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Abstract-A neural-network-based finite-horizon optimal 
tracking control scheme for a class of unknown nonlinear 
discrete-time systems is developed. First, the tracking control 
problem is converted into designing a regulator for the tracking 
error dynamics under the framework of finite-horizon optimal 
control theory. Then, with convergence analysis in terms of 
cost function and control law, the iterative adaptive dynamic 
programming algorithm is introduced to obtain the finite
horizon optimal controller to make the cost function close to 
its optimal value within an g-error bound. Furthermore, in 
order to implement the algorithm via dual heuristic dynamic 
programming technique, three neural networks are employed 
to approximate the error dynamics, the cost function, and the 
control law, respectively. In addition, a numerical example is 
given to demonstrate the validity of the present approach. 

Index Terms-Adaptive dynamic programming, approximate 
dynamic programming, finite-horizon optimal tracking control, 
intelligent control, neural networks. 

I. INTRODUCTION 

The tracking control problem has been studied by many 

researchers owing to its wide practical applications [1], 

[2]. Among that, the finite-horizon optimal tracking control 

problem is different from the infinite-horizon one. In the 

former issue, the controlled system must be tracked to a ref

erence trajectory in a finite duration of time. Thereupon, the 

controller design method for the two cases is also dissimilar. 

Via appropriate system transformation, the tracking control 

problem can be converted into the regulator problem, which 

can be solved under the framework of optimal control theory. 

However, when dealing with the nonlinear optimal control 

problem, we often encounter the time-varying Hamilton

Jacobi-Bellman (HJB) equation which is difficult to tackle. 

Besides, the use of dynamic programming (DP) is usually 

confined to small dimension problem because of the "curse 

of dimensionality". Then, by combining DP with artificial 

neural networks (ANN or NN), the adaptive/approximate 

dynamic programming (ADP) approach was proposed by 

Werbos in [3] as a method for solving this optimal control 

problem forward-in-time. 
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The ADP approach has currently become a fundamental 

component of intelligent control [3] and computational in

telligence [4]. Much progress has acquired in this field in 

terms of theory and application [3], [5]-[15]. In the light of 

[3] and [9], ADP approach was classified into the following 

schemes: heuristic dynamic programming (HDP), action

dependent HDP (ADHDP) , also known as Q-learning, dual 

heuristic dynamic programming (DHP), ADDHP, globalized 

DHP (GDHP), and ADGDHP. Thereinto, some methods were 

employed for handling the optimal tracking control problem 

based on ADP [14], [15]. Besides, it should be mentioned that 

Park et al. [16] utilized the multilayer NN to get the optimal 

tracking neuro-controller for discrete-time nonlinear systems 

with quadratic cost function. However, [16] did not take the 

ADP method, while [14] and [15] were aimed at handling the 

infinite-horizon tracking control problem. In that way, there 

is still no result to solve the finite-horizon optimal tracking 

control problem for unknown nonlinear discrete-time systems 

based on iterative ADP algorithm via DHP technique. In this 

paper, we will handle this model-free optimal tracking control 

problem using the DHP technique. The theoretical principle 

is to introduce the finite-horizon optimal control scheme to 

deal with the regulation problem, which is converted from 

the original tracking control problem. 

II. PRELIMINARIES 

Consider the nonlinear discrete-time systems given by 

(1) 

where Xk E ]Rn is the state vector, Up (Xk ) E ]Rm is 

the control vector, 10 and g(.) are differentiable in their 

argument with 1(0) = O. Assume that 1 + gup is Lipschitz 

continuous on a set n in ]Rn containing the origin, and that 

the system (1) is controllable in the sense that there exists 

a continuous control on n that asymptotically stabilizes the 

system. Note that in the following part, Up (Xk ) is denoted by 

Upk for simplicity. 

For handling the optimal tracking control problem, we 

should determine the optimal control law u; , which can 

make the nonlinear system (1) to track a reference trajectory 



r E ]Rn in an optimal manner. The tracking error is defined 

as 

(2) 

Inspired by the work of [14]-[16], we define the steady 

control corresponding to the reference trajectory r as 

(3) 

where g-l(r)g(r) = 1m and 1m is an m X m identity matrix. 

Let 

(4) 

Then, considering (1)-(4), we can obtain the error dynamics 

as follows: 

ek+l = f(ek + r) + g(ek + r)g-l(r)(r - f(r)) 
- r + g(ek + r)uk (5) 

where ek and Uk are regarded as the state and input vector 

of the error dynamic system, respectively. For simplicity, (5) 

can be rewritten as 

(6) 

Let eo be an initial state vector of system (6) and define 

yff-l = (uo,Ul, ... ,UN-I) be a control sequence with 

which the system (6) gives a trajectory starting from eo: 
el = F(eo, Uo), e2 = F(el, ud, ... , eN = F(eN-l, uN-d· 

We call the number of elements in the control sequence 

yff -1 the length of y,� -1 and denote it as I y,� -11. Then, 

lyff-11 = N. The final state under the control sequence 

yff-l 
is denoted as e(f)(eo,y,�-I) = eN. Now, let y,f-1 

= 

(Uk,Uk+l, ... ,UN-I) be a control sequence starting at k 
with length N - k, i.e., ly,f-ll = N - k. For solving the 

finite-horizon optimal tracking control problem, it is desired 

to find the optimal control sequence which minimizes the 

following cost function 

N-l 
J(ek,y,f-l) = L U(ei,ui) (7) 

i=k 
where U is the utility function, U(O, O) = 0, U(ei, Ui) � 
o for V ei, Ui. Here, the utility function is chosen as the 

quadratic form as U(ei, Ui) = e;Q ei+u; RUi, which can not 

only force the system state to follow the reference trajectory, 

but also force the system input to be close to the steady value 

in maintaining the state to its reference value. 

Consequently, the problem of solving the finite-horizon 

optimal tracking control law u; for system (1) is transformed 

into seeking the finite-horizon optimal control law u* for 

system (6) with respect to (7). Next, we will focus on design

ing u* under the framework of finite-horizon optimal control 

theory. Incidentally, the devised feedback control must be 

finite-horizon admissible, which is defined as follows. 

Definition 1: A control sequence y,f -1 is said to be finite

horizon admissible for a state ek E ]Rn with respect to (7) on 
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n if U is continuous on a compact set nu E ]Rm, u( O) = 0, 
e(f)(ek,y,f-l) = 0 and J(ek,y,f-l) is finite. 

Let 

be the set of all finite-horizon admissible control sequences 

of ek and 

2((i) = { uk+i-1: e(f) (e uk+i-1) = 0 l uk+i-11 = i} ek -k k'-k , -k 
be the set of all finite-horizon admissible control sequences 

of ek with length i. The optimal cost function is denoted as 

J*(ek) and is defined as 

J*(ek) = inf {J(ek,y,k): Y,k E 2(ek} .  (8) 
�k 

According to Bellman's optimality principle, J*(ek) satisfies 

the discrete-time HJB (DTHJB) equation 

J*(ek) = min {U(ek, Uk) + J*(ek+l)} . (9) 
Uk 

Meanwhile, the optimal control u* satisfies the first-order 

necessary condition, which is formulated as 

u*(ek) = argmin {U(ek, Uk) + J*(ek+d}. (10) 
Uk 

Because it is difficult to solve the DTHJB equation (9) 

directly, we will propose an iterative algorithm to get its 

solution approximately. Before that, we assume the inverse 

of the control coefficient matrix g(ek + r) exists. This make 

sure that for given ek, there exists an initial control Uk to 

transfer ek to zero in one time step. 

III. FINITE-HoRIZON OPTIMAL TRACKING CONTROL 

SCHEME BASED ON ITERATIV E  ADP ALGORITHM 

Now, we deal with the finite-horizon optimal tracking 

control problem for system (1) by using the iterative ADP 

algorithm. It is equivalent to handle the finite-horizon optimal 

control problem for system (6). 

A. Derivation of the Iterative Algorithm 

In this part, we present the iterative ADP algorithm. First, 

we start with the initial cost function Va ( .) = 0 and solve 

vo(ek) as 

vo(ek) = argmin {U(ek, Uk) + Vo(ek+d} 
Uk 

subject to F(ek, Uk) = O. (11) 

Then, we update the cost function as 

VI (ek) = min {U(ek, Uk) + Vo(ek+1)} Uk 

= U(ek, vo(ek)), 
which can also be written as the following form: 

V1(ek) = minU(ek,uk) subject to F(ek,uk) = 0 
Uk 

(12) 



Next, for i = 1,2, . .. , the algorithm can be carried out 

between 

and 

Vi(ek) = arg min {U(ek, Uk) + �(ek+l)} 
Uk 

= argmin{U(ek,uk) + �(F(ek,uk))} (13) 
Uk 

�+1(ek) = min {U(ek, Uk) + �(ek+1)} Uk 

= U(ek, Vi (ek)) + �(F(ek' Vi (ek))). (14) 

In the following part, we will present the convergence 

analysis of the iteration between (13) and (14) with the cost 

function � --+ J* and the control law Vi --+ U* as i --+ 00. 
Here, we expand �+1(ek) to see what it will be. Considering 

(12) and (14), we can derive the following expression: 

i 
�+1(ek) = min L U(ek+j,uk+j) 

uk+'1. -k j=O 
subject to F(ek+i, Uk+i) = ° 

= min {J(ek Uk+i) : Uk+i E !!(i+1)}. (15) 
k+i ' -k -k ek 

:!!k 

Using the relationship between (13) and (14), it is impor

tant to note that (vi(ek),vi-l(ek+d, ... ,vo(ek+i)) is the 

finite-horizon admissible control sequence corresponding to 

�+l (ek) with length i + 1. Thereupon, (15) can be rewritten 

as i 
�+l(ek) = L U(ek+j,Vi-j(ek+j)). (16) 

j=O 
B. Convergence Analysis of the Iterative Algorithm 

Theorem I: Suppose the set of the finite-horizon admis

sible control sequences of ek with length 1 is not null, 

i.e., !!��) -=I- 0. Define the cost function sequence {�} 
as in (14) with Vo( -) = 0. Then, we can conclude that 

{�} is a monotonically nonincreasing sequence satisfying 

�+l(ek) � �(ek) for Vi � 1, i.e., V1(ek) = max{�(ek) : 
i = 1,2, ... }. 

Proof" The theorem can be proved by using mathemat

ical induction. 

First, we let i = 1. The cost function V1 (ek) is given in 

(12) and the finite-horizon admissible control sequence with 

length 1 is 11Z = (vo(ek)). Now, we show that there exists a 

finite-horizon admissible control sequence 11Z+1 with length 

2 such that J(ek,11Z+1) = Vl(ek). Let 11Z+1 
= ( 11Z,O) ,  then 

I11Z+11 = 2. Since ek+1 = F(ek, vo(ek)) = ° and Uk+l = 0, 
we have ek+2 = F(ek+l, Uk+l) = F(O,O) = 0. Thus, 11Z+1 
is the finite-horizon admissible control sequence with length 

2. Since U(ek+l, Uk+l) = U(O, 0) = 0, we obtain 

J(ek,11Z+1) = U(ek, vo(ek)) + U(ek+l, uk+d 
= U(ek, vo(ek)) 
= V1(ek). 
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Note that according to (15), we have 

V2(ek) = min {J(ek Uk+1) : Uk+l E !!(2)}. k+l '-k -k 
:!!k 

Then, we can derive that 

Therefore, the theorem holds for i = 1. 

(17) 

Next, assume that the theorem holds for any i = q - 1, 
where q is an integer and q > 2. Here, the cost function 

Vq(ek) can be formulated as 

q-l 
Vq(ek) = L U(ek+j, Vq-l-j(ek+j)). (18) 

j=O 

Note 11Z+q-1 
= (vq-l(ek), vq-2(ek+l), ... , vo(ek+q-d) is 

the finite-horizon admissible control sequence corresponding 

to Vq(ek) with length q. 
Then, for i = q, we can construct a control sequence 

11Z+q 
= (vq-l(ek),vq-2(ek+l), ... , vo(ek+q-l), 0) with 

length q + 1, under which the error trajectory is given as 

ek, ek+l = F(ek, vq-l(ek)), ek+2 = F(ek+l, vq-2(ek+d), 
... , ek+q = F(ek+q-l, vo(ek+q-l)) = 0, ek+q+1 = 

F(ek+q, Uk+q) = F(O,O) = 0. Hence, 11Z+q 
is a finite

horizon admissible control sequence with length q + 1. 
Considering U(ek+q, Uk+q) = U(O,O) = 0, we obtain 

J(ek,11Z+q) = U(ek,vq-l(ek)) + U(ek+l,Vq-2(ek+l)) 
+ ... + U(ek+q_l, vo(ek+q-l)) 
+ U(ek+q, Uk+q) 
q-l 

= L U(ek+j, Vq-l-j(ek+j)) 
j=O 

= Vq(ek). 

According to (15), we have 

V; ( )  . {J( k+q) k+q Ol(q+l)} q+l ek = ��� ek,y.k : Y.k E 
�ek • 

-k 

Then, we can derive that 

This completes the proof. • 
According to Theorem 1, we derive that the cost function 

sequence {�(ek)} is monotonically nonincreasing. Besides, 

the quadratic form of the utility function render �(ek) � 
° for Vi � 0, which reveals that the sequence {�(ek)} 
is bounded below. Therefore, the limit of the cost func

tion sequence exists. Here, we denote it as Voo(ek), i.e., 

limi---+oo �(ek) = Voo(ek). 
Theorem 2: Define the cost function sequence {�} as in 

(14) with Vo( -) = 0. If the state ek of the error dynamic 



system is controllable, then J* is the limit of the cost function 

sequence {Vi}, i.e., 

Voo(ek) = J*(ek). (20) 

Proof" On the one hand, considering (8) and (IS), we 

can obtain 

J*(ek) = inf {J(ek,'!!<k): '!!<k E 2lek} 
:!!k 

< min {J(e uk+i-I) : uk+i-I E 2l(i) } 
- k+i-l 

k'-k -k ek 
:!!k 

= Vi(ek). 

Let i -+ 00. Then, we get 

(21) 

On the other hand, according to the definition of J*(ek), 
for any 'T} > 0, there exists an admissible control sequence 

Q.k E 2lek such that 

(22) 

We suppose lQ.k I = q, which means that Q.k E 2l��). Then, 

we can acquire that 

Voo(ek) ::; Vq(ek) 
= min {J(ek Uk+q-I) : Uk+q-I E 2l(q) } 

k+q-l ' -k -k ek 
:!!k 

::; J (ek ,Q.k) .  (23) 

Combining (23) with (22), we have 

(24) 

Noting that 'T} is chosen arbitrarily in (24), we can obtain that 

(25) 

Based on (21) and (25), we conclude that J*(ek) is the limit 

of the cost function sequence {Vi} as i -+ 00, i.e., Voo(ek) = 

J*(ek). • 
According to Theorems 1-2, we have proved that the cost 

function sequence {Vi(ek)} of the iterative ADP algorithm 

converges to the optimal cost function J*(ek) of the DTHJB 

equation, i.e., Vi -+ J* as i -+ 00. Then, considering (10) and 

(13), we can conclude the convergence of the corresponding 

control law sequence, i.e., limi-+oo vi(ek) = u*(ek). 
C. The c-Optimal Control Algorithm 

The aforementioned conclusions inlply that we should 

run the iterative ADP algorithm (11)-(14) until i -+ 00 
to obtain the optimal cost function J*(ek). Then, we can 

derive a control vector voo( ek), i.e., the optimal control vector 

u*(ek), based on which we can construct a control sequence 

'!!<oo(ek) = (voo(ek), voo(ek+1)' ... ' voo(ek+i), ... ) to make 

ek+i -+ 0 as i -+ 00. Obviously, :goo(ek) has infinite length. 

However, it is always not practical to acquire '!!<oo (ek) because 

most real world systems need to be effectively controlled 
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within finite time steps. Therefore, in this part, we will 

propose an c-optimal control strategy using the iterative ADP 

algorithm, in order to transfer the error dynamics to zero 

within finite steps. 

Let c > 0 be any small number, ek be any controllable 

state of the error dynamic system, and J* (ek) be the optimal 

value of the cost function sequence {Vi(ek)}. According to 

Theorem 2, it is clear that there exists a finite integer i such 

that 

(26) 

The length of the optimal control sequence starting from ek 
with respect to c is defined as 

(27) 

According to (13) and (14), the control law corresponding to 

Vi(ek) is 

vi-I(ek) = argmin {U(ek,uk) + Vi-I (ek+I)}. (28) 
Uk 

It is called the c-optimal control and is denoted as p,;(ek). 
In this way, we can see that an error c between Vi(ek) 

and J*(ek) is introduced into the iterative ADP algorithm. 

This makes sure that the cost function sequence {Vi(ek)} can 

converge to its optimal value during finite iteration steps. 

However, it is difficult to employ the criterion (26) in 

practice because the optimal cost function J*(ek) is unknown 

in advance. As a result, we introduce the following criterion 

to replace (26): 

(29) 

IV. IMPLEMENTATION OF THE ITERATIV E  ALGORITHM 

USING NN-BASED DHP TECHNIQUE 

In this section, we implement the iterative ADP algorithm 

via DHP technique, which is called iterative DHP algorithm 

for short. In the iterative DHP algorithm, there are three 

networks, which are model network, critic network and action 

network. Note that all the networks are chosen as three-layer 

feedforward NNs. The structure diagram of the iterative DHP 

algorithm is shown in Fig. 1, where W = ({)e'k+1/8 ek)T. 

e, 

,--7'-/-,/--------------------------1 

'-------'>",-,,--' ------------------------------------------------------: 
_ Signal Line 
----------. Back-propagating Path � Weight Transmission 

Fig. 1. The structure diagram of the iterative DHP algorithm 



A. The Model Network 

We design the model network for identifying the error 

dynamics. After the model network is trained sufficiently, 

we have 

F(ek'Uk)=w�a(v�[ e[ u[f) . (30) 

Taking the partial derivative of both sides of (30) with respect 

to Uk yields 

8 (w�a(v�[ e[ u[]T) ) 
g(ek+r)= 8 . (31) Uk 

Hence, we can avoid the requirement of knowing the system 

dynamics when implementing the algorithm. For one thing, 

we can use the trained model network to compute the error of 

the next time step. For another, we can derive the expression 

of the iterative control law with the help of (31). 

B. The Critic Network 

The critic network is used to approximate the derivative of 

the cost function Vi(ek), which is named as costate function 

and formulated as Ai(ek) = 8Vi(ek)/8 ek. Here, we show 

what Ai(ek) will be when it is expanded. According to (28), 

vi-l(ek) is just the solution of the following equation with 

respect to Uk: 

8U(ek,Uk) + (8 ek+1) T 8Vi-l(ek+l) = O. 8Uk 8Uk 8 ek+1 
Then, we have 

(32) 

8U(ek,vi-l(ek)) ( 8 ek+1 ) T 8Vi-l(ek+d 
---'---":..:........:'---=-�� + = 0 8vi-l(ek) 8vi-l(ek) 8 ek+l 

. 

Therefore, considering (33), we can obtain 

\ ( )  8U(ek, Vi-l (ek)) 8Vi-l(ek+d Ai ek = + --'------'''--'---'-'--'--''-'-8 ek 8 ek (8 ek+1)T 
= 2Q ek + 8 ek Ai-l (ek+1)' 

We denote the output of the critic network as 

A 

T ( T Ai(ek) = Weia Vei ek) . 

(33) 

(34) 

(35) 

In the iteration process, the target function of the critic 

network is 

(36) 

Then, the error function for training the critic network can 

be defined as 

(37) 
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Besides, the objective function to be minimized of the critic 

network is 

(38) 

The weight updating rule for training the critic network is 

also gradient-based adaptation, so 

( . 1) ( .) [ 8Eeik ] Wei J + = Wei J - O!e 8Wei(j) 

( . 1) ( .) [ 8Eeik ] Vei J + = Vei J - O!e 8Vei(j) 

(39) 

(40) 

where O!e > 0 is the learning rate of the critic network, 

and j is the inner-loop iteration step for updating the weight 

parameters. 

The training process of action network is omitted here, 

which can be referred to [11]. 

Remark 1,' According to Theorems 1-2, Vi ---+ J* as i ---+ 
00. Since Ai(ek) = 8Vi(ek)/8 ek, we can conclude that the 

costate function sequence {Ai} is also convergent with Ai ---+ 
A * as i ---+ 00. 

After training the three NN s, we obtain the optimal control 

input uk for system (5) under the given error bound c. As 

a result, we can compute the optimal tracking control input 

U;k for original system (1) by 

U;k = u*(ek) + Udk 
= u*(ek) + g-l(r)(r - f(r)). (41) 

The control law u; can make system (1) to track the selected 

reference trajectory in an optimal manner. 

V. SIMULATION STUDY 

In this section, we illustrate the theoretical results of the 

iterative DHP algorithm for solving the optimal tracking 

control problem. The example is derived from [14] with some 

modifications. Consider the nonlinear system described by [ 0.2Xlk e"'�k ] [ -0.5 0 ] Xk+1 = 0.3x�k 
+ 0 -1 Upk (42) 

where Xk = [Xlk x2kjT E ]R2 and Upk = [Uplk Up2k]T E ]R2 
are the state and control variables, respectively. The param

eters of the cost function are chosen as Q = I and R = I, 
where I denotes the identity matrix with suitable dimensions. 

The state of the controlled system (42) is initialized to be 

Xo = [-0.5 IjT, while the reference trajectory is selected 

as r = [0.5 - IjT. 
We set the error bound of the finite-horizon optimal control 

problem as c = 10-4 and implement the iterative DHP 

algorithm at time instant k = O. According to (11), we 

derive the initial control input of system (5) is vo(eo) = 
[-0.4 e 0.6jT, where eo = [-1 2jT. Then, we choose three

layer feedforward NNs as model network, critic network and 

action network with the structures 4--8-2, 2-8-2, and 2-8-

2, respectively. The initial weights of three networks are all 



set to be random in [-0. 1, 0. 1]. First, we train the model 

network for 500 time steps using 100 data samples under the 

learning rate am = 0. 1. After the model network is trained 

sufficiently, its weights are kept unchanged. Then, we train 

the critic network and action network for 25 iterations (Le., 

for i = 1,2, . . .  ,25) with each iteration of 1000 training 

epochs to make sure the given error bound c = 10-4 is 

reached. In the training process, the learning rate ac = 

aa = 0.05. The convergence process of the costate function 

sequence of the iterative DHP algorithm is shown in Fig. 2, 

for k = O. We can see that the iterative costate function 

sequence converges to the optimal one ultimately, which 

supports the statement of Remark 1. Note that we have 

!V24(eo) - V25(eo) I :::; c, which means the length of the 

optimal control sequence starting from eo with respect to 

c is Kc:(eo) = 24. Besides, the c-optimal control law p,;(eo) 
for system (5) can also be obtained after the iteration process. 

(a) (b) 
..,'" 5 

..,� 
to to 4 0 0 :u u 3 to to .2 .2 
� -1 

� 2 

0 0 0 0 '" '" 0 .<; .<; I-- I--
-1 

5 10 15 20 25 0 5 10 15 20 25 
Iterations Iterations 

Fig. 2. (a) The convergence process of {Ali}. (b) The convergence process 
of {A2il. 

Now, we apply the derived control law to the error dynamic 

system (5) for 25 time steps, and obtain the control and error 

trajectories are shown in Fig. 3(a) and 3(b), respectively. 

Actually, we can compute the tracking error becomes e24 = 

[0.2217 x 10-4 -0. 1490 X 1O-4jT after 24 time steps. These 

results substantiate the excellent performance of the tracking 

controller derived by the iterative DHP algorithm. 

(a) (b) 
0.6 2 

'5 g g c. 0.4 \" 
. 

- • - U2 ,!;; ., 
e \ Cl to 

0.2 \ :i: c: 0 0 1 g 0 '" 
°lr 

., .<; .<; I-- I--

-0.2 
0 5 10 15 20 25 5 10 15 20 25 

Time Time 

Fig. 3. (a) The control input u of the error dynamic system. (b) The 
tracking error e. 

VI. CONCLUSION 

In this paper, a model-free iterative algorithm is employed 

to design the finite-horizon near-optimal tracking controller 
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for a class of unknown nonlinear discrete-time systems. 

Through system transformation, the tracking problem is con

verted into seeking the finite-horizon optimal control law for 

the error dynamic system. Then, the iterative ADP algorithm 

is introduced to deal with the DTHJB equation by using DHP 

technique. Additionally, the simulation example certified the 

validity of the tracking control scheme. 
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