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A B S T R A C T

Accurate segmenting regions of interest in various medical images are essential to clinical research and
applications. Although deep learning-based methods have achieved good results, the fully automated seg-
mentation results still need to be refined on the tininess, complexities, and irregularities of lesion shapes.
To address this issue, we propose a Dual-stream Representation Fusion Learning (DRFL) paradigm for
accurate clinical segmentation, including Dual-stream Fusion Module, Representation Fusion Transformer
Module and Peakiness Fusion Attention Module. Specifically, Dual-stream Fusion Module can simultaneously
generate binary masks and high-resolution images with segmentation stream and super-resolution stream
that share a feature extractor, then both prediction outputs are merged as the input of Fusion Module to
further improve the performance of the network for generating the final segmentation result; Representation
Fusion Transformer Module is lightweight to fuse high-resolution representation and fine-grained structure
representation; Peakiness Fusion Attention Module can capture more salient features while fusing more spatial
information to improve the performance of the network. The effectiveness of our dual-stream representation
fusion learning is validated on different medical image segmentation tasks, and extensive experiments show
that our DRFL outperforms the state-of-the-art methods in segmentation quality of lung nodule segmentation,
lung segmentation, cell contour segmentation, and prostate segmentation. Our code is available at https:
//github.com/Rongtao-Xu/RepresentationLearning/tree/main/DRFL-EAAI2023.
. Introduction

Medical image segmentation plays a crucial role in Computer Aided
iagnoses (CAD) tasks, such as quantitative disease progression, pathol-
gy detection (Barua et al., 2022), and radiomics analysis (Litjens
t al., 2017; Gu et al., 2019; Mao and Sejdić, 2022), which involves
egmentation from the cell level to the organ and system level of
uman bodies (Santos et al., 2014; Wang et al., 2021; Xu et al., 2021;
ivit-Masot et al., 2021; Yamanakkanavar and Lee, 2022; Zhao et al.,
022). It usually requires higher accuracy and better visualization
han general semantic segmentation, and can be used to obtain a
uantitative assessment of pathology, which is essential for treatment
lanning, subsequent diagnosis and disease progression monitoring (Li
t al., 2020; Wang et al., 2020d). However, accurate medical image
egmentation is still a challenging problem because high-resolution
mages are rare, and object shapes are irregular and diverse with visual
haracteristics similar to their surroundings (Wang et al., 2018b; Nie
t al., 2018).

∗ Corresponding authors.
E-mail addresses: weiliang.meng@ia.ac.cn (W. Meng), xiaopeng.zhang@ia.ac.cn (X. Zhang).

Many studies have demonstrated that high-resolution deep fea-
ture representation plays a vital role in achieving high performance
in segmentation (Chen et al., 2018; Wang et al., 2020b; Xu et al.,
2023b), meaning that super-resolution representation can facilitate
the image segmentation process. However, there are few studies on
using transformers to fuse high-resolution representations for medical
image segmentation. To address the lack of high-resolution repre-
sentations for accurate medical image segmentation, we obtain high-
resolution images by knowledge distillation for training, and propose
an effective super-resolution representation fusion learning strategy
with transformer, which enables the model to fuse high-resolution deep
feature representations and fine-grained structure representations in
images. Our method named Dual-stream representation fusion learning
(DRFL) paradigm consists of Representation Fusion Transformer Mod-
ule, Dual-stream Fusion Module and Peakiness Fusion Attention Module
(Fig. 2).
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Fig. 1. From top to bottom: the original image, the results of applying our method, and the corresponding ground truth. (a) The LIDC dataset of lung nodules segmentation. (b)
he LUNG dataset of lung segmentation. (c) The ISIC 2018 dataset of skin lesion segmentation. (d) The ISBI 2012 dataset of cell contour segmentation. (e) The PROMISE 2012
ataset of prostate segmentation.
Fig. 2. The overview of our Dual-stream representation fusion learning framework, including the Dual-stream Fusion Module, the Representation Fusion Transformer Module, and
the Peakiness Fusion Attention Module (PFAM). The original image is fed to the Dual-stream Fusion Module to generate a predicted binary mask and a predicted high-resolution
image at the same time, both of which are concatenated as the input of the Fusion Module to obtain the final binary mask. The overall optimization includes three aspects: 𝐿𝑠𝑒𝑔
loss, 𝐿𝑠𝑟 loss, and 𝐿𝐹𝑢𝑠𝑖𝑜𝑛 loss. Note that the encoder is shared by both the segmentation stream and super-resolution stream, and the Dual-stream Fusion Module contains the
proposed Peakiness Fusion Attention Module.
Specifically, the Dual-stream Fusion Module perfectly merges both
the segmentation stream and the super-resolution stream which share
the same feature extractor, and the outputs of both streams are com-
bined as the input to the Fusion Module to obtain the final segmenta-
tion result. The Representation Fusion Transformer Module introduces
representation fusion learning to guide the segmentation stream to fuse
high-resolution representations, and dilated convolutions with dilation
rates of 6 and 12 is employed to expand the receptive field for fusing the
spatial structure representation based on the idea of residual learning.
The Peakiness Fusion Attention Module focuses on extracting important
texture features to supplement the loss of spatial information due to
2

both upsampling and downsampling, in order to further obtain accurate
results of medical image segmentation.

In sum, the main contributions are summarized as follows:

• We propose the Dual-stream representation fusion learning
(DRFL) framework to fuse deep high-resolution representations,
and we conduct extensive evaluations on medical image segmen-
tation datasets to verify DRFL has state-of-the-art performance.

• We design the Representation Fusion Transformer Module
(RFTM) for accurate medical image segmentation, which can
effectively fuse high-resolution representations and fine-grained
structure representations to improve segmentation performance.
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• We present an effective Peakiness Fusion Attention Module
(PFAM) to capture more salient features and fuse more spatial
information from medical image segmentation.

s shown in Fig. 1, we apply our Dual-stream representation fusion
earning paradigm to five challenging medical image segmentation
asks: lung nodule segmentation, lung segmentation, skin lesion seg-
entation, cell contour segmentation, and prostate segmentation, and

alidate that our method has state-of-the-art performance.

. Related work

.1. CNNs for medical image segmentation

The application of CNNs (Xu et al., 2022b; Wang et al., 2022c)
nd Fully Convolutional Network (FCN) to medical image analysis and
rocessing has attracted increased attention (Nie et al., 2019; Ben-
ohen et al., 2019). For example, Kaplan et al. (2022) uses CNNs
o automatically classify lesions. Typically, U-Net (Ronneberger et al.,
015) and Deeplabv3+ (Chen et al., 2018) are the common and classic
aseline in medical image segmentation, as both have achieved excel-
ent results. In recent years, deep learning has developed rapidly in
edical image segmentation and Alzheimer’s disease (Tanveer et al.,
023; Sharma et al., 2023; Liu et al., 2020; Allioui et al., 2019). Many
edical image segmentation methods are inspired by U-Net, such as U-
et++ (Zhou et al., 2018) and CE-Net (Gu et al., 2019), have achieved
reakthroughs in various lesion-segmentation tasks. U-Net++ (Zhou
t al., 2018) connects an encoder and a decoder through several nested
onvolutional blocks, had attained advanced results. On the basis of
he structure of ResNet and Inception, Gu et al. (2019) propose a
ontext extractor CE-Net and validated it on several datasets. Besides,
C-Net (Xu et al., 2021) uses parallel partial decoders to aggregate
igh-level features and generate a global map, which is a professional
ethod for automatically segmenting lung lesions.

.2. Transformers for medical image segmentation

Driven by the rapid development of transformers (Dosovitskiy et al.,
020; Xu et al., 2022a, 2023a), various works like UCTransNet (Wang
t al., 2022a), U-Net Transformer (Petit et al., 2021), and TransUNet
Chen et al., 2021) use complex networks to improve their perfor-
ance. UCTransNet (Wang et al., 2022a) proposes channel transformer
odule to replace the skip connection of U-Net. U-Net Transformer (Pe-

it et al., 2021) combines self-attention and cross attention in trans-
ormer into U-Net. By contrast, TransUNet (Chen et al., 2021) employs
ransformer to encode image patches from a CNN feature map as the in-
ut sequence for extracting global contexts. However, these approaches
annot achieve precise segmentation results and always involve expen-
ive calculations, which limits their applications in medical practice.
nlike methods such as UCTransNet via dense connections that require
xpensive computation, we propose a Dual-stream representation fu-
ion learning paradigm to improve the performance of medical image
egmentation. In fact, the FLOPs of UCTransNet are 31.6% higher than
hose of our method (31.2G vs. 23.7G) under the same input. Our
ightweight Representation Fusion Transformer Module can guide the
egmentation stream to fuse high-resolution representations, and the
utputs of segmentation stream and super-resolution stream are flexibly
ntegrated by the Dual-stream Fusion Module to improve segmentation
ccuracy.

.3. Attention mechanism in medical image segmentation

Attention mechanism is widely employed in the field of computer
ision (Zhao et al., 2021; Wang et al., 2022e, 2021, 2022b), and it has
chieved excellent results in semantic segmentation of medical images

(Lin et al., 2021; Fu et al., 2019; Wang et al., 2022d). Wang et al. 𝑝

3

2020a) have verified that using the U-Net joint attention model to
egment medical images can obtain better results. Oktay et al. (2018)
ropose an Attention UNet that combines spatial attention with U-Net.
u et al. (2020) utilize multiple attentions extensively in the CNN
rchitecture and propose a comprehensive attention-based CNN for skin
isease and fetal MRI found segmentation. Other methods (Wang et al.,
018a; Qin et al., 2018) recalibrate feature maps of different sizes
y assigning attention weights. Although these above works apply the
ttention mechanism for medical image segmentation tasks, they rarely
ocused on important texture areas and lesion edges. In the accurate
egmentation of medical images, it is particularly necessary to capture
ore salient features and fuse more spatial information. Our Peakiness

usion Attention Module is new in the literature.

.4. Multi-task learning

Multi-task learning can make the model perform better on the
riginal task by sharing representations between related tasks, and has
een successful in many applications of computer vision (Xu et al.,
018; Wang et al., 2020c; Zhang et al., 2021b). Current multi-task
earning methods for medical image segmentation are mainly combined
ith classification (Zhang et al., 2021a; Foo et al., 2020) or quantifi-

ation (Zhang et al., 2021b) and there is a lack of research on using
ransformers to fuse super-resolution auxiliary task’s high-resolution
epresentations for medical image segmentation. By contrast, we take
ccurate medical image segmentation as the main task and single image
uper-resolution as the auxiliary task, as well as use the lightweight
epresentation Fusion Transformer Module to guide the segmentation
tream to fuse high-resolution representations, in order to improve the
erformance of the segmentation network.

. Method

To achieve accurate segmentation, we propose a novel Dual-stream
epresentation fusion learning paradigm as shown in Fig. 2, which is
omposed of the Dual-stream Fusion Module, the Representation Fu-
ion Transformer Module, and the Peakiness Fusion Attention Module,
hile all encoders and decoders use our Peakiness Fusion Attention
odule. Our Dual-stream representation fusion learning is optimized

n three terms: 𝐿𝑠𝑒𝑔 loss for the segmentation stream, 𝐿𝑠𝑟 for the
uper-resolution stream, and 𝐿𝐹𝑢𝑠𝑖𝑜𝑛 loss for the Fusion Module. In this
ection, we first introduce the overview of the framework and our Dual-
tream Fusion Module. Then, we present the proposed Representation
usion Transformer Module and Peakiness Fusion Attention Module in
etail.

.1. The framework and dual-stream fusion module

We propose a segmentation network framework that takes medical
mages as input and simultaneously predicts binary masks and high-
esolution images. Our Dual-stream Fusion Module consists of three
arts: a segmentation stream for predicting the binary ground truth,
super-resolution stream for predicting the high-resolution images

nd a Fusion Module for accurate segmentation, while both streams
hare the same encoder as shown in Fig. 2. The encoder–decoder
rchitecture uses a structure similar to U-Net with some modifications
o achieve a more refined segmentation, and both the encoder and
ecoder employ our Peakiness Fusion Attention Module to enhance the
xtraction of important features, as well as the convolution instead of
he down-sampling layer to reduce the detail loss.

.1.1. Segmentation stream
For the segmentation stream, the target output of the network is the

round truth 𝑔, and the predicted probability output of the network is
𝑏𝑖𝑛
. We utilize the commonly used bce loss and the dice loss for the
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Fig. 3. The details of the Representation Fusion Transformer Module. Our Representation Fusion Transformer Module employs the Representation Fusion Transformer Layer and
Weighted Multi-Head Attention Layer as the basic block. After the input features are processed by two convolutions, they are sequentially fed to the Weighted Multi-Head Attention
Layer and the MLP, and the obtained feature is added to the feature processed by dilated convolutions to obtain the final output.
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medical image segmentation:

𝐿𝑠𝑒𝑔 = 𝐿𝑏𝑐𝑒(𝑝𝑏𝑖𝑛, 𝑔) + 𝐿𝑑𝑖𝑐𝑒(𝑝𝑏𝑖𝑛, 𝑔). (1)

𝐿𝑏𝑐𝑒(𝑝𝑏𝑖𝑛, 𝑔) = −
𝑊
∑

𝑥=1

𝐻
∑

𝑦=1
(𝑔𝑥,𝑦𝑙𝑜𝑔𝑝𝑏𝑖𝑛𝑥,𝑦 + (1 − 𝑔𝑥,𝑦𝑙𝑜𝑔(1 − 𝑝𝑏𝑖𝑛𝑥,𝑦))). (2)

𝐿𝑑𝑖𝑐𝑒(𝑝𝑏𝑖𝑛, 𝑔) = 1 −
2
∑𝑊

𝑥=1
∑𝐻

𝑦=1 𝑔𝑥,𝑦𝑝
𝑏𝑖𝑛
𝑥,𝑦

∑𝑊
𝑥=1

∑𝐻
𝑦=1(𝑔𝑥,𝑦 + 𝑝𝑏𝑖𝑛𝑥,𝑦)

. (3)

where 𝑊 and 𝐻 are the width and height of the image.

3.1.2. Super-resolution stream
Inspired by the super-resolution method WSISR (Li et al., 2021)

and the self-supervised pre-training method (He et al., 2020), we self-
supervised training a super-resolution model for medical images in the
super-resolution stream, the target output is a high-resolution image
based on the low-resolution input image. Specifically, we downsam-
ple the images of the LUNG dataset, the ISIC 2018 dataset, and the
PROMISE 2012 dataset to 1/2 as the input of the WSISR model (Li et al.,
2021) that is an effective method for single image super-resolution, and
use their corresponding original images as ground truth. Motivated by
knowledge distillation, we employ the trained super-resolution model
as the teacher model, and the super-resolution image generated by the
model is used as the ground truth of super-resolution stream.

Compared to the segmentation stream, we only need to add an
additional upsampling module to generate the final prediction high-
resolution image as shown in Fig. 2. Our super-resolution stream can
effectively reconstruct the fine-grained structure representations of the
image, and guide the network fusing high-resolution deep feature rep-
resentation by combining with the Representation Fusion Transformer
Module in order to achieve the accurate segmentation.

L1 loss 𝐿𝑠𝑟 (Eq. (4)) is used in our super-resolution stream to
minimize pixel-wise error measurements for supervising the generation
of the high-resolution images:

𝐿𝑠𝑟 =
1

𝑊𝐻

𝑊
∑

𝑥=1

𝐻
∑

𝑦=1

|

|

|

𝑝𝑠𝑟𝑥,𝑦 − 𝑔𝑥,𝑦
|

|

|

. (4)

where 𝑊 and 𝐻 are the width and height of the image respectively,
and 𝑝𝑠𝑟 is the output of the super-resolution stream.

In order to effectively perform the multi-task learning, we jointly
supervise and learn the two branches in an end-to-end manner, and
the total loss function 𝐿𝐷𝐹𝑀 can be expressed as:

𝐿𝐷𝐹𝑀 = 𝐿𝑠𝑟 + 𝐿𝑠𝑒𝑔 . (5)

3.1.3. Fusion module
To make full use of the high-resolution representation and improve

the segmentation accuracy, we designed a Fusion Module to construct
an accurate segmentation frame from coarse to fine. As our two stream
had two outputs including the predicted high-resolution image 𝑝𝑠𝑟 and
the predicted binary mask 𝑝𝑏𝑖𝑛, we concatenate them together as the
4

input of the Fusion Module. The main structure of our Fusion Module
is similar to that of our segmentation stream but simpler, because each
layer in our Fusion Module had only 64 filters with a size of 3 × 3,
thereby greatly reducing the number of parameters. To enhance the
generalization of the model, we add a dropout in the middle layer, and
the final segmentation result 𝑝𝑓𝑢𝑠𝑖𝑜𝑛 is obtained through the sigmoid
activation function. We define the fusion training loss 𝐿𝐹𝑢𝑠𝑖𝑜𝑛 as:

𝐿𝐹𝑢𝑠𝑖𝑜𝑛 = 𝐿𝑏𝑐𝑒(𝑝𝑓𝑢𝑠𝑖𝑜𝑛, 𝑔) + 𝐿𝑑𝑖𝑐𝑒(𝑝𝑓𝑢𝑠𝑖𝑜𝑛, 𝑔). (6)

Finally, we define the total loss 𝐿𝑇 𝑜𝑡𝑎𝑙 as:

𝐿𝑇 𝑜𝑡𝑎𝑙 = 𝜆𝐿𝐷𝐹𝑀 + 𝛾 𝐿𝐹𝑢𝑠𝑖𝑜𝑛. (7)

3.2. Representation fusion transformer module

We introduce the transformer and super-resolution representation
fusion learning to guide the segmentation stream to fuse the high-
resolution representations and fine-grained structure representations.
Our Representation Fusion Transformer Module employs the Represen-
tation Fusion Transformer Layer and Weighted Multi-Head Attention
Layer as the basic building block.

The input tokens of the segmentation stream and the super-
resolution stream use the Representation Fusion Transformer Layer
to model the long-range dependence of semantic-level representation
and super-resolution-level representation respectively. After the self-
attention mechanism, the cross-attention mechanism is utilized for the
communication between the tokens of both streams. Specifically, the
feature 𝐹 𝑠𝑒𝑔 of the last layer of the segmentation stream and the feature
𝐹 𝑠𝑟 of the corresponding layer of the super-resolution stream are fed
into the Representation Fusion Transformer Layer respectively to obtain
two affinity attention maps (𝐻𝑠𝑒𝑔 , 𝐻𝑠𝑟). Then, we use 𝐻𝑠𝑟 as the query

and 𝐻𝑠𝑒𝑔 as the key 𝑘 and value 𝑣 shown in Fig. 2. We feed them
nto another Representation Fusion Transformer Layer (RFTL) to obtain

fusion feature map 𝐻𝑓𝑢𝑠𝑖𝑜𝑛, aiming to fuse useful high-resolution
epresentations for semantic segmentation:
𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑅𝐹𝑇𝐿(𝑅𝐹𝑇𝐿(𝐹 𝑠𝑒𝑔), 𝑅𝐹𝑇𝐿(𝐹 𝑠𝑟)). (8)

To fuse fine-grained information, we multiply 𝐻𝑓𝑢𝑠𝑖𝑜𝑛 with 𝐹 𝑠𝑟 of
he super-resolution stream, and then concatenate the result with 𝐹 𝑠𝑒𝑔

f the segmentation stream to obtain the predicted binary mask 𝑝𝑏𝑖𝑛:
𝑏𝑖𝑛 = 𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡(𝐻𝑓𝑢𝑠𝑖𝑜𝑛 × 𝐹 𝑠𝑟, 𝐹 𝑠𝑒𝑔)). (9)

More details of our Representation Fusion Transformer Layer: the
ransformer can easily learn the long-range dependence between pixels,
ut the spatial structure representation will be destroyed during em-
edding. Unlike other visual transformers, we use dilated convolutions
o expand the receptive field, and use the idea of residual learning to
ntegrate the results. Specifically, the input feature 𝐹𝑖𝑛 is respectively
ubjected to the patch embedding (Dosovitskiy et al., 2020) and dilated
onvolutions, as shown in the Fig. 3. For patch embedding, we employ
he linear projection to map the feature map to the 𝐷 dimension,



R. Xu, C. Wang, S. Xu et al. Engineering Applications of Artificial Intelligence 123 (2023) 106402

c

𝐹

s
t
p
O
o
t
S
m

3

i
i
p
c
w
A
s

3

s
o
c
s
a

f

𝐹

a
c

𝐹

i
o
o
n

r
s
W
s
o

O

𝐼

Fig. 4. (a) The details of our Peakiness Fusion Attention Module. CA means channel
attention module of CBAM (Woo et al., 2018), and PFA means our Peakiness Fusion
Attention Block. The Peakiness Fusion Attention Module can capture salient features
and fuse more spatial information. (b) The details of our Peakiness Fusion Attention
Block.

and learn a specific position embedding, then we add the position
embedding to the patch embedding:

𝑍0 =
[

𝑥1𝑝𝐸; 𝑥2𝑝𝐸;⋯ 𝑥𝑁𝑝 𝐸
]

+ 𝐸𝑝𝑜𝑠. (10)

To fuse useful high-resolution representations, the embedded fea-
tures are sequentially processed by the Weighted Multi-Head Attention
Layer (WMAL) and MLP, and the Layernorm (LN) is applied before
every block.

𝑍1
′ = 𝑊𝑀𝐴𝐿(𝐿𝑁(𝑍0)) +𝑍0. (11)

𝑍1 = 𝑀𝐿𝑃 (𝐿𝑁(𝑍1
′)) +𝑍1

′. (12)

Finally, the reshaped feature and the 𝐹𝑖𝑛 processed by the dilated
onvolutions are utilized as the residual to obtain the output 𝐹𝑜𝑢𝑡:

𝑜𝑢𝑡 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑍1) +𝐷𝑖𝑙𝑎𝑡𝑒𝑑(𝐹𝑖𝑛). (13)

For the details of our Weighted Multi-Head Attention Layer: we de-
igned Weighted Multi-Head Attention Layer to add learnable weights
o query, key, and value, in order to overcome the difficulty of learning
ositional encoding due to fewer images in medical image dataset.
ur Weighted Multi-Head Attention Layer improves the performance
f the segmentation network by controlling the amount of informa-
ion provided by query, key, and value. In addition, the contained
caled Dot-Product Attention (Dosovitskiy et al., 2020) is an attention
echanism that composes the multi-head attention.

.3. Peakiness fusion attention module

The lesion area is usually complex and diverse, and extracting its
mportant texture features is beneficial to compensate the loss of key
nformation caused by down-sampling and up-sampling. Because the
eak value of the edge area is often large and can provide useful
onstraints to guide the feature extraction in the segmentation process,
e design a simple but effective module named Peakiness Fusion
ttention Module, which can capture salient features and fuse more
patial information.

As shown in Fig. 4, the input feature map first passes through two

× 3 convolutions to extract effective information, and we use the

5

ame channel attention module as the CBAM (Woo et al., 2018) to
btain the channel information of the feature map. Subsequently, we
alculate the peakiness to guide the network to pay attention to the
alient features based on our Peakiness Fusion Attention Block (PFA)
s shown in Fig. 4(b).

Specifically, we subtract the feature after avgpool from the original
eature 𝐹 𝑜𝑟 to obtain the peak map 𝐹 𝑝𝑒𝑎𝑘:
𝑝𝑒𝑎𝑘 = 𝐹 𝑜𝑟 − 𝑎𝑣𝑔𝑝𝑜𝑜𝑙(𝐹 𝑜𝑟). (14)

We only process the input feature map through the avgpool oper-
tion, and the obtained feature map and peak map are connected and
onvoluted to generate our spatial attention map 𝐹 𝑠𝑝𝑎:
𝑠𝑝𝑎 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑣(𝐹 𝑝𝑒𝑎𝑘), 𝐹 𝑜𝑟))). (15)

To fuse the original information, we adopt the idea of residual learn-
ng by adding the spatial refinement features to the original features to
btain the final output, as shown in Fig. 4(a). Due to the lightweight
peration, the application of Peakiness Fusion Attention Module does
ot bring too much resource occupation.

Additionally, we provide the pseudocode of our method in Algo-
ithm 1. First, for each batch size, original images are fed to Dual-
tream Fusion Module containing Peakiness Fusion Attention Module.
e then optimize the segmentation stream and the super-resolution

tream as described in Algorithm 1, following steps 5–11 to finally
btain segmentation masks.

Algorithm 1 DRFL’s algorithm
Input: Training medical image set  and labels 
utput: Masks

1: for Batch size in  do
2: Original images are fed to Dual-stream Fusion Module contain-

ing PFAM.
3: Optimize Segmentation Stream with Eq. (1).
4: Optimize Super-Resolution Stream with Eq. (4) to obtain 𝑝𝑠𝑟.
5: 𝐹 𝑠𝑒𝑔 and 𝐹 𝑠𝑟 are fed into the RFTM.
6: Calculate 𝐻𝑓𝑢𝑠𝑖𝑜𝑛 using Eq. (8).
7: Obtain 𝑝𝑏𝑖𝑛 using Eq. (9).
8: Concatenate 𝑝𝑏𝑖𝑛 and 𝑝𝑠𝑟 as the input of Fusion Module.
9: Optimize Fusion Module with Eq. (6).

10: Optimize DRFL using Eq. (7) to obtain the final masks.
11: end for

4. Experiment

We employ the LIDC dataset of lung nodule segmentation, the
LUNG segmentation dataset of lung segmentation, the ISIC 2018 dataset
of skin lesion segmentation, the ISBI 2012 dataset of cell contour
segmentation, and the PROMISE 2012 dataset of prostate segmentation
to verify the effectiveness of our Dual-stream Fusion Module (DFM),
Representation Fusion Transformer Module (RFTM) and Peakiness Fu-
sion Attention Module (PFAM). The application of our Dual-stream
representation fusion learning (DRFL) paradigm to segmentation from
the level of cells up to systems is discussed in the following sections.

Evaluation metrics: We mainly utilize DICE, IoU, and ACC to
evaluate our proposed method. The DICE score is a measure of the
amount of uniformity between two image regions, which is calculated
as:

𝐷𝐼𝐶𝐸 = 2 × 𝑇𝑃
2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

. (16)

The intersection over union (IoU) score is defined as:

𝑜𝑈 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

. (17)

And the ACC (accuracy rate) is calculated as:

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁 . (18)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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Fig. 5. Visual results of lung nodule segmentation, lung segmentation and skin lesion segmentation. From top to bottom: the original images, the binary mask results obtained
by our Dual-stream representation fusion learning (DRFL) paradigm, the binary mask results obtained by UCTransNet (Wang et al., 2022a), and the ground truth images. The red
box shows the difference.
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where TP denotes true positive, TN denotes true negative, FP denotes
false positive, and FN denotes false negative for all above.

Experiment settings: In the following experiments, we train the
model by the same parameter settings: the maximum epoch is set to 60,
while the initial learning rate of the optimizer adam is set to 0.0002,
and start to uniformly attenuate after 30 epochs; the weight 𝜆 of 𝐿𝐷𝐹𝑀
and the weight 𝛾 of 𝐿𝐹𝑢𝑠𝑖𝑜𝑛 are both set to 1; for Representation Fusion

ransformer Module, the number of Weighted Multi-Head Attention
ayer is 12, the hidden layer dimension is 768, and we only use one

Representation Fusion Transformer Layer. All our experiments on var-
ious tasks are performed on a single NVIDIA TITAN V, and We utilize
4-fold cross-validation for final evaluation. The time consumption of
our method on the LUNG dataset is about 3.5 h.

4.1. Lung nodules segmentation

As the lung nodule segmentation is a crucial application in the field
of medical image segmentation, we first perform the application of our
method on the public dataset LIDC.

Dataset: The public dataset Lung Image Database Consortium and
Image Database Resource Initiative (LIDC-IDRI or short for LIDC) was
created by the Lung Image Database Alliance and the Image Database
Resource Program (Armato et al., 2011). This dataset contains 1356
nodules from 1018 cases, and almost every nodule case contained the
coordinates of the painting boundary and the visual features of four
radiologists. We use 50% consensus masks (Armato et al., 2011) as the
ground truth (merged areas labeled by at least 50% of the doctors, and
randomly select 1100 lesions from the LIDC dataset for training (770
nodules), validation (110 nodules) and testing (220 nodules).

Comparison with other methods on LIDC: The LIDC part of
able 1 demonstrates that our method outperforms the other state-of-
he-art methods (U-Net Ronneberger et al., 2015, Deeplabv3+ Chen
t al., 2018, Attention UNet Oktay et al., 2018, U-Net++ Zhou et al.,
018, CE-Net Gu et al., 2019, DC-Net Xu et al., 2021 and UCTransNet
ang et al., 2022a) by a large margin on LIDC. Compared to U-Net,

ur DRFL’s Dice score increases from 0.706 to 0.830 by 17.5%, IoU
core increases from 0.571 to 0.729, and ACC score increases from
.978 to 0.993. Therefore, our Dual-stream representation fusion learn-
ng (DRFL) paradigm with Dual-stream Fusion Module, Representation
usion Transformer Module and Peakiness Fusion Attention Module is
ore suitable for lung nodule segmentation, and some visual examples

re shown in the LIDC part of Fig. 5.
6

4.2. Lung segmentation

As lung segmentation is the basis for further lung nodule detection
and segmentation that focuses on small lung nodules with complex
edges, we apply our method to the lung segmentation challenge dataset
to verify its effectiveness in large organ segmentation.

Dataset: The lung segmentation dataset1 contains 267 images with
corresponding ground truth annotations, while we randomly divide the
datasets into two parts: 70% is used as the training set, 10% is utilized
as the validation set, and 20% is for the testing set.

Comparison with other methods on LUNG: We compare our
RFL with other state-of-the-art networks in the LUNG part of Table 1,
nd our method achieves the highest Dice score of 0.970, IoU score
f 0.948, and ACC score of 0.983, meaning that our segmentation
etwork is more effective for organ segmentation tasks such as lung
egmentation. Besides, the performance of our DRFL also exceeds that
f UCTransNet (Wang et al., 2022a), validating the effectiveness of
he proposed Dual-stream Fusion Module, Representation Fusion Trans-
ormer Module and Peakiness Fusion Attention Module. Compared with
CTransNet, our DRFL’s Dice score increases from 0.955 to 0.970.
ome examples of visual comparison is shown in the LUNG part of
ig. 5, and we can see that Our DRFL has better visual effects as well
s the higher precision.

.3. Skin lesion segmentation

We apply our Dual-stream representation fusion learning framework
o the challenging skin lesion segmentation task.
Dataset: The skin lesion segmentation images come from a pub-

ic challenge: skin lesion analysis towards melanoma detection (ISIC
018).2 We use all publicly available training sets of ISIC 2018 which
ncludes 2594 images and their corresponding ground truths obtained
rom different types of equipment, and randomly divide the dataset into
816 for training, 260 for verification and 518 for testing follow the
etting of the CA-Net (Gu et al., 2020). As the resolutions of the skin
esion images varies, we adjust the size of each image to 256 × 342
nd normalize it to improve the computational efficiency, and employ
nline horizontal and vertical flipping, and random rotation for data
ugmentation.

1 https://www.kaggle.com/kmader/finding-lungs-in-ct-data/data/.
2 https://challenge2018.isic-archive.com/

https://www.kaggle.com/kmader/finding-lungs-in-ct-data/data/
https://challenge2018.isic-archive.com/
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Fig. 6. Experiments on ISBI 2012 (Cardona et al., 2010) and PROMISE 2012 (Litjens et al., 2014). From left to right for both datasets: original images, the results of our DRFL
prediction, the results obtained by UCTransNet, and ground truth images. It can be observed that the segmentation results of our method are closer to the ground truth images.
Table 1
Evaluation on LIDC dataset and LUNG dataset for lung nodule segmentation and lung segmentation. The outputs are in ‘‘mean ± standard deviation’’ format.

Method LIDC LUNG

%Dice %IoU %ACC %Dice %IoU %ACC

U-Net (Ronneberger et al., 2015) 70.6 ± 9.0 57.1 ± 6.6 97.8 ± 0.3 90.6 ± 1.6 83.5 ± 1.9 95.3 ± 0.4
Deeplabv3+ (Chen et al., 2018) 75.2 ± 7.4 62.2 ± 9.8 99.1 ± 0.2 90.2 ± 1.8 82.7 ± 1.2 95.0 ± 0.5
Attention UNet (Oktay et al., 2018) 75.3 ± 10.8 63.2 ± 9.2 99.2 ± 0.3 93.6 ± 1.4 90.8 ± 1.9 95.4 ± 0.3
U-Net++ (Zhou et al., 2018) 73.0 ± 5.0 60.6 ± 8.1 99.1 ± 0.1 94.8 ± 1.5 91.5 ± 2.1 95.2 ± 0.5
CE-Net (Gu et al., 2019) 80.3 ± 8.8 68.5 ± 7.9 99.3 ± 0.2 95.1 ± 1.3 92.0 ± 1.6 96.1 ± 0.3
DC-Net (Xu et al., 2021) 77.6 ± 9.6 66.5 ± 10.7 99.4 ± 0.2 95.2 ± 1.1 92.3 ± 1.8 96.8 ± 0.4
UCTransNet (Wang et al., 2022a) 78.1 ± 9.8 67.8 ± 6.0 99.4 ± 0.3 95.5 ± 1.0 92.6 ± 1.7 96.9 ± 0.3
Our DRFL 83.0 ± 7.5 72.9 ± 6.5 99.3 ± 0.1 97.0 ± 0.5 94.8 ± 1.0 98.3 ± 0.3
Table 2
Evaluation on ISIC 2018 for skin lesion segmentation. We report the results of our method and state-of-the-art methods on Dice and IoU metrics.

ISIC 2018

Method U-Net (Ronneberger
et al., 2015)

Deeplabv3+ (Chen
et al., 2018)

Attention UNet (Oktay
et al., 2018)

CE-Net (Gu et al.,
2019)

DC-Net (Xu et al.,
2021)

CA-Net (Gu et al.,
2020)

DRFL

%Dice 88.5 ± 3.2 89.3 ± 2.8 89.8 ± 2.9 92.2 ± 2.6 91.8 ± 3.0 92.0 ± 2.7 93.8 ± 3.2
%IoU 77.8 ± 3.0 79.0 ± 3.1 80.1 ± 2.9 87.3 ± 2.7 86.4 ± 2.8 86.8 ± 3.1 88.7 ± 2.6
Comparison with other methods on ISIC 2018: We compare our
method with other excellent methods under the same experimental
environment and dataset settings, including U-Net (Ronneberger et al.,
2015), Deeplabv3+ (Chen et al., 2018), Attention UNet (Oktay et al.,
2018), CE-Net (Gu et al., 2019), DC-Net (Xu et al., 2021) and CA-
Net (Gu et al., 2020). As shown in Table 2, our method outperforms
other state-of-the-art methods by a large margin on ISIC 2018 dataset.
Compared with CA-Net, our DRFL’s Dice score increases from 0.920 to
0.938, and the IoU score increases from 0.868 to 0.887, validating the
effectiveness of our method on the skin lesion segmentation task, while
the ISIC 2018 part of Fig. 5 shows the visual results.

4.4. Cell contour segmentation

The cell contour segmentation task involves segmenting neuron
structures under an electron microscope, making it a very challenging
task.

Dataset: ISBI 2012 is for the task of segment neuronal structure,
and its training set and test set contain 30 images. However, the test
set has no corresponding ground truth. We augmented all 30 images
of the ISBI training set to obtain 300 images by simply applying the
flipping and random rotation, and we use 210 images as the training
set, 30 images as the validation set, and 60 images as the testing set.

Comparison with other methods on ISBI 2012: In this experi-
ment, the segmentation results of the our method are compared with
those of U-Net (Ronneberger et al., 2015), Deeplabv3+ (Chen et al.,
2018), Attention UNet (Oktay et al., 2018), Unet++ (Zhou et al.,
2018), CE-net (Gu et al., 2019), DC-Net (Xu et al., 2021) and UC-

TransNet (Wang et al., 2022a). Table 3 shows that our DRFL achieves

7

Table 3
Evaluation on ISBI 2012 for cell contour segmentation.

Method %Dice %IoU %ACC

U-Net (Ronneberger
et al., 2015)

89.5 ± 2.0 81.8 ± 2.4 84.3 ± 0.9

Deeplabv3+ (Chen
et al., 2018)

87.3 ± 2.4 77.5 ± 1.4 77.5 ± 0.8

Attention UNet (Oktay
et al., 2018)

93.3 ± 2.6 87.4 ± 2.0 88.9 ± 0.6

U-Net++ (Zhou et al.,
2018)

93.9 ± 1.8 88.4 ± 1.3 89.9 ± 0.7

CE-Net (Gu et al.,
2019)

93.9 ± 1.4 88.6 ± 2.5 90.2 ± 0.6

DC-Net (Xu et al.,
2021)

94.5 ± 1.5 89.6 ± 1.3 90.4 ± 0.6

Ms RED (Dai et al.,
2022)

95.2 ± 1.2 90.7 ± 1.2 91.1 ± 0.4

Our DRFL 96.5 ± 0.9 93.4 ± 1.4 91.0 ± 0.9

the most advanced results, in which our DRFL has a Dice score, IoU,
and ACC of 0.965, 0.934, and 0.910, respectively. In particular, the
Dice score and IoU of our method are substantially better than those
of other methods. The visual results of our DRFL prediction are shown
in Fig. 6.

4.5. Prostate segmentation

In this experiment, we validate the effectiveness of our method in
prostate segmentation mainly on images. As inevitable movements in
clinical settings will destroy MRI slices, resulting in uneven appearance
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Table 4
Evaluation on PROMISE 2012 for prostate segmentation.

Method %Dice %IoU %ACC FLOPs

U-Net (Ronneberger
et al., 2015)

90.6 ± 1.8 84.4 ± 1.4 99.4 ± 0.2 14.8G

Deeplabv3+ (Chen
et al., 2018)

89.2 ± 0.9 81.3 ± 1.8 99.2 ± 0.3 40.6G

Attention UNet (Oktay
et al., 2018)

91.1 ± 1.4 85.1 ± 1.7 99.4 ± 0.3 21.3G

U-Net++ (Zhou et al.,
2018)

91.3 ± 1.3 85.2 ± 0.9 99.4 ± 0.1 27.4G

CE-Net (Gu et al.,
2019)

92.4 ± 1.6 86.2 ± 1.1 99.4 ± 0.2 23.9G

DC-Net (Xu et al.,
2021)

91.2 ± 1.8 85.1 ± 0.9 99.4 ± 0.1 25.5G

UCTransNet (Wang
et al., 2022a)

91.8 ± 1.0 85.9 ± 1.2 99.5 ± 0.1 31.2G

Our DRFL 93.0 ± 0.9 87.3 ± 1.4 99.5 ± 0.2 23.7G

between slices, this means that 2D segmentation is more appropriate
than 3D segmentation in damaged MRI slices (Wang et al., 2018b).
Therefore, our experiments on PROMISE 2012 (Litjens et al., 2014) also
have clinical importance, and extending our method to 3D and multiple
slices is not difficult.

Dataset: PROMISE 2012 (Litjens et al., 2014) is for the task of
segmenting prostate MRI volumes. The prostate can have various ap-
pearances in different scans, making the segmentation of this organ a
difficult task. In practice, we randomly select 657 slices from all stacks,
and use 526 images as both the training set and the validation set, and
131 images as the testing set.

Comparison with other methods on PROMISE 2012: Similar to
the experiments on ISBI, we compare our DRFL with other segmen-
tation methods in Table 4. Compared with UCTransNet, our DRFL’s
Dice score increases from 0.918 to 0.930 and IoU increases from
0.859 to 0.873, and our DRFL obtains the highest score on various
evaluation indicators, including Dice, IoU and ACC, demonstrating that
our DRFL can accurately segment the prostate. The reasons are not only
because our PFAM fuses a large amount of texture feature and spatial
information, but also because RFTM fuses high-resolution features,
while our Fusion Module further optimized the binary mask to improve
segmentation accuracy finally. The role of each part will be discussed
in detail in the following ablation study section, and some visual results
are shown in the PROMISE part of Fig. 6.

In addition, we show in Table 4 that our method not only out-
performs transformer-based models such as UCTransNet (Wang et al.,
2022a) and DC-Net (Xu et al., 2021), but also outperforms some non-
attention-based models such as Deeplabv3+ (Chen et al., 2018) and
CE-Net (Gu et al., 2019) in terms of FLOPs. This demonstrates that our
method achieves high accuracy with much less computation time.

4.6. Ablation study

Ablation Study for Dual-stream Fusion Module: We use SS to
enote only Segmentation Stream with 𝐿𝑠𝑒𝑔 , and DFM for Dual-stream

Fusion Module in Table 5, and the results on the LUNG dataset validate
that our super-resolution stream (SRS) and Fusion Module (FM) can
effectively promote the accuracy of segmenting lesions. Compared with
SS, the Dice score of SS + SRS increases from 0.9434 to 0.9507, while
the Dice score of DFM increases to 0.9607. This demonstrates that the
Fusion Module can further use the high-resolution images to improve
the segmentation performance of the overall network.

To further verify the superiority of our proposed SRS, we replace
the SS of DFM with the current advanced medical image segmentation
networks DC-Net (Xu et al., 2021), called DC-Net + SRS in Table 5.
We can see that our SRS improved the segmentation accuracy of the
original DC-Net network, with the Dice score increased from 0.9524 to
0.9572.
 a
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Table 5
Ablation Study for Dual-stream Fusion Module on LUNG dataset.

Method %Dice %IoU %ACC

DC-Net (Xu et al., 2021) 95.24 ± 1.2 92.31 ± 0.8 96.80 ± 0.2
DC-Net (Xu et al., 2021) + SRS 95.72 ± 1.0 92.47 ± 1.4 97.12 ± 0.4
SS 94.34 ± 0.7 89.69 ± 1.1 96.33 ± 0.1
SS + SRS 95.07 ± 1.8 91.77 ± 1.5 96.80 ± 0.2
DFM (SS + SRS + FM) 96.07 ± 0.8 91.77 ± 0.9 97.11 ± 0.3

Table 6
Ablation study for representation Fusion Transformer Module on LUNG dataset.

Method %Dice %IoU %ACC

DC-Net (Xu et al., 2021) + SRS 95.72 ± 1.0 92.47 ± 1.4 97.12 ± 0.4
DC-Net (Xu et al., 2021) + SRS + RFTM 96.07 ± 1.1 92.24 ± 1.2 97.40 ± 0.4

SS + SRS 95.07 ± 1.8 91.77 ± 1.5 96.80 ± 0.2
SS + SRS + RFTM 95.47 ± 1.5 92.07 ± 1.0 97.00 ± 0.3
DFM (SS + SRS + FM) 96.07 ± 0.8 91.77 ± 0.9 97.11 ± 0.3
DFM + RFTM 96.37 ± 1.8 92.77 ± 1.4 97.30 ± 0.1

Table 7
Ablation study for Peakiness Fusion Attention Module on LUNG dataset.

Method %Dice %IoU %ACC

DFM + RFTM 96.37 ± 1.8 92.77 ± 1.4 97.30 ± 0.1
DFM + RFTM + CBAM (Woo et al., 2018) 96.63 ± 1.1 93.75 ± 1.5 97.63 ± 0.3
DRFL (DFM + RFTM + PFAM) 97.01 ± 1.3 94.82 ± 0.9 98.33 ± 0.4

Ablation Study for Representation Fusion Transformer Module:
Table 6 shows the effects of Representation Fusion Transformer Module
(RFTM), which boosts the performance of lung segmentation. Here
DFM + RFTM means that our DRFL does not use PFAM, that is, there
s no attention block in PFAM but two simple convolutions (Fig. 4).
esults on the LUNG dataset show that the RFTM could promote the
ccuracy of segmentation.

To further prove the superiority of our RFTM, we replace the SS of
FM with the current advanced medical image segmentation networks
C-Net (Xu et al., 2021), called DC-Net + SRS + RFTM in Table 6). We

can see that RFTM improves the segmentation accuracy of the DC-Net
+ SRS network, with the Dice score increased from 0.9572 to 0.9607.

Ablation Study for Peakiness Fusion Attention Module: To verify
he effectiveness of our Peakiness Fusion Attention Module (PFAM), we
ompare the spatial attention blocks based on the DFM + RFTM frame-
ork, with the commonly used spatial attention block CBAM (Woo
t al., 2018) in Table 7. Our DRFL (DFM + RFTM + PFAM) achieves
he highest performance, and its Dice index reaches 0.9701 because our
FAM can extract more important information than CBAM.

To further verify the effectiveness of our PFAM, we visualize the
ttention maps of the last layer of the encoder between our method
ithout and with PFAM. As shown in Fig. 7, after the application of our
FAM, the focus of the segmentation network pays more attention to
he target area, and our method with PFAM can reduce the interference
f the surrounding background and capture more salient features.
Ablation experiment on PROMISE 2012: To verify the effective-

ess of our Dual-stream Fusion Module (DFM), Representation Fusion
ransformer Module (RFTM), and Peakiness Fusion Attention Module
PFAM), we also conducted ablation experiments on PROMISE 2012.
he experimental results are consistent with those on LUNG dataset,
alidating the superiority of our method. The Dice score of SS + SRS
nd DFM (SS + SRS + RM) increases from 0.9101 to 0.9158, and 0.9101
o 0.9214 after using the SRS and FM respectively, while the Dice score
f DFM + RFTM increases to 0.9263 by employing RFTM, and the Dice
core of SoftNet increases to 0.9302 by applying our PFAM (Table 8).
ompared with the baseline SS, the FLOPs of our DRFL only increase by
0%, which is acceptable in the case of a large increase in segmentation

ccuracy.
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Fig. 7. Comparison of visual attention weight maps of the last layer of the encoder between our method and our method without PFAM. From top to bottom: the original images,
he ground truth segmentation, the attention maps of our method without PFAM, and the attention maps of our method with PFAM.
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Table 8
Ablation study on PROMISE 2012.

Method %Dice %IoU %ACC FLOPs

SS 91.01 ± 1.8 84.32 ± 0.9 98.63 ± 0.2 21.5G
SS + SRS 91.58 ± 1.3 85.12 ± 1.4 99.41 ± 0.2 21.9G
DFM (SS + SRS + FM) 92.14 ± 1.1 86.15 ± 1.6 99.47 ± 0.1 22.6G
DFM + RFTM 92.63 ± 1.1 86.68 ± 1.3 99.49 ± 0.1 23.1G
DRFL (DFM + RFTM + PFAM) 93.02 ± 0.9 87.31 ± 1.4 99.50 ± 0.2 23.7G

4.7. Discussion

One limitation of DRFL is that it requires the teacher model to
provide a priori with high-resolution information. In the future, we
will explore the way of providing high-resolution priors through self-
supervised learning or exploit other prior knowledge (Zhang et al.,
2022b,a). Furthermore, it would be interesting to apply our DRFL to
3D medical images.

5. Conclusion

In this work, we propose the Dual-stream representation fusion
learning paradigm (DRFL) to accurately segment medical images, which
 e
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can cope with various medical image segmentation tasks from the
level of cells up to the level of systems and achieve high accurate
segmentation. To fully fuse the high-resolution representation and fine-
grained structure representation, we design the Dual-stream Fusion
Module (DFM) and the Representation Fusion Transformer Module
(RFTM), and both the binary mask and the high-resolution image
can be simultaneously obtained. Results demonstrate that our super-
resolution stream and RFTM can improve the performance of binary
segmentation. Moreover, we design the Peakiness Fusion Attention
Module (PFAM) to capture more important features and fuse more
spatial information. Comprehensive experiments validate that our DRFL
can improve medical image segmentation under different tasks from
the level of cells to the level of systems, including lung nodule seg-
mentation, lung segmentation, skin lesion segmentation, cell contour
segmentation, and prostate segmentation.
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