direction according to the light source. In all 
these approaches, the light environment modifies directly the 

plant structure. Instead, Cournede [11] simulated plasticity 
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of plant structures in competition to light based on source­
sink regulation, but the effect of 3D plant structure and light 
environment can not be explicitly taken into accounted. For 
plant visualization, light environment is used to simulate 
the visual effects of plant that search the light source [12]. 

Hua and Kang [13] introduced bud breakout rule under light 
environment to simulate plant structure competing for light. 

In this paper, we attempt to simulate the effect of light 
distribution on biomass production and consequently plant 
structure, through a source-sink approach. Photon mapping 
method [14] is selected to simulate the light environment, 

which is an efficient method for representing light envi­

ronment in complex scene. GreenLab model is used for 
simulating organ production, organ growth and 3D plant 

structure. The implementation of system is done in Qingyuan 
software [15]. 

This paper is organized as follows: Sec. II presents the 
method of simulating light interception and its application 
in GreenLab model. Sec. III presents the simulation results. 

Conclusion and brief discussion are given in the last section. 

II. ME THOD 

A. GreenLab Model for Trees 

In this study, GreenLab model for trees [16] is used, in 

which the plant development is dependent on the dynamic 
relationship between biomass demand and supply. Biomass 

production QB is modeled using Beer-Law-analog equation: { QB (n)= EB (n)Sp (l -exp (-kst))) (1) 
QB (0) = Qseed 

where EB (n) is a variable representing the plant local 

environment at growth cycle n; Sp is the total ground 
projection area available of the crown for plant. k is a light 

extinction coefficient to quantify attenuation process of light 
penetrating into the canopy. S (n) is the total green leaf 
surface area at growth cycle n. Qseed is the initial biomass. 

The ratio of S (n) to Sp can be considered as local leaf area 
index (LAI) [16] adapted to individual plants. In GreenLab, 

Sp reflect the effect of competition with neighbors and the 
final effect on biomass production (Eqn. 1). An alternate way 
is to establish link between light environment and biomass 

production by light distribution model. For trees or crops of 
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low density, an allometric relationship can be found between 
Sp and S (n) [16], as shown in Eqn. 2: 

Sp = Spo ( S (n) ) a 

Spo 

where Spo and CJ are two parameters. 

(2) 

At each growth cycle (GC), the amount of biomass 

allocated to an organ 0 of physiological age p at plant age 
n is calculated as follows: 

o ( ) = 
po . QB (n) 

qp 
n 

p D (n) 
(3) 

where Pg is the sink strength of organ 0 of physiological 

age p; D (n) is the plant demand at growth cycle n, which 

is the total sink strength of organs. At growth cycle n, 
the total number of new branches sprouted by metamer of 

physiological age p bearing buds of physiological age k, 
denotes B; (n) is given by the following Eqn. 4: 

where O:S: A < 1 
where A 2: 1 (4) 

where for a real number x, [xl represents its round value. 
M; (n) denotes the number of positions in axis potentially 

bearing that kind of branches. A is a positive number given 
by Eqn. 5: 

A = 'IjJ. QB (n) 
D (n) 

(5) 

where'IjJ is a model parameter (a positive real number). It 
is hypothesized that this ratio of Q/D characterizes the level 
of trophic competition inside the plant [16]. Number of new 

branches have effect on plant 3D shape, and it influence 
on number of organs playing role of source and sink in 

future. With this characteristic, it is possible to simulate the 
feedback between local light environment and plant growth. 

B. Photon Mapping 

In photon mapping [14], light propagation is simulated 
by tracing light particles (i.e. photons) originated from light 
source. When a photon strikes on an organ, it can be 
absorbed, reflected, transmited or diffused according to the 

material property of the organ. To accelerate the collision 
detection between a photon and an organ surface, bounding 

volume hierarchy (BVH) method [l7] is used: instead of 
detecting whether a photon collides with every object in the 

complex scene, a regular bounding volume (e.g. a cubic) of 
this object is used for collision detection. Each individual 
organ is wrapped in a bounding volume, which is leafy 
node in a data structure of binary tree. These nodes are then 

grouped as small sets and enclosed within larger bounding 
volumes. With such hierarchy, during collision testing, a 
small set does not need be examined if its parent volume 
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does not intersect with the rays, which reduces the time 
complexity. 

To start, photons are emitted from sky hemisphere, as 

shown in Fig. 1. The sky hemisphere light environment could 
be simulated by N A . Nz + 1 sampling point light sources 
(including one peak-point of the sky hemisphere), where 

N A and N z denote the number of sampling for altitude 
and azimuth angles respectively. It is supposed that each 
sampling point cast Np rays into the hemisphere. At each 
growth cycle, there are total Nr rays projected into the scene: 

(6) 

Figure 1. A sky hemisphere emitting photons to simulate isotropic light 
environment for plants. 

To avoid emitting photons that never collide any objects, 

the initial directions of the outgoing photons are constrained: 
instead of sending out photons in random directions, they 
are sent in the direction of the largest BVH occupying all 

of the objects in the scene. The space for which the photons 
are emitted is bigger than the largest BVH in order to 
eliminate the boundary effect. When a photon strikes on the 

surface of an organ, a random number produced by Russian 
roulette method is used to determine its fate according to 
the probabilities of reflecting, absorbing, transmitting, or 

diffusing. 

Photon map is a data structure containing information 

about all photons hits, and this information can be used to 
estimate efficiently the light intensity in canopy. KD-tree, 
which is a space-partitioning data structure for organizing 

points in a k-dimensional space, is used to store static 
photon information and to provide efficient way of locating 
neighboring photons[ 14]. 

To estimate the light intensity around a leaf (EL , 
W . m-2 ), we search a neighborhood of radius r containing 
n incoming photons. EL is calculated as in Eqn. 7 

(7) 

where 1>i is the power of an incoming photon (J . 8-1 ) , A 
is the leaf area (m2 , A = 7l'r2 ). Given a light intensity above 

canopy Ec (W . m-2 ), the power of a photon is calculated 



(a) (b) 

(c) (d) 

Figure 2. Photon map (a, c) obtained with scheme A-l(Table I) and light intensity EB (Eqn. 8);(b,d): red color means higher light intensity. 

as 1>i = Ec . Ac/T, where Ac is the projecting area of the 
scene and T is the total number of photons. 

Since Photo Mapping was originally used in rendering for 

computer graphics, EL was used only to evaluate the relative 
light intensity in scene, but not the real light intensity. For 

photosynthesis model, absolute light intensity is necessary. 
The absolute light intensity EB is computed from the relative 

light intensity (Ed by assuming a maximum light intensity 
(T max) above canopy and a minimum light intensity (T min) 
inside canopy, as in Eqn. S: 

EL 
EB = (1 - Emax)' (Tmax - Tmin) + Tmin (S) 

L 

Where EL'ax is the maximal value of EL of all blades. 

Instead of calculating the surface light intensity in computer 
graphics, we focus on the light intensity inside the canopy. 

As photons record the interception of rays by organs, for 
blades inside the canopy, the amount of neighboring photons 
denotes level of occlusion by surrounded organs. The more 

photons are found in the neighborhood of a leaf, the less the 
blade is visible from outside. 

C. Photosynthesis Model 

A generalized light-response curve is used to compute 
instantaneous assimilation rate (1, J.Lmol CO2 , m-2 .  S-l), 
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using a non-rectangular hyperbola [IS]: 

aE + 1m + Rd - v(aE + 1m + Rd)2 - 4BaE (Im + Rd) 
1= ------------�---- ��-----------------

2B 

(9) 

where E is the Photosynthesis Photon Flux Density (PPFD) 

of PAR (J.Lmol photons· m-2 . S-l), computed by multi­
plying EB (Eqn. S) and the leaf efficiency for energy 
utilization ((3, 0-1). Note the value EB was converted from 
W . m-2 into J.Lmol photons· m-2 . S-l by multiplying a 
factors of 4.57 [19]). 1m and Rd are light saturation pho­

tosynthetic rate and leaf dark respiration rate respectively 
(J.Lmol CO2 , m-2 . s-l), a is the apparent quantum yield 

(0.03 - 0.07, mol CO2 , mol-1 photons [20]), which is 

the ratio of the net photosynthetic rate to the number of 
photons. B is the convexity of the light response curve (0-1, 

dimensionless). It is assumed that 1m is between 4.5 to 19.5 

(J.Lmol CO2 , m-2 . S-l) [IS]. Dark respiration rate is about 
7% of peak photosynthesis [21]. 

Assuming that leaf is the only biomass producer at a given 
growth cycle, total biomass production is computed as in 
Eqn. 10. 

NB(n) 
QL (n) = btl L 1i(n)si(n), (lO) 

i=l 
where "y is a conversion coefficient from assimilate to dry 

mass, bt is the duration of a growth cycle (s), N B (n) denotes 



the total number of leaves in the plant. Ii (n) and Si (n) 
are assimilation rate and leaf area of ith individual leaf 

respectively. 

D. Calibrating Photosynthesis Model 

Egn. 10 can be an alternate way of computing biomass 

production in GreenLab. In order to test whether the two 
approaches (Egn. 1 and Egn. 10) can give close results, given 
the same geometrical structure, parameters in Egn. 9 (0:, (3, 
1m, B) and Egn. 10 (Ot) are estimated by fitting the output 
of biomass production by Eqn. 1. 

Root Mean Square Error (RMSE) and Normalized Root 
Mean Sguare Error (NRMSE)[22] was computed to evaluate 
the fitting performance : 

RMSE= 

NRMSE= 

2:�1 (XL - XB)2 

N 

2:�1 (XL - XB)2 

2:�1 (XB - XB)2 

(11) 

(12) 

Where XB and XL are biomass production obtained by 
Egn. 1 and Egn. 10 respectively. XB is the mean value of 

XB (i = 1, ... , N) . 
The RMSE was used to analyse the average difference 

between biomass production obtained by Egn. 1 and Egn. 

10. If the value of the RMSE was small, then the results 
were close to each other. The NRMSE was used to compare 
the accuracy between results mentioned above which have 
different units and ranges. If the value of NRMSE was small, 
then results were closer to each other. 

III. RE SULT S FOR EFFECT OF LIGHT ON BIOMA S S  

PRODUCTION 

A. Photon Map 

At each growth cycle, 10,001,000 rays are emitted to a 
scene containing a single tree. Photons hitting on the plant 

are saved in the photon map. Fig. 2(a) and Fig. 2(c) show 
a photon map at 25 GC, which includes 70,347 organs. 

Each ray bounces less than 15 times and there are total 
of 265,452,000 photons in the largest BVH, with 325,922 
photons hitting on the plant. For this plant, collision detec­

tion of photons costs 21.1s using a Intel 4 core processor 
(2. 13GHz). 

The light intensity ( EB , Egn. 8) for each leaf is shown in 
Fig. 2(b) and Fig. 2( d). Different colors are used to visually 
distinguish light intensity. Red means being lightened while 

green means being shaded. 
In order to evaluate the algorithm, different schemes of 

ray emission are tested, as shown in Table I, using different 

number of light sources. The computational bottleneck lies 

in the estimation of light intensity. Fig. 3 shows the results 
of biomass production (Egn. 10) are closed with different 
number of photons emitted, while the simulation time can 
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be dramatically different. While bigger neighborhood size 
leads to more computational time, Fig. 4 shows that the 

search radius of neighborhood has little effect on the biomass 

production. However, for the plant stand, it is useful to 
enlarge search radius in order to consider the occlusion by 

surrounding trees. 
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Figure 3. Biomass production obtained under different schemes on number 
of point light sources (Table I). Neighborhood size is 80R, where R denotes 
the radius of envelop ball for a blade. 
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Figure 4. Biomass production obtained under different neighborhood size: 
1. 5 R, 80 R, 2000 R, 100000 R. R denotes the radius of envelop ball for 
a blade. Np=10000, NA=IO, Nz=lO. 

B. Fitting photosynthesis model 

Using the virtual tree in Fig. 2, the parameters in Egn. 

9 and Eqn. 10 are estimated in order that the biomass 
production from Egn. 1 and Egn. 10 are similar. Fig. 5 shows 

such a fitting result. Remind that both results are computed 

from the same plant structure. It can be seen that production 
obtaining by summing photosynthetic production from indi­

vidual leaves can be close with that from Beer-Law based 
approach. When the value of parameter CJ is approaching 
1.0, which means biomass production is proportional to leaf 

area, the fitting result is the best. 



Table I 

DIFFERENT SCHEMES OF RAY EMISSION (A-I , A-2 AND A- 3). EACH POINT LIGHT SOURCE SENDING 1000 RAYS TO THE BIGGEST BVH IN THE 

SCENE (Np=IOOO). PLANT AGE IS 25 CYCLES. IN SCHEME A-I,HIGHER NUMBER OF RAYS ARE EMITTED. 

Scheme 
Number of samples for Altitude angle (N A) 

Number of samples for Azimuth angle (Nz) 
Total number of rays (Nr) 

Time for emitting photons (s) 
Time for building KD tree (s) 

Time for estimating light intensity (s) 
Total number of photons 

Number of photons on plant 
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Figure 5. Fitting biomass production from light model (Eqn. 10) with Beer-Law (Eqn. 1) during plant growth: (a) 0"=0.0, RMSE=10711, NRMSE=0.09405; 
(b) 0"=0.33, RMSE=10848, NRMSE=0.06117; (c) 0"=0.73, RMSE=17139, NRMSE=0.02353; (d) 0"=0.95, RMSE=995, NRMSE=0.00229; 

C. Simulating tree competition under Isotropic Light Con­

dition 

The morphological structure of the trees are affected by 
the local environment, especially neighborhood competition 
even under isotropic light environment. In Fig. 6, it is 

observed that the tree in the middle grows less and has a 
smaller crown than the surrounding trees as it receives less 
light. Planting density, which affect local light environment, 
plays a role on plant morphology. The greater the density, 

the greater effect the trees have with each other. 

D. Simulating tree competition under Anisotropic Light Re­

source 

Here we simulate the competition for light source between 

two neighboring trees driven by anisotropic light source, 
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as in Fig. 7. The point light locates at the top left-hand 
side and the tree in the left receives more light. According 
to Eqn. 4, the change of the number of organs, e.g. via 

variable branching, which induced by ratio of Q/D affected 
under different light photon flux density, result in structural 
plasticity. Fig. 7 shows the dynamical growth process of two 
neighboring trees, using the same parameter file but under 
anisotropic light condition. Fig. 7(a) - Fig. 7(d) show the 3D 

visualization of two neighboring trees competing for light at 

22 GC, 24 GC, 26 GC, 28 GC, respectively. Fig. 7(e) and 
Fig. 7(f) show the topology and light intensity at plant age 
28 GC respectively. 



(a) Trees grown with high plant density . (b) Trees grown with low plant density. 
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(c) (d) 

Figure 6. Trees grown with high plant density (a,c) and low plant density (b,d), under isotropic light source as in Fig. 1 

IV. DI SCU S SION 

Compared with the other light distribution model, Pho­

ton Mapping as our technical solution for computing light 
environment, have some advantages: 

1. In trees, source organs, i.e. blades has small size 

relative to the whole plant. An emitted ray from 

distance has low probability of striking a small blade, 
especially at the initial stage of growth. In ray tracing 

algorithm, it will be necessary to cast huge number 
of rays into the scene, which costs too much time in 
collision detection. Photon Mapping algorithm, how­
ever, evaluates the light intensity by making use of 
neighboring photons, which require less ray samples 
compared to ray tracing algorithm. 

2. Photon Mapping algorithm can handle with some 
physical phenomena, such as caustics, which also 
happen on translucent blades. In future work, this 
method is to be used not only in computing biomass 

production but also in visualization of plants. 

This method can simulate the light interception and re­

flect the coadjustment between plant morphology and local 
environment. It is helpful for both the graphics applications 
and tree growth modeling. 
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In this work, leaves are regarded as round disc in 
computing light interception, without consideration of leaf 

geometrical shape. In case that the number of leaves is 
enormous and leaf size is relatively small compared to full 

plant structure, this simplification is acceptable. However, 
when it is applied to crops with big leaves, the collision 
detection process will be more costly. When light intensity 
is evaluated by the photons on the leaves instead of photons 
around the leaves, this method is close the classical ray 
tracing method. 

V. CONCLU SION 

In this paper, we integrated light interception and pho­

tosynthesis model into GreenLab model. The result shows 
that plant plasticity can be simulated under different light 
environment, through a source-sink approach. Illumination 
environment could be mimicked by photon mapping method. 

Future work includes accurate estimation of light inter­

ception for sophisticated geometric structure. This method 
provide an alternative way of computing biomass production 

aside Beer-Law approach, which is useful when the aim 
is to simulate the effect of geometrical structure on light 
interception and plant growth, or to produce unsymmetrical 

tree crown for landscape design. 



(a) 3D visualization at plant age 22 Gc. (b) 3D visualization at plant age 24 GC. (c) 3D visualization at plant age 26 Gc. 

(d) 3D visualization at plant age 28 Gc. (e) Topology at plant age 28 Gc. (f) Light intensity at plant age 28 Gc. 

Figure 7. Two neighboring trees competing for light. 
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