
  

Abstract—Major depressive disorder (MDD) is a complex 
mood disorder characterized by persistent and overwhelming 
depression. Previous studies have identified large scale 
structural brain alterations in MDD, yet most are group analyses 
with atlas-parcellated anatomical regions. Here we proposed a 
method to measure individual difference by independent 
component analysis (ICA)-based individual difference 
structural similarity network (IDSSN). This approach provided 
a data-adaptive, atlas-free solution that can be applied to new 
individual subjects. Specifically, we constructed individualized 
whole-brain structural covariance networks based on network 
perturbation approach using spatially constrained ICA. First, a 
set of benchmark independent components (ICs) were generated 
using gray matter volume (GMV) from all healthy controls. 
Then individual heterogeneity was obtained by calculating 
differences and other similarity metrics between ICs derived 
from “each one patient + all controls” and the benchmark ICs, 
resulting in 32 imaging features and structural similarity 
networks for each patient, which can be used for predicting 
multiple clinical symptoms. We estimated IDSSN for 189 
adolescent MDD patients aged 10-20 years and compared them 
to 112 healthy adolescents. We tested their predictability of the 
Hamilton Anxiety Scale , the 17-item Hamilton Depression Scale 
and six clinical syndromes using connectome-based predictive 
modeling. The prediction results showed that ICA-based IDSSN 
features reveal more disease-specific information than those 
using other brain templates. We also found that depression-
associated networks mainly involved the default-mode network 
and visual network. In conclusion, our study proposed an 
adaptive method that improves the ability to detect GMV 
deviations and specificity between one individual patient and 
healthy groups, providing a new perspectives and insights for 
evaluating individual-level clinical heterogeneity based on brain 
structures. 

I. INTRODUCTION  
Major depressive disorder (MDD), a serious mental 

disorder, is characterized by persistent depressed mood and 
decreased interest, and often accompanied by cognitive 
impairment and various physical complaints[1]. Although 
tremendous efforts have been dedicated to understanding the 
mechanisms by which MDD arises and to seeking effective 
therapies. However, much remains unknown about the 
etiology and pathogenesis of the disorder. The early stages of 
individual development are known to be an important time for 
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the development of brain structure and function. As one of the 
most common psychiatric disorders during childhood and 
adolescence, MDD can have a significant impact when it 
develops during childhood and adolescence. Poor 
performance in school, increased risk for other mental health 
disorders, and substance use disorders have all been associated 
with a diagnosis of MDD in childhood[1]. Therefore, early 
detection and research on MDD in childhood and adolescence 
is of great importance. 

With the help of magnetic resonance imaging (MRI), the 
structural brain abnormalities in MDD have been widely 
reported [2, 3]. However, most previous studies have focused 
on brain alterations in isolated anatomical regions and ignored 
potential associations between brain regions. Given that the 
brain is known to be a complex network, assessing the 
connections between different anatomical regions associated 
with the disorder can provide new insights into MDD 
psychopathology. 

Brain structural covariance networks describe 
morphological features of brain regions, such as gray matter 
volume, based on common variation at the group level, and 
demonstrate modular structure with overlap between 
functional regions[4]. Considering normative modeling has 
recently emerged as a promising statistical method for 
mapping heterogeneity of imaging features at the individual 
level, which can provide statistical inferences about the extent 
to which each individual deviates from normal patterns. 
Therefore, the construction of individual-level structural 
covariance networks holds great promise for revealing 
individual differences in morphological covariance between 
regions. Importantly, normative modeling has been 
successfully applied to quantify structural heterogeneity at the 
individual level in schizophrenia, attention-
deficit/hyperactivity disorder, and autism.  
Existing studies constructing individualized structural 
covariance networks have been primarily relied on pre-defined 
brain atlas[5]. Using different brain parcellation schemes 
would produce different results. So far, there is no method to 
construct individualized structural covariance networks 
without discussing brain parcellation schemes. Therefore, we 
construct independent component analysis-based (ICA-based 
instead of atlas-based) individual difference structural 
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similarity networks using the normative modeling approach. 
We explore the heterogeneity of structural similarity networks 
at the individual level using regional similarity networks[6], a 
novel morphological covariance network with high robustness, 
stability, and biological basis. We expect to provide new 
perspectives for understanding the neurobiological basis of 
MDD in children and adolescents. 

In this study, using gray matter volume (GMV) extracted 
from sMRI, we constructed an ICA-based individual 
difference structural similarity network (IDSSN) based on 112 
healthy controls (HCs) for 189 adolescents aged 10 to 20 years 
with MDD. We used connectome-based predictive modeling 
(CPM) to investigate the correlation between structural 
similarity networks and symptom manifestations of depression 
and anxiety [7]. 

II. MATERIALS AND METHODS 

A. Participant Recruitment and Assessment 
Adolescents with MDD (n = 210, including 122 drug-naïve 

participants and 80 medicated participants) and HCs (n = 117) 
were recruited from the First Affiliated Hospital of Chongqing 
Medical University, Chongqing, China, through local media 
advertising. All procedures were approved by the Ethics 
Committee of Chongqing Medical University (approval ID: 
2020-864), and all participants provided the written informed 
consent.  

The 17-item Hamilton Depression Scale (HAMD-17) was 
used to evaluate the severity of depression in individuals with 
MDD, which included total scores and six syndrome scores 
related to somatization (HAMD 10, 11, 12, 15, 17), weight 
change (HAMD 16), cognitive disturbance (HAMD 2, 3, 9), 
Psycho-retardation (HAMD 1, 7, 8, 14), sleep disturbance 
(HAMD 4, 5, 6) and HAMD-6 (HAMD 1, 2, 7, 8, 10, 13) [8]. 
The Hamilton Anxiety Scale (HAMA) was used to evaluate 
anxiety severity. 

TABLE I.  A SUMMARY OF THE DEMOGRAPHIC INFORMATION  

 MDD (N=189) HC (N=112) P values 
Age (years) 15.54±1.64 14.64±2.67 7.0e-5*** 
Sex (female/male) 51/138 47/65 1.1e-2* 
TIV (cm3) 1444.8±138.9 1486.9±118.3 7.7e-3** 
HAMD-17 18.26±5.68 1.22±1.47 8.0e-96*** 
HAMA 15.53±6.74 1.70±2.10 5.9e-65*** 
Somatization 4.68±1.90 0.43± 0.74 6.6e-67*** 
Weight change 0.39±0.68 0.07±0.35 5.4e-6*** 
Cognitive 
disturbance  4.55±2.21 0.19±0.45 1.9e-59*** 

Psycho-retardation 5.02±1.92 0.28±0.66 4.8e-76*** 
Sleep disturbance  2.68±1.79 0.20±0.49 1.5e-35*** 
HAMD-6 8.49±3.03 0.62±1.02 1.8e-80*** 

Data were presented as means ±standard deviation, except for gender was presented as the number 
of people. Anxiety/somatization: HAMD 10, 11, 12, 15, 17; Weight change: HAMD 16; Cognitive 
disturbance: HAMD 2, 3, 9; Psychomotor retardation: HAMD 1, 7, 8, 14; Sleep disturbance: HAMD 4, 
5, 6; HAMD-6: HAMD 1, 2, 7, 8, 10, 13. MDD major depressive disorder, HCs health controls, HAMD-
17 Hamilton depression scale-17, HAMA Hamilton anxiety scale, TIV total intracranial volume. *p < 
0.05; **indicated p < 0.01; ***indicated p < 0.001. 

 

MDD patients were diagnosed through structured clinical 
interview for DSM-V depressive symptoms and satisfied 
following inclusion criteria: (1) HAMD-17 total scores > 7; (2) 
first episode. HCs were required to have a HAMD-17 total 
score ≤ 7. All participants were aged 10 to 20 years. Exclusion 

criteria for all participants involve followings: (1) a history of 
other major psychiatry and neurological disorders; (2) a 
history of organic head trauma; (3) a history of substance 
abuse; (4) any conditions not suitable for MRI scanning.  

Five participants were excluded due to inadequate signal 
in several brain regions. Therefore, 301 participants were 
retained (112 HCs and 189 MDD adolescents, including 109 
drug-naïve participants and 80 medicated participants) for 
further analysis. Demographic and clinical features of the 189 
MDD patients and 112 HCs are presented in Table I. The mean 
age, sex proportion, and total intracranial volume （TIV） were 
different from each other (p < 0.05) between the MDD patients 
and HCs. Compared with HCs, MDD patients have significant 
higher severity in all eight clinical measures  (p < 0.001) 
(Table I). 

B. Image Acquisition and preprocessing 
The high resolution T1-weighted (T1w) structural images 

were acquired using a Siemens Magnetom Skyra 3T scanner 
with a 32-channel head coil. Each participant was instructed to 
lie down and relax, to keep their eye closed and to stay awake 
and to avoid performing specific cognitive task. T1w structural 
images were acquired using magnetization-prepared rapid 
gradient-echo (MPRAGE) sequence with the following 
parameters: repetition time (TR) = 2000 ms, echo time (TE) = 
2.56 ms, inversion time (TI) = 900 ms, flip angle = 9°, matrix 
size = 256 × 256, field of view (FOV) = 256 mm × 256 mm, 
slice thickness = 1 mm, slices per slab = 192, and voxel size 
was 1.0 mm × 1.0 mm × 1.0 mm.  

T1 image data was pre-processed and analyzed using the 
CAT12 toolbox (https://neuro-jena.github.io/cat/) and the 
SPM12 software package (https://www.fil.ion.ucl.ac.uk/spm/). 
Specifically, the T1w images were firstly bias-corrected, and 
then segmented into gray matter (GM), white matter (WM), 
and cerebrospinal fluid (CSF). Next, all segmented images 
were spatially normalized to the standard Montreal 
Neurological Institute (MNI) space using the ICBM-152 
template (East Asian) with a voxel size of 1.5 mm × 1.5 mm × 
1.5 mm. Finally, the normalized segmentations were 
modulated by scaling with the amount of volume changes due 
to spatial registration, resulting in GMV images for each 
subject. GMV images were smoothed with commonly used 
smoothing kernels at full width at half maximum (FWHM) for 
subsequent analysis. Age, gender, and TIV were also 
estimated to correct for individual differences in brain size. 

C. Constructing the ICA-based IDSSN 
Figure. 1 summarizes the flowchart of constructing 

the ICA-based IDSSN. In the cohort of 189 MDD patients 
and 112 HCs, we used the spatial brain network template 
(NeuroMark_fMRI_1.0 template available in the GIFT 
toolbox; http://trendscenter.org/software/gift and at 
http://trendscenter.org/data) as the reference to construct a 
benchmark independent component (IC) ICbase covering 
the whole 112 HC subjects. By taking each HC's structural 
MRI data as input, the ICbase spatially IC were computed 
by multi-objective optimized ICA with reference (MOO-
ICAR), an approach that automatically and adaptively 
estimates baseline-level IC using the prior network 
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templates as guidance[9]. 
Computed by MOO-ICAR, 113 subjects [112 HCs and 

1 MDD patient i (i=1, …, M)] were used to construct a new 
spatially IC, called disturbance IC (ICbase+1). The difference 
between the disturbance IC and the baseline IC was 
calculated, i.e., ΔICi =ICbase+i - ICbase. ΔICi represents the 
deviation of the GMV in the corresponding brain network 
spatial IC in patient i compared with the HCs. It can also 
ensure the independence of individual subjects' spatial IC 
and the correspondence between different subjects' 
components. Then, a total of 47 MRI imaging features 
were computed, including 14 intensity features and 33 
texture features. Intensity features describe the distribution 
of voxel intensities within MRI images by commonly used 
basic metrics, such as mean and entropy. Texture features 
describe the pattern or spatial distribution of voxel 
intensities, such as contrast, homogeneity. We first 
normalized the features between different brain regions of 
an individual using the min-max method, and redundant 
features were defined as those that were highly correlated 
(r > 0.9) with other features and 32 features were left for 
the subsequent analysis. Thus, a final feature matrix of 53 
× 53 structural similarity network(IDSSN) for each subject 
was obtained for further analysis[6]. Briefly, the IDSSN 
nodes were defined as the 53 ICs generated by MOO-
ICAR, and the edge was calculated by computing 
Pearson’s correlation using 32 features among different 
spatial ICs. 

D.  The Prediction Performance of the ICA-based IDSSN  
To evaluate the predictive performance of ICA-based 

IDSSN for symptom manifestations of depression and 
anxiety , and to determine the neurobiological basis of ICA-
based IDSSN, we created a prediction model based on CPM 
with leave-one-out cross-validation (LOOCV) strategy. 
Edges that were positively correlated with clinical measures 
(HAMA, HAMD17 total scores and six syndrome scores) 
with a p < positive threshold (0.01) made up the positive 
network, in which positive network strength was calculated 
by summing values of all edges in positive network, and the 
same procedure was used to construct the negative network 
strength by edges that were negatively correlated with clinical 
measures. Positive and negative network strengths were 
utilized as imaging features to construct the prediction model. 
The process was repeated eight times using different clinical 
indicators (HAMA, HAMD total scores and six syndrome 
scores), so we ended up with eight prediction models with 
different parameters. 

Selecting predictive structure similarity networks: 
Predictive consistent connections were determined by pulling 
together all features that appeared in all cross-validation loops 
in LOOCV. For better interpretation and visualization, we 
categorized edges into seven networks based on anatomical 
and functional properties, including subcortical network (SC), 
auditory network (AU), visual network (VI), sensorimotor 
network (SM), cognitive control network (CC), default-mode 
network (DM), and cerebellar network (CB). Next, we 
employed a calculation to index the relative contribution of 
each of the seven networks. That is, the contribution of edges 
was normalized for network size. 
Comparison of predictions based on different parcellation 
schemes or only on the extracted features: To confirm the 
ability of the IDSSN method to extract individual-specific 
information, we 1) segmented GMV based on different brain 
atlases or segmentation schemes, such as anatomical 
automatic labeling (AAL) atlas which has 116 nodes, and 
NeuroMark template which have 53 nodes. Next, we used 
CPM to calculate the predictive ability of the obtained 
structural similarity network for eight clinical symptom 
scores. 2) using only the derived features as input into CPM 
to explore which feature better exploits individual-specific 
information.  

We quantified model performance by calculating 
Spearman rank correlation between observed and predicted 
HAMA, HAMD total scores and six syndrome scores, and 
the coefficient of determination prediction R2. We determined 
the significance of the model based on a p-value calculated 
from 5,000 permutation tests.  

III. RESULTS 
Table II displays the prediction performances of 

depression and anxiety scores using structural similarity 
network constructed from ICA-based IDSSN, AAL atlas, and 
NeuroMark template. Notably, ICA-based IDSSN achieved 
better prediction accuracy for HAMD17 total scores (r[HAMD17] 
= 0.51, p = 2.8e-15, R2=0.24 Figure 2a) and HAMA scores 
(r[HAMA] = 0.46, p = 2.7e-12, R2=0.25, Figure 2b) than using 
AAL atlas (r[HAMD17] = 0.31, p = 6.9e-6, R2=0.10; r[HAMA] = 
0.15, p = 3.5e-2, R2=0.01) or NeuroMark template (r[HAMD17] = 
0.18, p = 8.6e-3, R2=0.05; r[HAMA]  = 0.27, p = 8.7e-5, R2=0.07). 
For the six syndrome scores of HAMD17, ICA-based IDSSN 
also achieved the best prediction performance (Table II). 
Likewise, we reran the pipeline using the derived features 
without calculating the structural similarity network to assess 
which feature is better to exploit the individual-specific 
information. The ICA-base method (MOO-ICAR) 
consistently performed the best in all prediction models 
(r[HAMD17]  = 0.37, p = 4.8e-8, R2=0.13, r[HAMA] = 0.38, p = 1.2e-
8, R2=0.14). However, the prediction accuracy is not as high 
as that of ICA-based IDSSN (Table III).  

Several connections were identified in Figure 2c and 
Figure 2d. To prevent confusion, we removed the lower part 
of the cell plot in Figure 2c and Figure 2d.ICA-based IDSSN, 
which indicted edges’ contributions and the number of edges 
for each macroscopic brain region. Macroscopic networks 
showed that more severe depression symptom was associated 

 
Figure 1.  Flowchart describing the construction of the ICA-based 
individual difference structural similarity network (IDSSN) 



with stronger connections between VI and SC, SM, CC and 
DM, and between AU and DM. Furthermore, milder 
depressive symptom was associated with stronger connectivity 
between DM and CC. In addition, macroscopic networks 
showed that worse anxiety symptom was associated with 
stronger connections within SM and within VI, between SM 
and AU, VI, and between AU and CC. Milder anxiety 
symptom was associated with stronger networks between SC 
and SM, VI, CC, between CC and SM, DM, between CB and 
AU, DM. 

TABLE II.  PREDICTION RESULTS USING INDIVIDUAL STRUCTURAL 
SIMILARITY NETWORK FEATURES BUILT BY AAL TEMPLATE, 

NEUROMARK  TEMPLATE AND MOO-ICAR  

 AAL NeuroMark  ICA-based IDSSN 
(proposed) 

r p R2 r p R2 r p R2 
HAMD17 0.31 6.9e-6 0.10 0.18 8.6e-3 0.05 0.51 2.8e-15 0.24 
HAMA 0.15 3.5e-2 0.01 0.27 8.7e-5 0.07 0.46 2.7e-12 0.25 
Somatization  0.23 1.0e-3 0.02 0.21 2.4e-3 0.06 0.44 5.2e-11 0.17 
Weight change 0.31 4.5e-6 0.07 0.28 5.8e-5 0.08 0.40 3.3e-09 0.15 
cognitive disorder  0.20 4.5e-3 0.03 0.32 2.5e-6 0.07 0.49 1.1e-13 0.21 
Psycho-retardation 0.30 1.5e-5 0.03 0.29 2.4e-5 0.09 0.46 4.5e-12 0.16 
Sleep disorders  0.26 1.3e-4 0.05 0.36 1.3e-7 0.07 0.51 3.9e-15 0.23 
HAMD-6 0.27 9.4e-5 0.05 0.30 1.0e-5 0.07 0.52 1.0e-15 0.26 

Anxiety/somatization: HAMD 10, 11, 12, 15, 17; Weight change: HAMD 16; Cognitive 
disturbance: HAMD 2, 3, 9; Psychomotor retardation: HAMD 1, 7, 8, 14; Sleep disturbance: HAMD 4, 
5, 6; HAMD-6: HAMD 1, 2, 7, 8, 10, 13. MDD major depressive disorder, HCs health controls, HAMD-
17 Hamilton depression scale-17, HAMA Hamilton anxiety scale. Bold values correspond to the highest 
correlation in HAMD17 and HAMA models. 

 
TABLE III.  PREDICTION RESULTS USING ONLY DERIVED FEATURES 
GENERATED FROM AAL TEMPLATE, NEUROMARK  TEMPLATE AND MOO-
ICAR  

 
AAL NeuroMark  MOO-ICAR 

r p R2 r p R2 r p R2 
HAMD17 0.29 2.4e-5 0.06 0.25 2.6e-4 0.07 0.37 4.8e-8 0.13 
HAMA 0.35 1.9e-7 0.11 0.24 4.1e-4 0.09 0.38 1.2e-8 0.14 
Somatization  0.23 7.5e-4 0.02 0.29 2.2e-5 0.03 0.29 2.6e-5 0.03 
Weight change 0.40 2.5e-9 0.09 0.52 2.1e-15 0.10 0.34 5.9e-7 0.09 
cognitive disorder  0.17 1.3e-2 0.02 0.33 1.6e-6 0.06 0.43 6.6e-11 0.17 
Psycho-retardation 0.27 7.1e-5 0.07 0.32 2.9e-6 0.08 0.37 6.7e-8 0.10 
Sleep disorders  0.35 2.7e-7 0.11 0.33 1.5e-6 0.06 0.38 1.9e-8 0.10 
HAMD-6 0.28 5.6e-5 0.05 0.35 2.7e-7 0.10 0.40 2.9e-9 0.14 

Anxiety/somatization: HAMD 10, 11, 12, 15, 17; Weight change: HAMD 16; Cognitive disturbance: 
HAMD 2, 3, 9; Psychomotor retardation: HAMD 1, 7, 8, 14; Sleep disturbance: HAMD 4, 5, 6; HAMD-
6: HAMD 1, 2, 7, 8, 10, 13. MDD major depressive disorder, HCs health controls, HAMD-17 Hamilton 
depression scale-17, HAMA Hamilton anxiety scale. Bold values correspond to the highest correlation 
in HAMD17 and HAMA models. 

IV. DISCUSSION 
In this study, a novel approach—ICA-based IDSSN—

was used to construct structural similarity networks at the 
individual level based on T1w images. The superiority of 
ICA-based IDSSN over using templates (AAL atlas, 
NeuroMark template) to construct structural similarity 
networks was that ICA-based IDSSN uses a data-driven 
approach that does not rely on any pre-defined brain atlas. It 
combines spatial priority information from ICA with 
morphological characteristics of brain regions from structural 
similarity network, which allows us to explore correlations 
between clinically meaningful indicators and structural 
similarity networks and identify unique neuroanatomical 
patterns of patients. It is worth noting that for new subjects, 
the model does not need to be retrained and can be directly 
applied for personalized analysis. 

Based on a population of adolescent MDD patients, we 
obtained ICA-based IDSSNs that can quantify individual 
anxiety and depression symptoms, thus quantifying the brain 
structure of the subjects. The obtained individualized 
fingerprints could reflect individual differences and are 
related to individual development, and disease course. In 
addition, the experimental results also show that using 
templates  to divide GMV to construct structural similarity 
matrices or only using extracted features without constructing 
structural similarity networks, the prediction accuracy of 
HAMD and HAMA scores is lower than that of features 
obtained from ICA-based IDSSN. Meanwhile, the prediction 
accuracy in six subdomains strongly confirms the conclusion 
that implying that ICA spatial priority information and 
structural similarity network information can reveal more 
specific information reflecting individual disease differences. 
 

The brain is a complex network that supports 
information transfer, and structurally similar networks appear 
to reflect maturation or atrophy among brain regions. Our 
results suggest that depressive symptom in MDD is associated 
with changes in connectivity between the VI and other 
networks that are thought to be involved in the perception and 
processing of emotional facial expressions[10]. Abnormal 
networks were also observed in DM, CC, and SM, which are 
associated with emotion regulation and cognitive 

 
Figure 2.  Scatter plot of the model-estimated symptom  scores with 
respect to observed values using ICA-based individualized differential 
structure similarity networks (IDSSN) features, and distribution of the 
structural connections. When using IDSSN features as input for CPM, 
Pearson’s correlations of r[HAMD17] = 0.51 (p =2.8e-15) , and r r[HAMA] = 0.46 
(p = 2.7e-12) between predicted and observed symptom scores were achieved 
for HAMD (a) and HAMA (b) respectively. The goodness of fit is measured 
by the degree to which the points are close to the dotted line in the plot 
(diagonal y = x). Matrices present the contributions (right) and raw number 
of edges (left) for seven NeuroMark templates defined brain regions for the 
high-HAMD symptom (red) networks and low-HAMD symptom (blue) 
networks (c) and for the high-HAMA symptom (red) networks and low-
HAMA symptom (blue) networks (d) . The red to blue colorbar in c and d 
indicted edge contributions in every region. The darker red indicates higher 
involvement in the high-cognitive (red) network, while the darker blue 
indicates higher engagement in the low-cognitive (blue) network. 



function[11]. Interestingly, networks contributing to the 
prediction of anxiety symptoms in MDD are more widely 
involved than those associated with depressive symptoms and 
are found in VI, CC, SC, and CB, suggesting some anatomical 
differences in the causes of anxiety symptoms and depressive 
symptoms. Therefore, the ICA-based IDSSN can be used to 
measure the anatomical connectome of the brain and to make 
quantitative predictions of anxiety and depression in 
individuals. 

Despite the innovative analytical approach and robust 
findings, the present study is subject to certain limitations. 
First, due to the relatively small sample size, predictive 
analyses were performed within the LOOCV framework, 
rather than utilizing the more stringent 5-fold or 10-fold cross-
validation strategy. This may have increased the variance and 
instability of the prediction results. Therefore, future research 
should aim to construct models based on more stringent cross-
validation strategies and use independent datasets to verify 
the generalization performance of the model. Another 
potential limitation is that this study is a cross-sectional study, 
and as such, there is no longitudinal sample to further verify 
the conclusions of this study. Therefore, a longitudinal 
analysis of a larger cohort of MDD patients is needed to verify 
the causal relationship between brain structural changes and 
clinical symptoms. It is worth noting that although this study 
used ICA-based IDSSN to predict clinical symptoms in 
adolescent patients with MDD, the disease-specific 
information provided by ICA-based IDSSN features can be 
generalized to the prediction of clinical symptoms and 
cognitive ability in other neurological or psychiatric disorders. 

V. CONCLUSION 
In summary, the current study used an ICA-based 

approach to construct structural similarity networks in MDD 
patients and explored the correlation between ICA-based 
IDSSN and symptom manifestations of depression and 
anxiety. Results show that IDSSN features can provide 
supporting anatomical information for understanding 
complex mental disorders, especially for single new 
individual patient. Meanwhile, by integrating the spatial prior 
information of ICA and the structural similarity network, the 
extracted features are guaranteed to identify personalized GM 
fingerprints better than features based on the normal fixed 
brain atlas (AAL atlas, NeuroMark  template). The present 
study, to some extent, remedies the lack of analysis of 
individual differences in morphological networks among 
MDD patients, and may facilitate the identification of 
imaging markers on the road to understanding the 
pathological basis of MDD. The current study offers a new 
approach that can enhance ability to detect GM deviations 
between certain individual patient and healthy groups, 
providing new insight on evaluating individual-level clinical 
heterogeneity based on brain structural features.  
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