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Retaining Diverse Information in Contrastive
Learning through Multiple Projectors

He Zhu, Shan Yu

Abstract—Contrastive Learning (CL) achieves great success in
learning visual representations by comparing two augmented
views of the same images. However, this very design re-
moves transformation-dependent visual information from the
pre-training, which leads to incomplete representations and is
harmful for downstream tasks. It’s still an open question to
retain such information in the CL pre-training process. In this
paper, we propose a Multi-Projector Contrastive Learning (MPCL)
to address this issue, which produces multi-view contrastive
candidates to retain more comprehensive visual characteristics.
In addition, we introduce a contrast regularization to construct
multiple projectors as different as possible, thereby facilitating
the diversity of preserved information. Finally, to promote a con-
sistent learning process for multi-projector, we design a projector
training balance strategy to adjust the learning preference of
different projectors. MPCL can be applied to various CL frame-
works to effectively protect visual characteristics. Experimental
results show that the method performs well on subsequent tasks
such as linear and semi-supervised image classification, object
detection, and semantic segmentation. Importantly, the visual
transformer trained by MPCL improves 2% absolute points
of linear evaluation beyond the MoCo-v3 on the ImageNet-100
dataset.

Index Terms—multiple projectors contrastive learning, projec-
tor contrastive regularization, projector mining

I. INTRODUCTION

CONTRASTIVE learning [1], [2], [3], [4] has achieved
great success in the field of self-supervised learning. The

common motivation behind CL frameworks is the InfoMax
principle [5], which guides the network to maximize common
features between two transformed views of the same images.
Although CL can perform better than supervised learning
in various downstream tasks, there are intrinsic limitations
of this framework that have not been addressed adequately.
For instance, Hinton et al. [1] point out that optimizing
the contrastive loss may lead the network to remove the
basic visual characteristics, which can be harmful for learning
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generalizable representations of images. How to preserve these
characteristics better in CL remains unclear.

Previous studies have proposed several approaches to ad-
dress this issue. For example, [6] brings up the alignment loss
to preserve the relations of image pairs but it inevitably impairs
the uniformity of embedding spaces. After that, [7] proposes a
hardness-aware loss that enhances alignment while protecting
uniformity, but it only retains the pair-related features rather
than the comprehensive characteristics and has achieved only
limited success in empirical evaluation. Meanwhile, [1] and [8]
identify the projector, which is widely used in CL to compress
the representations extracted from the encoder network to a
lower-dimensional projection, can retain visual information.
However, performance on downstream tasks hardly changes
with different choices of a single projector [1]. We conjecture
that visual features with complex structures may be difficult
to be fully retained by a single projector. Therefore, to address
this issue, here we propose a multi-projector design to retain
more comprehensive characteristics.

To verify our hypothesis, a toy experiment of MPCL
is conducted based on ImageNet-100. MPCL has multiple
projectors which share the same backbone, as shown in
Figure.1. The evaluation of this pre-trained model is carried
out according to previously published alignment loss [6] and
linear classification. The alignment loss measures the distance
of positive pairs. Importantly, Table I shows that the combi-
nation of projectors with the different structures has a higher
similarity of positive pairs which indicates more underlying
visual relationships are retained in the learned representations,
and it yields better downstream performance than the multiple
projectors with the same structure or the single projector.

TABLE I
METRICS OF PRE-TRAINED MODELS WITH DIFFERENT SETTINGS. MODELS

ARE PRE-TRAINED ON IMAGENET-100 BASED ON RESNET-50 (R50). IN
THIS EXPERIMENT, ”SINGLE” MEANS SINGLE PROJECTOR, AND

”MULTIPLE” REPRESENTS USING FOUR PROJECTORS. ”BASELINE”
CORRESPONDS TO THE ORIGINAL MOCO V2 FRAMEWORK. THE

”SAME”/”DIFFERENT” INDICATES THAT THE HIDDEN DIMENSION OF
EACH PROJECTOR IS THE SAME/DIFFERENT. THE VALUE OF 1− LAli

MEANS THE SIMILARITY OF POSITIVE PAIRS. THE VALUE OF −LUni IS A
UNIFORMITY METRIC AS [6]. ”TOP-1” INDICATES TOP-1 ACCURACY OF

LINEAR EVALUATION OF DOWNSTREAM CLASSIFICATION TASK WITH
IMAGENET-100.

Method Projector 1− LAli −LUni Top-1

Baseline Single 0.66 2.00 77.54

Same Multiple 0.66 2.00 77.32
Different Multiple 0.79 2.03 78.12

In addition, a combination of projectors with the same
structure does not outperform a single one, which indicates
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Fig. 1. The pipeline of the proposed multi-projector contrastive learning framework. Ti/T
′
i are the random data augmentation operators sampled from the

same family of augmentations. m,l indexes the different projector numbers. ∗θ are the parameters of the network, and parameters ∗ξ are momentum updated
by ∗θ . sg means stop-gradient. Each projector has its contrastive loss and accuracy, the loss weight of different projectors is updated according to the average
accuracy after the last epoch training, this re-weight contrastive loss Lm

MPCL is shown in the figure. Projector contrastive regularization(PCR) Lm,l
PCR are

calculated pairwise to reduce the similarity among arbitrary two projectors. The bankm stores the m-th projector negative samples. zmi (red colour) is the
representation produced by the m-th head, the PCR loss and MPCL loss are calculated respectively as shown in the figure.

that a naive design of multiple projectors cannot automatically
retain diverse information. Given this, we propose a new
regularization to facilitate projector diversity. Moreover, we
design a strategy to balance the training processes of different
projectors.

Our main contributions are thus summarized as follows:
• We hypothesized that a single projector is difficult to re-

tain full visual information and propose a multi-projector
contrastive learning framework to better retain complex
visual feature structure.

• We propose a contrastive regularization term to facilitate
the diversity of projectors to preserve more information.

• We design a training strategy to enable the network
automatically adjusts its learning preference of different
projectors, achieving a balanced learning process for all
projectors.

II. RELATED WORK

Contrastive learning. Chen et al. [1] and He et al. [9]
pioneered the original CL framework almost simultaneously,
which has become very popular recently, with the main
idea of learning useful representations through attracting
positive pairs and repulsing negative pairs. Chen et al.
[4], [2] improved the baseline by applying powerful data
augmentation and fine-tuning projector settings. Furthermore,
to reduce the CL extension module, previous studies proposed
that the network only attracts positive pairs to achieve
representation learning [10], [11], [3], [12]. These subsequent
variants of the CL framework have greatly simplified its use,
with the importance of the projector consistently verified.

Although careful handling of projector settings is suggested,
no previous study has looked into using multiple projectors
to retain more comprehensive information.

Understanding CL. To understand the mechanism underlying
the strength of CL, lots of studies explore the characteristics
of contrastive features. Recently, lots of experimental studies
[7], [13], [14], [15], [6], [16], [17], [18] find that similar
representation pairs may come from highly different images,
which means that the system learned to ignore such differences
and thereby impairing the quality of learned representations.
Several plain strategies are provided to reduce the influence
of the wrong contrastive candidates through redesigning data
sampling methods or the loss functions, such as negative
sampling [13], [14], data augmentation [15], mixing samples
[19], supervision [2] or distribution loss function [6]. But
these studies do not recognize the underlying mechanisms
causing the loss of useful visual characteristics.

Multiple heads representation learning. Multiple heads
representation learning is usually used for multi-task learning
[20], such as classification and detection heads in the detector
[21], [22]. In addition, multi-head modules are treated
as an attention mechanism to generate redundancy latent
sub-spaces to capture adequate relationships [23], [24], [25],
which significantly benefits natural language processing.
The primary concepts of previous applications involve
collaborative representation learning [26]. Wu et al. [27] and
Gu et al. [28] propose that decoupling output for different
tasks benefits backbone representation learning, but they just
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split the output without any other constraints. To the best
of our knowledge, few studies have explored the advantages
of encouraging diversity in multiple heads representation
learning.

III. METHODS

A. MPCL approach

In this section, we introduce a multiple-projector contrastive
learning framework:

Given an unlabeled training set X = {x1, x2, . . . , xN}, for
the framework with M projectors in MPCL, the CL loss of
the m-th projector is:

Lm(xi) = − log
exp(smi,i/τ)

exp(smi,i/τ) +
∑
k ̸=i

exp(smi,k/τ)
(1)

where smi,j = gmθ (fθ(xi))
T gmξ (fξ(xj)). fθ(·), fξ(·) is the

shared feature/momentum extractor that maps the images
from pixel space to embedding space [1]; gmθ (·), gmξ (·) is
corresponding to the m-th projector cascaded behind the
feature/momentum extractor and τ is a temperature hyper-
parameter.

B. Projector contrastive regularization (PCR)

Multiple projectors with different structures cannot guar-
antee to maximize the diversity of retained information, and
different structures are cumbersome for implementation. Thus,
to address this issue, we propose the projector contrastive
regularization (PCR) approach: for each representation, its
projection from one projector needs to be different from the
outputs on other projectors as Eq.2.

LB,m
PCR =

B∑
b

1

M − 1

M∑
l ̸=m

⟨zmb , zlb⟩d
∥zmb ∥

2

∥∥zlb∥∥2 (2)

where m, l are the indices of the projectors, zm, zl are the
outputs of the different projectors, B is the batch size, b is the
index of samples in the batch, and d is the index of the vector
components of the output.

Note, Zm,l =
⟨zm

b ,zl
b⟩d

∥zm∥2∥zl∥2
is the cross-correlation matrix

computed between the outputs of the two different projectors.
The PCR loss maximizes the variability of the representa-

tions learned by different projectors. It relies on batch statistics
to measure this variability.

C. Projector training balance (PTB)

Multiple projectors have variable training progress due to
different learning difficulties that they face. To balance the
training process, the network needs to adjust different learning
preferences, which means more attention should be paid to the
projector with poor contrastive performance.

A new projector mining strategy enables the network to
adjust its learning preference. Specifically, each projector has
its loss and accuracy of the contrastive task, the network could
assign the weight of different projectors according to their last
epoch’s accuracy by:

wm =
exp((1− accm)/ϵ)∑M
k exp((1− acck)/ϵ)

(3)

where accm represents the one epoch mean accuracy of m-th
projector’s contrastive task, ϵ is a hyper-parameter (ϵ = 0.5).

Therefore, the total loss is :

L =
1

M

N∑
n

M∑
m

(

bn∑
i

wmLm(xi) + λLbn,m
PCR) (4)

where M is the total projector number, N is the total number
of training batches, bn is n-th batch data, and λ is a hyper-
parameter (λ=0.01), and m indexes the projector numbers.

IV. EXPERIMENTS

A. Implementation details

For the ImageNet-100/ImageNet experiments, our method is
based on the official MoCo code. We use eight 3080-ti GPUs
for training and the batch size is 128/256.

Detection/segmentation1 and semi-supervised classification2

are based on the open-source code to evaluate the pre-trained
encoder. The image scale is in [640, 800] pixels during training
and 800 at inference. Our method and MoCo use the same
hyper-parameters as the ImageNet-supervised counterpart (i.e.,
we do not perform any method-specific tuning).

B. PCR effectiveness

In this section, we provide the experimental evidence to
verify the effectiveness of contrastive regularization (based on
the ImageNet-100 linear classification experiments), as shown
in Table II. To this end, several widely used techniques are
compared, including initialization, and dropout.

TABLE II
DIFFERENT METHODS AIM AT PROMOTING THE DIVERSITY OF DIFFERENT
PROJECTORS. EVALUATION OF IMAGENET-100 LINEAR CLASSIFICATION.

MODELS BASED ON RESNET-50 WITH FOUR PROJECTORS. ’MIX INIT.’
INDICATES WHETHER THE MULTIPLE PROJECTORS USED MIXED

INITIALIZATION. ’DROPOUT’ INDICATES PROJECTORS WITH DROPOUT.
’ORTH.’ MEANS WEIGHTS OF MPHS WERE CONSTRAINED TO BE

ORTHOGONAL. ”TOP-1” INDICATES THE TOP-1 ACCURACY OF LINEAR
EVALUATION OF DOWNSTREAM CLASSIFICATION TASK WITH

IMAGENET-100. THE BEST RESULTS ARE IN BOLD.

Framework Method Arch. Epoch Top-1

MoCo v2 - R50 200 77.50

MPH - R50 200 77.32
MPH Dropout R50 200 76.31
MPH Mix Init. R50 200 77.90
MPH Orth. R50 200 77.70
MPH PCR R50 200 78.70

In the ’mix init.’ experiments, different projectors use
different initialization methods to build diverse projectors,
i.e., namely Kaiming [29] and Xavier[30]. In the ’dropout’
experiments, dropout is introduced to the projectors [31] to
generate diverse features.

The results show that the PCR method retains more diverse
features and achieves better representation learning.

1https://github.com/facebookresearch/moco
2https://github.com/facebookresearch/barlowtwins
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C. Calculation costs

The use of MPHs introduces additional computational costs
during the pre-training process. Here we evaluate the compu-
tational cost of the multi-projector and optimize the projector
number settings. In the evaluation of projector numbers on lin-
ear classification as shown in Table III. Additional projectors
benefit the performance, which indicates diverse projectors
can retain more comprehensive information. However, we find
that too many projectors can impair the performance although
PTB improves, which is probably due to increased difficulty
in training a highly heterogeneous. Thus, in the following
experiments, four projectors are used as the standard setting.

TABLE III
PRE-EXPERIMENTS ON IMAGENET-100 LINEAR CLASSIFICATION.

MODELS WERE BASED ON RESNET-50. ”NUM.” IS THE NUMBER OF
PROJECTORS. ”TOP-1” INDICATES THE TOP-1 ACCURACY. ”+PTB” MEANS

TRAINING WITH PTB. THE BEST RESULTS ARE IN BOLD.

Method Num. Params. Epoch Top-1 +PTB

MPH + PCR

1 27.97 200 77.50 -
2 28.23 200 77.52 77.73
4 28.75 200 78.70 79.18
8 29.80 200 77.83 78.82

D. Downstream tasks

1) Linear classification: Table IV demonstrates the same
behaviors of the linear classification as shown in the toy
experiment. Previous solutions achieve little success in linear
probing, but our approach shows significant improvement.

TABLE IV
LINEAR CLASSIFICATION EVALUATION ON IMAGENET. TOP-1

CENTER-CROP ACCURACY OF FULLY CONNECTED CLASSIFIERS FOR
IMAGENET IS REPORTED. * DENOTES REPRODUCED RESULTS. THE BEST

RESULTS ARE IN BOLD.

Method Epochs Top 1

MoCo v2∗ [4] 200 67.50
Align∗ [6] 200 67.69
Hard Sampling∗ [7] 200 67.55
MoCHi∗[19] 200 67.60
ContrastiveCrop∗ [18] 200 67.80

MPH + PCR 200 68.22
MPH + PCR + PTB 200 68.54

2) Semi-supervised classification: We fine-tune the pre-
trained ResNet-50 on a subset of the ImageNet dataset using
our method. We use 1% and 10% subsets according to
SimCLR [1]. Table V shows that our approach outperforms
competing methods in the semi-supervised learning task.

3) Detection and segmentation: Following previous re-
search [9], we use Mask R-CNN [33] with a C4 back-
bone, with batch normalization tuned and synchronized across
GPUs. Table VI shows the object detection and semantic seg-
mentation results for the COCO dataset [32], which indicates
that our proposal also has a better transferability on various
visual downstream tasks.

4) Self-supervised Learning Frameworks: To evaluate the
generalization performance of the MPCL, here we adapt it
to Barlow Twins (ResNet) [12] and MoCo v3 [25] (Visual
Transformer [34]). As shown in Table VII, the improvement
of PCR is less affected by the batch size, and the results show

TABLE V
SEMI-SUPERVISED LEARNING ON IMAGENET USING 1% AND 10%

TRAINING EXAMPLES. * DENOTES REPRODUCED RESULTS. THE BEST
RESULTS ARE IN BOLD.

Method 1% Label 10% Label

Top-1 Top5 Top-1 Top5

Supervised [32] 25.40 48.40 56.40 80.40

MoCo v2∗ [4] 43.25 72.68 63.52 86.21
MoCHi∗ [19] 43.42 72.02 63.45 86.12

MPH+PCR 43.84 73.39 64.43 87.10
MPH+PCR+PTB 44.12 73.61 64.75 87.30

TABLE VI
INSTANCE SEGMENTATION AND OBJECT DETECTION RESULTS ON COCO

WITH THE ×1 TRAINING SCHEDULE AND A C4 BACKBONE. * DENOTES
REPRODUCED RESULTS. THE BEST RESULTS ARE IN BOLD.

Method APmk APmk
50 APmk

75 AP bb AP bb
50 AP bb

75

MoCo v2∗ [4] 34.2 55.4 36.2 39.0 58.6 41.9
MoCHi∗[19] 34.4 55.6 36.7 39.2 58.8 42.4
CCrop∗ [18] 34.5 55.5 36.4 39.2 58.8 42.2

MPH+PCR 34.2 55.9 36.6 39.6 59.3 42.9
MPH+PCR+PTB 34.6 56.2 36.9 40.0 59.5 43.1

that our method improves the performance of the advanced CL
frameworks and consistently has a positive effect on various
networks.

TABLE VII
EXPERIMENTS OF IMAGENET-100 LINEAR CLASSIFICATION. MODELS

WERE BASED ON RESNET-50/VIT-BASE. ”SAME” AND ”DIFF.” INDICATE
THAT THE HIDDEN DIMENSION OF MPHS IS SAME/DIFFERENT,

RESPECTIVELY. ”TOP-1” INDICATES THE TOP-1 ACCURACY OF LINEAR
EVALUATION OF DOWNSTREAM CLASSIFICATION TASK WITH

IMAGENET-100. THE BEST RESULTS ARE IN BOLD.

Method Arch. Epochs Batch Top 1

Barlow Twins[12] Res50 300 1024 79.86
MPH + PCR Res50 300 1024 80.36
MPH + PCR + PBT Res50 300 1024 80.58

iBOT [35] ViT-B 300 512 81.30
MAE [36] ViT-B 300 2048 74.40
MoCo v3 [25] ViT-B 300 2048 79.60
MoCo v3 [25] ViT-B 300 4096 80.08

MPH(Same) ViT-B 300 4096 79.74
MPH(Diff.) ViT-B 300 4096 80.81
MPH+PCR ViT-B 300 4096 81.68
MPH+PCR+PTB ViT-B 300 2048 81.68
MPH+PCR+PTB ViT-B 300 4096 82.02

V. DISCUSSION AND CONCLUSIONS

In this paper, we propose a multi-projector contrastive
learning approach to address the information loss problem
in CL. For the first time, we demonstrate that projectors of
different structures can jointly retain more features of the
image, and explore the encouragement of diverse preservation
of projectors of the same structure by PCR. Last but not
least, to promote a consistent learning process, we devise a
projector training balance strategy. Experimental results show
that MPCL minimizes information loss by preserving distinct
features and provides considerable gains over state-of-the-art
methods, which consistently positively impact transfer learning
performance. MPCL is versatile, transferable, and low-cost
among other approaches to improve representation learning.
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