
LEARNING FROM THE RAW DOMAIN: CROSS MODALITY DISTILLATION FOR
COMPRESSED VIDEO ACTION RECOGNITION

Yufan Liu1,2, Jiajiong Cao3, Weiming Bai1,2, Bing Li1,4∗, Weiming Hu1,2

1State Key Laboratory of Multimodal Artificial Intelligence Systems,
Institute of Automation, Chinese Academy of Sciences

2School of Artificial Intelligence, University of Chinese Academy of Sciences
3Ant Financial Service Group 4PeopleAI, Inc.

ABSTRACT

Video action recognition is faced with the challenges of both
huge computation burden and performance requirements.
Using compressed domain data, which saves much decoding
computation, is a possible solution. Unfortunately, existing
compressed-domain-based (CD) methods fail to obtain high
performance, compared with state-of-the-art (SOTA) raw-
domain-based (RD) methods. In order to solve the problem,
we propose a cross-modality knowledge distillation method
to force the CD model to learn the knowledge from the RD
model. In particular, spatial knowledge and temporal knowl-
edge are first constructed to align feature space between the
raw domain and the compressed domain. Then, an adaptively
multi-path knowledge learning scheme is presented to help
the CD model learn in a more efficient way. Experiments
verify the effectiveness of the proposed method in large-scale
and small-scale datasets.

Index Terms— Cross modality, knowledge distillation,
compressed domain, video action recognition

1. INTRODUCTION

With the development of Internet techniques, a huge amount
of videos is processed every day. Though the network speed
is increased, the computational speed becomes the bottleneck
for video action recognition applications because of cumber-
some deep learning models and spatial-temporal redundancy
of the video data.

To alleviate this problem, some methods perform video
action recognition on compressed domain (CD) instead of raw
domain (RD). Since it only needs partial decoding to obtain
CD data, as shown in Fig. 1. The decoding time and storage
can be significantly reduced. For example, CoViAR [1] sim-
ply replaces RD data, i.e., RGB frames, with CD data, i.e.,
Intra-frame (I frame), motion vector (MV) and residual [2].
DMC-Net [3] and Slow-I-Fast-P [4] utilize optical flow or
pseudo optical flow to construct the motion information and
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enhance the model performance. Some recent works [5,6] ex-
plore multi-modal fusion techniques for CD data. However,
these CD-based methods are still inferior to state-of-the-art
(SOTA) RD-based methods. Although the CD data contains
most of the video information, the implicit knowledge is hard
to be sufficiently learned. Since it only contains sparse ap-
pearance information, i.e., the spare I-frames, rather than the
dense RGB frames which are crucial for prediction.

Knowledge Distillation (KD) [7–9] from RD model to CD
model is one possible solution to close the performance gap
between them. Different from traditional KD pipelines, the
CD student model and the RD teacher model receive different
modalities as input. There exist large challenges in knowl-
edge definition, feature alignment and learning scheme de-
sign for cross-modal KD. Some recent works [10] study on
cross-modal KD, but most of them focus on different tasks
such as biometric matching and lip reading. The effects of
video recognition are still limited. Battash et al. [11] propos-
es a cross-model KD framework to align CD and RD directly
in the input space. It first reconstructs the missing Predicted
frames (P frames) based on the I frames and the residuals, and
then feeds these P frames to the student network. However,
the performance gain is marginal since it is difficult to simply
align the input space between CD and RD.

In this paper, we propose a novel cross-modal KD method
to align the knowledge between CD and RD in the feature s-
pace. We first define two types of knowledge including spatial
knowledge and temporal knowledge. The former refers to the
appearance feature of each video frame. A pseudo-decoder is
proposed in the student to decode the CD features to the ap-
pearance features of missing P frames. The latter is defined
as the temporal relation among different frames, which is con-
structed by the proposed Temporal Graph (TG). Furthermore,
an adaptively multi-path knowledge (AMK) scheme is pre-
sented to boost the learning of the above knowledge. Specif-
ically, a multi-path spatial attention gate module is proposed
to select the most informative spatial features. And the multi-
birth TGs are presented to enrich the temporal knowledge.
Our main contributions are summarized below:
• We define two types of video knowledge, i.e., spatial



knowledge and temporal knowledge, for cross-modal
KD, to align CD and RD in video action recognition.
• We propose an adaptively multi-path knowledge (AMK)

learning scheme to boost the learning of knowledge.
• Experiments show that the proposed method is effec-

tive. It outperforms 8 CD-based methods and achieves
competitive performance with RD-based methods.

2. THE PROPOSED METHOD

The proposed cross-modal KD framework is illustrated in
Fig. 1, wherea the CD-based model is the student and
the RD-based model is the teacher. The teacher takes
the fully-decoded raw frames Vraw = {Ft}Tt=1 as inputs
while the student takes the partially-decoded data Vcomp =
{I, {Mt,Rt}Tt=1} as inputs. Note that I denotes the I frame.
And Mt and Rt represent the t-th MV and the t-th residual,
respectively. We first construct the cross-modal knowledge
to align the teacher and the student to the same knowledge
space in Sec. 2.1. Then, an adaptively multi-path knowledge
(AMK) learning scheme introduced in Sec. 2.2 is adopted to
make the student better absorb and digest the knowledge.

2.1. Cross-modal knowledge construction
In order to sufficiently distill knowledge from RD to CD, we
propose two types of knowledge including multi-path spatial
knowledge and multi-path temporal knowledge as follows.
(1) Spatial knowledge. The multi-path spatial knowledge
is defined as the features of the dense frame sequence,
where each path refers to the feature of one frame. For
the RD-based teacher, the t-th path spatial knowledge ht =
BackboneT(Ft) is the feature of the t-th raw frame. For
the CD-based student, inspired by the classic video de-
coder which decodes the P frames based on the relation
among I frames, MVs and residuals, a pseudo-decoder is
proposed to decode the compressed-domain features (i.e.,
{f I, {fMt, f

R
t}Tt=1} = BackboneS({I, {Mt,Rt}Tt=1})) and

obtain the decoded dense feature sequence {ĥt}Tt=1. Note
that ĥt is the aligned spatial knowledge, i.e., the reconstruct-
ed feature of the t-th P frame. To fully explore the relation,
we adopt two cross-attention transformer blocks. One learns
the relation between I frame and MV while the other learns
the relation between I frame and residual:

hrec
t = Attn(QI,KM

t , V
I) + Attn(QI,KR

t , V
I),

s.t. QI = f I ·WQ, V I = f I ·WV ,

KM
t = fMt ·WKM

, KR
t = fRt ·WKR

.

(1)

Note that Attn(·) is the self-attention operation of the Trans-
former encoder. Then, a convolutional bi-directional long-
short term model (Bi-ConvLSTM) is adopted to enhance the
temporal relation among the reconstructed features. Conse-
quently, the final spatial knowledge ĥt for the student is com-
puted as follows:

{ĥt}Tt=1 = BiConvLSTM({hrec
t }Tt=1). (2)

(2) Temporal knowledge. The multi-path temporal knowl-
edge is defined as the relation among the frame sequence. We
construct a temporal graph (TG) to represent the temporal re-
lation. The TG of the teacher TGraw and that of the student
TGcomp can be represented as:

TGraw = (Vraw, Eraw) = ({ht}Tt=1,A
raw),

TGcomp = (Vcomp, Ecomp) = ({ĥt}Tt=1,A
comp),

s.t. Araw(i, j) = ||hi − hj ||22,

Acomp(i, j) = ||ĥi − ĥj ||22, i, j = 1, ..., T,

(3)

where V denotes the vertex of the TG and E is the edge of the
TG. Each vertex represents the feature (or reconstructed fea-
ture) of a single frame. Furthermore, we extend a single TG to
multi-birth TGs as described in Sec. 2.2. In this way, original
single-path temporal knowledge is enriched to be multi-path
temporal knowledge.

2.2. Adaptively multi-path knowledge learning
After constructing the cross-modal knowledge, an adaptively
multi-path knowledge learning scheme is proposed to boost
the learning of this knowledge. For spatial knowledge learn-
ing, an attention gate is introduced to selectively learn the
multi-path appearance features of the teacher. Among these
features, useful information is actually not uniformly dis-
tributed. Thus, simply learning these multi-path features may
introduce redundant information and harm performance. The
compressed domain natively contains hints for knowledge
importance. For example, the MVs contain temporal and
motion cues reflecting the importance of each frame. Tak-
ing advantage of the CD data, the proposed attention gate
controls the supervision intensity of the spatial knowledge
at different frames. In particular, it takes compressed fea-
tures {{fMt}Tt=1, {fRt}Tt=1} as input and adopts a squeeze-
and-excitation (SE) block to obtain the importance weights
α = {αt}Tt=1 of the spatial knowledge at different frames.
The loss function of learning the spatial knowledge is:

Lspatial =
T∑

t=1

αt||ht − ĥt||22, (4)

where αt generated from the attention gate controls the su-
pervision intensity at the t-th frame.

For the temporal knowledge learning, multi-birth TGs are
proposed to enrich temporal knowledge. In particular, the o-
riginal vertexes are transformed into different feature spaces
by different mapping functions, to construct different TGs.
We select 3 mapping functions to obtain the multi-birth TGs:

TG1 = (V1, E1) = ({exp(−||ht − µ||2

2σ2
)}Tt=1,A1),

TG2 = (V2, E2) = ({exp(−||ht − µ||
2σ2

)}Tt=1,A2),

TG3 = (V3, E3) = ({a(ht)
2 + b(ht) + c}Tt=1,A3).

(5)
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Fig. 1. Overall framework of the proposed method.
Note that the coefficients in this paper are σ = a = b = c =
1. And A1,A2,A3 are the corresponding adjacent matrixes
of multi-birth TGs. Under the AMK learning scheme, the
student mimics the temporal relation in the multi-birth TGs
of the teacher and the loss function is:

Ltemporal =

3∑
i=1

(||Erawi − Ecomp
i ||22). (6)

Note that Erawi and Ecomp
i are the corresponding edges of the

i-th multi-birth TG in the raw domain (teacher) and that in
the compressed domain (student). In summary, the overall
loss function can be formulated as:

Ltotal = LCE + λ1Lspatial + λ2Ltemporal, (7)

where LCE is the cross-entropy loss and λ1 and λ2 are the
penalty coefficients.

3. EXPERIMENTS

3.1. Setings

Datasets: We evaluate the proposed methods on four pop-
ular video action recognition datasets including UCF-101
[12], HMDB-51 [13], Kinetics-400 [14] and Something-
Something V2 (SSV2) [15]. UCF-101 contains 13,320
trimmed short videos from 101 action categories, while
HMDB-51 contains around 7,000 video clips from 51 ac-
tion categories. Kinetics-400 is a large-scale YouTube video
dataset and has around 300k trimmed videos covering 400
categories, while SSV2 consists of about 220K videos with
a time span from 2 to 6 seconds for 174 action categories.
In our experiments, all videos are decoded to I-frames and
P-frames with an MPEG-4 codec [2].
Implementation: All training videos are first resized to 320
× 256. Then, for data augmentation, random horizontal flip-
ping and random cropping are applied to I-frames, MVs and

Table 1. Accuracies (%) on UCF-101 and HMDB-51.
Method Backbone Modality Year UCF-101 HMDB-51

C3D [19] C3D RD 2015 82.3 51.6
I3D [14] InceptionV1 RD 2017 95.6 74.8

TSM [17] ResNet-50 RD 2019 96.0 73.2
TDN [18] ResNet-50 RD 2021 97.4 76.3

CoViAR [1] ResNet-50 CD 2018 91.0 73.2
DMC-Net [3] ResNet-152 CD 2019 92.3 71.8

MFCD-Net [11] MF-Net CD 2020 93.2 66.9
IMRNet [5] ResNet-50 CD 2021 92.6 67.8

TEAM-Net [6] ResNet-50 CD 2021 94.3 73.8
MM-ViT [20] ViT-B/16 CD+Audio 2022 95.4 -

TSM+ours ResNet-50 CD - 95.8 73.5
TDN+ours ResNet-50 CD - 96.9 75.9

Table 2. Accuracies (%) on SSVV2. We adopt TSM [17]
and TDN [18] to the RD with three-parallel-backbone (for
I-frames, motion vectors and residuals, respectively) and a
fully-connected (FC) feature fusion layer.

Method Backbone Modality Year Top-1 Top-5 GFLOPs

TRN [21] BNInception RD 2018 48.8 77.6 33
TSM [17] ResNet-50 RD 2019 63.4 88.5 390

SmallBigNet [22] ResNet-50 RD 2020 63.3 88.8 157
TEINet [23] ResNet-50 RD 2020 65.5 89.8 98
TANet [24] ResNet-50 RD 2020 66.0 90.1 297
TDN [18] ResNet-50 RD 2021 67.0 90.3 108

TSM [17] ResNet-50 CD 2019 60.1 86.2 315
TDN [18] ResNet-50 CD 2021 62.7 88.1 86

MM-ViT [20] ViT-B/16 CD 2022 64.9 89.7 2250

TSM+ours ResNet-50 CD - 62.8 88.2 348
TDN+ours ResNet-50 CD - 66.9 90.2 92

residuals. For fair comparison with SOTAs, the backbone is
ResNet-50 and is pre-trained on ImageNet [16]. The hyper-
parameters are set to λ1 = 0.1, λ2 = 1. On the other hand, we
choose TSM [17] or TDN [18] as the RD teacher. The train-
ing details for the teacher strictly follow the original paper.
For testing, we resize all the videos to 256 × 256.

3.2. Comparison with SOTA

Results on UCF-101 & HMDB-51: The results on UCF-101
& HMDB-51 are presented in Table 1. It can be observed



Table 3. Accuracies (%) on Kinetics-400.
Method Backbone Modality Year Top-1 Top-5 GFLOPs

I3D [14] InceptionV1 RD 2017 72.1 90.3 -
TSM [17] ResNet-50 RD 2019 74.7 91.4 1950

SmallBigNet [22] ResNet-50 RD 2020 76.3 92.5 1710
CorrNet [25] ResNet-50 RD 2020 77.2 - 6720

TDN [18] ResNet-50 RD 2021 78.4 93.6 3240

CoViAR [1] ResNet-50 CD 2018 69.1 - 3615
MFCD-Net [11] MF-Net CD 2020 68.3 - 128
TEAM-Net [6] ResNet-50 CD 2021 72.2 - -

TSM+ours ResNet-50 CD - 73.5 90.8 1740
TDN+ours ResNet-50 CD - 77.4 93.1 2760

that our method outperforms the best CD-based methods by
a large margin (1.5% on UCF-101 and 2.1% on HMDB-51).
It indicates that the proposed method extracts more discrim-
inative features from the compressed domain. On the other
hand, the proposed method even outperforms some RD-based
methods, which demonstrates that the RD knowledge is well
learned by the model via our cross-modality KD pipeline.
Results on SSV2: The detailed results including top-1&top-
5 accuracies and computational cost (in FLOPs) are reported
in Table 2. The proposed method consistently outperforms
all of the counterparts using CD data and most of the coun-
terparts using RGB modality (except TDN). Though the pro-
posed method slightly underperforms TDN by 0.1%, it re-
duces 14.8% FLOPs. Considering the proposed method only
requires partial decoding, it is a more efficient method to be
deployed in real-world applications.
Results on Kinetics-400: Kinetics-400 is a large action
recognition dataset that shall further verify the generalization
of the method. As shown in Table 3, Similar to the results
on SSV2, the proposed method outperforms almost all the
competing methods. The performance gap is even larger
(from 5.2% to 8.3%) compared with its counterparts operat-
ing on the compressed domain. It significantly verifies the
effectiveness and generalization of the proposed method.

3.3. Ablation Studies

Effectiveness of each component: We use two popular mod-
els including TSM and TDN as the baselines to verify spatial
KD and temporal KD. In particular, TSM and TDN are adopt-
ed to the RD with three-parallel-backbone (for I-frames, mo-
tion vectors and residuals, respectively) and a fully-connected
(FC) feature fusion layer. The results on UCF-101 and SSV2
are reported in Table 4. Both spatial KD and temporal KD sig-
nificantly improve the performance of the baseline. And the
combination of them obtains a performance gain of around
4% compared with the baseline. The results demonstrate the
effectiveness of each component.
Sensitivity of hyper-parameters: We adopt simple grid
search strategy to determine the best hyper-parameter values,
namely, the values of λ1 and λ2. We first conduct experi-
ments to obtain the value of λ1. Then, λ2 is searched with
λ1 fixed. The results are shown in Table 5. TSM is adopted
as the baseline for hyper-parameter searching. And we find
that the best results for TSM also work well on TDN-based

Table 4. Performance comparison of the proposed method
variants on UCF-101 and SSV2.

Method Spatial KD Temporal KD UCF-101 SSV2-top1 SSV2-top5

TSM [17] No No 92.2 60.1 86.2
TSM+ours Yes No 94.5 61.9 87.6
TSM +ours No Yes 94.0 61.5 87.3
TSM+ours Yes Yes 95.8 62.8 88.2

TDN [18] No No 93.3 62.7 88.1
TDN+ours Yes No 95.6 64.9 89.2
TDN +ours No Yes 95.3 64.1 88.8
TDN+ours Yes Yes 96.9 66.9 90.2

Table 5. Hyper-parameter search and logits distillation results
on UCF-101 and SSV2.

Method λ1 λ2 UCF-101 STSTV2-1 STSTV2-5

TSM [17] 0.0 0.0 92.2 60.1 86.2
TSM+ours 0.01 0.0 93.7 61.3 87.1
TSM+ours 0.1 0.0 94.5 61.9 87.6
TSM+ours 1.0 0.0 93.6 61.1 87.0

TSM+ours+logits 0.1 0.0 94.6 61.9 87.7

TSM+ours 0.1 0.1 94.9 62.3 87.8
TSM+ours 0.1 1.0 95.8 62.8 88.2
TSM+ours 0.1 5.0 95.3 62.4 87.8

TSM+ours+logits 0.1 1.0 95.9 62.8 88.3

frameworks. Consequently, we set λ1 to 0.1 and λ2 to 1.0 for
all the proposed models.
Logits KD: Logits distillation is one of the most commonly
used KD techniques. Logits distillation is added to the pro-
posed method as shown in Table 5. We find that the addition
of logits distillation does not significantly improve the per-
formance. But it introduces one more hyper-parameter and
makes the framework more complex. Therefore, we do not
utilize logits distillation in the proposed framework.

4. CONCLUSION

In this paper, a cross-modality knowledge distillation method
for video action recognition is proposed. It helps the com-
pressed domain based model learn useful knowledge from the
raw-domain-based model and obtain a better performance. In
particular, multi-path spatial and temporal knowledge are first
defined. And an adaptively multi-path knowledge learning
scheme is then presented for efficient learning of the above
knowledge. Experiments on three popular action recognition
datasets verify the superiority of the proposed method.
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