
  

 

Abstract— To ensure an autonomous truck can operate safely 

in a dump area, it is crucial to detect a berm accurately in 

advance. However, there are two challenges. First, the berm is 

not a static terrain but a movable one because of soil dumping. 

Second, berms are often irregular in shape-they are neither 

straight lines nor smooth curves. We considered two types of 

possible existing methods, but only to find they are not accurate 

and can’t provide height information. Therefore, this paper 

proposes a berm detection algorithm, which includes three 

steps. First, extract berm candidate 3D LiDAR points based on a 

2D height difference grid map. Second, use a binary Bayes filter 

to build and update 3D dynamic probability grid maps. Last, 

use a fitting rectangle technique to recognize the berm. We call 

this algorithm a Probability Grid Berm Detection (PGBD) 

algorithm. Off-line experimental evaluations on PGBD carried 

on datasets show good performance, compared with two curb 

detection algorithms, which are Hough Transformation and 

Haar Wavelet Transformation. And the good performance of 

the PGBD algorithm is further verified in the real-time 

experiment. 

I. INTRODUCTION 

Berm is used to avoid trucks going over the edge at a 
dump point. As shown in Fig. 1, if trucks go over the edge, it 
will be dangerous. A berm is shown in Fig. 2(b). Note that it is 
not a static terrain but a dynamic one because of constant soil 
dumping.  

For autonomous trucks, a berm cannot be detected as an 
obstacle. The reason is that if it is a berm, a truck needs back 
itself to the berm at a close distance for soil dumping, and if it 
is an obstacle, the truck has to avoid it at a relatively far 
distance. So, to ensure autonomous trucks operate safely in 
dump areas, it is crucial to detect berms in advance for path 
planning and speed planning.  

There are some challenges in the methods currently 
available for berm detection. One of the methods is to utilize 
high-definition map (HD map). HD map is usually applied to 
static terrain and gets updated with low frequency, but the fast 
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change of berm’s position requires map updating in real-time, 
that means perceiving berms is out of HD map’s capacity. 
The second type of possible methods that we have considered 
refers to those applied to detect curbs. The reason we consider 
to borrow curb perception methods is that curb has a similar 
feature to berm: points on both curb and berm are higher than 
those on the ground near them. However, based on our 
experiments, curb perception methods don’t work well either 
in detecting berm, for the reason that berm is irregular, unlike 
curb, which is regular. Another main reason for not using 
curb perception methods lies with the failure for curb 
algorithms to provide height information, which is important 
because it determines whether the truck can back itself to the 
berm for soil dumping. The height standard varies from mine 
to mine. If the height is within the standard, the autonomous 
truck will be allowed to back itself for soil dumping, 
otherwise it will not.  

In response to the current challenges, this paper proposes 
a berm detection algorithm, which includes three steps. First, 
extract berm candidate 3D LiDAR points based on a 2D 
height difference grid map. Second, use a binary Bayes filter 
to build and update 3D dynamic probability grid maps. Last, 
use a fitting rectangle technique to recognize the berm.  

The main contribution of this paper is the proposed PGBD 
algorithm. Integrating 2D grid map with 3D dynamic 
probability grid map, the algorithm is able to minimize the 
negative effect of berm’s dynamism and irregularities on the 
detection accuracy. Besides, it enables an accurate output of 
the berm’s present height. 

This method has a limitation-the way to differentiate a 
berm and an obstacle only applies to dump areas where a 
berm’s length exceeds 8m and the length of all dynamic 
obstacles (other trucks and pedestrians) is less than 8m. 

   

  (a)                 (b) 

Fig. 1.    Trucks went over the edge at dump points. 

   

  (a)                 (b) 

Fig. 2.    (a) is the diagrammatic drawing of the dump area, where the berm is 

inside the white circle; (b) is a berm in a surface mine. 

This paper is structured as follows. Following the 
discussion of the researches on related work in section Ⅱ, we 
propose a berm detection algorithm in section Ⅲ. To verify its 
performance, we demonstrate both online and offline 
experiment processes and results in section Ⅳ. Finally, 
section Ⅴ discusses its contributions and limitations. 
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II. RELATED WORK 

We used Lanelet2 [1] to build a HD map of a dump area. 
The result shows that the position accuracy of a berm is poor, 
because HD map is usually applied to static terrain and gets 
updated with low frequency, but the fast change of berm’s 
position requires map updating in real-time, out of HD map’s 
capacity. However, the method we propose is real-time, so 
the detection accuracy will not be affected by a berm’s 
changing position. 

We also conducted research on algorithms often used for 
curb detection in this section for its similarity of shape to a 
berm. Curb detection algorithms can be divided into two 
categories: camera-based and LiDAR-based algorithms. In 
camera-based algorithms, the main sensor is camera, and in 
LiDAR-based algorithms, the main sensor is LiDAR. 

Camera-based algorithms detect road curbs by designing a 
novel network [2], [3], [4], or using traditional engineering 
techniques, such as Hough Transformation, Kalman Filter, 
and RANSAC [5], [6], [7]. These methods can neither be 
applied at night because of their requirement for daylight, nor 
can provide a berm’s height. However, our method can 
achieve both, meaning it is not subject to the lack of daylight, 
and also can provide height information.  

Some LiDAR-based algorithms include three key steps: 
first, integrate a sequence of LiDAR point clouds and project 
them onto a bird’s-eye view image; second, use this image to 
detect the curb with convolutional neural networks or 
convolutional recurrent network; last, filter out noise through 
fusing detections in subsequent images and through tracking 
detected curbs over time [8], [9]. Others use traditional 
engineering techniques such as Haar Wavelet Transformation, 
Hough Transformation, Smooth Arc Length Feature, and 
Condition Random Field (CRF) [10], [11], [12], [13]. These 
methods fail to provide a berm’s height or to consider its 
irregular shape.  

Aimed at the existing challenges of these methods can be 
used for berm detection, we propose a new berm detection 
algorithm. This algorithm first obtains a 2D height difference 
grid map to extract berm candidate 3D LiDAR points. The 2D 
height difference grid map not only contains the coordinate of 
the two-dimensional cell but also includes the height 
difference of the LiDAR point clouds in a two-dimensional 
cell. Second, it builds a 3D dynamic probability grid map 
based on the berm candidate 3D LiDAR points and uses a 
binary Bayes filter [14] to update the map’s probability. Last, 
with the 3D dynamic probability grid map, we use the fitting 
rectangle technique [15] and the skeleton extraction technique 
[16] to extract a 2D berm grid map. Coordinate and value of a 
2D cell occupied by a berm is the position and the maximum 
height of the berm in the 2D cell respectively. Therefore, we 
call this algorithm the Probability Grid Berm Detection 
(PGBD) algorithm. 

There is one problem, which is that on the 2D grid map we 
use, the representation of a berm and an obstacle on the map 
could be mistaken as the same when they are perceived and 
processed as the smallest fitting rectangle (The rectangle 
encloses the occupied cells of a 2D occupancy grid map, and is 
perpendicular to the truck on the map. The 2D occupancy grid 
map is introduced in section Ⅲ.C). Therefore, to prevent 

obstacles such as other trucks and pedestrians from being 
detected as a berm, we have to find the difference in features 
of a berm and an obstacle. And the difference we identified is 
in their length disparity.  

We have investigated some surface mines and found that a 
truck is usually the longest obstacle in a dump area, and its 
length is less than 8m. Although berms vary in length, it is 
usually longer than 8m. Thereby, we assume that the length of 
the obstacles in a dump area is less than 8m, and the length of 
the berm is greater than 8m. So, we define the rectangle on the 
map, whose length is greater than 8m, as representation of 
berms.  

III. BERM DETECTION 

Before detecting the berm, it is necessary to calibrate the 
raw point clouds and correct their distortion. 

This algorithm fuses multi-sensor information from 
LiDAR, GPS-RTK, and INS. Because LiDAR can provide 
accurate 3D position information of the environment; 
GPS-RTK and INS can provide accurate pose information of 
the autonomous truck. And multi-sensor information needs a 
unified coordinate system to improve the accuracy of the 
algorithm. To do so, we calibrate multi-sensor information to a 
vehicle coordinate system using the method of [17]. The 
calibrated point cloud position accuracy is 0.02m. As shown in 
Fig. 3, the definition of the vehicle coordinate system is as 
follows: its origin coincides with projection of the center of 
the rear axis of the truck onto the ground; the positive x-axis 
(the red line) points to the front of the vehicle; the positive 
y-axis (the green line) to the left of it; and the positive z-axis 
(the blue line) is the vertical axis pointing upwards. So, this 
coordinate system doesn’t depend on the suspension. 

 

Fig. 3.    The left side is CMT96; the upper right corner is RS-Bpearl; the lower 

right corner is OXTS Inertial+. And the origin of the vehicle coordinate 

system coincides with projection of the center of the rear axis onto the ground; 

the red line is x-axis; the green line is y-axis; and the blue line is z-axis. 

Mechanical scanning LiDAR will not cause point clouds 
distortion due to movement. If the LiDAR is a mechanical 
scanning LiDAR, we use the method of [18] to correct the 
distorted point clouds.  

A.  Extraction of Berm Candidate 3D LiDAR Points 

Berm candidate 3D LiDAR points refer to LiDAR raw 
point clouds that hit the berm and obstacles. There are three 
steps to extract them.  

First, we define a frame of point clouds in the vehicle 

coordinate system as  0

V V V V

i nP P P P , . . . , , . . . , , 

 V V V V

i i i iP X Y Z , , . And we project the 
VP  onto a 2D grid 

map to obtain a 2D height difference grid map (Fig. 4).  
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Fig. 4.    2D height difference grid map. 

During the projection, we apply the following equation to 
calculate the height difference.  

   max minV V

m i iZ Z Z                             (1) 

Where 
mZ  is the height difference of point clouds included in 

the two-dimensional cell whose index No. is m ; the m is 

generated by the following equation (2): 

1 1

2 2

V V

i iX x Y y
m w

r r

       
      
   

  [0, ]i n        (2)      

Where     is the rounding down operator; x  and y  are 

the vertical and horizontal offsets between the vehicle 
coordinate system center and the 2D grid map coordinate 
system center; r  is the resolution of the map; w  represents 

the number of cells along the X-axis direction; the unit of x , 

y  and r  is meter.  

Second, before obtaining berm candidate 3D LiDAR 
points, we need to acquire berm candidate 2D points, which 
are positions of cells greater than a height difference threshold 
in the 2D height difference grid map. The threshold is set 
according to the height standard of a berm.  

Last, raw 3D LiDAR points that are projected onto berm 
candidate 2D points are target points we look for.  

As shown in Fig. 5, the coordinate system refers to the 
vehicle coordinate system; the green sparse points to the raw 
3D LiDAR points; and the white sparse points in the yellow 
rectangle to the berm candidate 3D LiDAR points.  

  

Fig. 5.    The coordinate system refers to the vehicle coordinate system; the 
green sparse points to the raw 3D LiDAR points; and the white sparse points 

in the yellow rectangle to the candidate 3D LiDAR points of the berm. 

B. Build and Update of 3D Dynamic Probability Grid Map 

3D dynamic probability grid map can output the 
confidence of the berm candidate 3D LiDAR points. We need 
to convert coordinates of the berm candidate 3D LiDAR 
points from the vehicle coordinate system to the world 
coordinate system using vehicle’s pose, before building and 
updating the map. 

There are some characteristics of the 3D dynamic grid 
map: the pose of the map’s center is equal to the pose of the 

vehicle of the first frame that the map contains; coordinates of 
the berm candidate 3D LiDAR points need to be converted 
from the world coordinate system to the map coordinate 
system; the value of the cell of the map represents occupancy 
probability; every map only contains a fixed number of frames 
of berm candidate 3D LiDAR points and the map’s size is 
adaptive.  

Because the size of the map is adaptive, so, it is managed 
by using an octree [19] whose spatial range can be constantly 
expanded. Octree is a tree data structure that can reduce the 
time complexity and space complexity of our code.  

There are four steps to build an octree (or a map) using the 
frame of berm candidate 3D LiDAR points we have created:  

1) Set the resolution of the deepest node, the initial size, 

and the position of the root node. 

2) Input every point of the frame of berm candidate 3D 

LiDAR points into the octree. 

3) Calculate whether the point is beyond the range 

defined by the root node; if so, a larger range node 

should be extended to be the upper layer of the current 

root node as the new root node. The range of the root 

node should be repeatedly verified and the root node 

should be extended until the point is contained in the 

range of the root node. 

4) Index the node layer by layer until maximum recursion 

depth (or minimum volume) based on the coordinate of 

the point. When an empty node does not reach the 

maximum recursion depth, a new space will be opened 

up, and the cube voxel represented by this node will be 

divided into eight equal parts so as to establish eight 

new child nodes. And then, we repeat the indexing 

process until the node reaches its maximum recursion 

depth (or minimum volume). After that, we insert the 

point into the node. In order to use a binary Bayes filter 
[14], we stipulate that a node only be inserted once by a 

frame of berm candidate 3D LiDAR points. 
We use a binary Bayes filter to update the probability of 

the 3D dynamic grid map. The filter can be used to estimate 
the probability of Binary questions. Every time after a frame 
of berm candidate 3D LiDAR points is inserted into the map, 
we update the map’s probability as follows: 
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               (4) 

( 1| )i np m z C                               (5) 

Where 1:( 1| )i np m z  represents the occupancy probability 

of the cell whose index No. is i , after berm candidate 3D 

LiDAR points hit the cell for n  times; 1: 1( 1| )i np m z   

represents the occupancy probability of the cell, after berm 
candidate 3D LiDAR points hit the cell for 1n  times; 

( 1| )i np m z  represents the occupancy probability (a 

constant) of the cell, the probability is only estimated by a 
point in the berm candidate 3D LiDAR points, which is the 
point when the cell is hit for the nth time. 
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To reduce space complexity of a 3D dynamic grid map. 
After a map has been inserted berm candidate 3D LiDAR 
points of a fixed number of frames, the map will be marked as 
finished and be discarded. To ensure the probabilities of the 
cells in adjacent maps corresponding to the same berm 
candidate 3D LiDAR point are close, we stipulate that the next 
map starts to be built when a frame of berm candidate 3D 
LiDAR points of current map is inserted, and this frame is the 
10th from the last frame. So, there are at most two unfinished 
maps at any time and we use the unfinished map with the most 
inserts to extract a 2D berm grid map.  

C. Extraction of 2D Berm Grid Map 

Because Cells of 2D berm grid map is discrete, it can be 
used to represent an irregular berm, so as to improve the 
detection accuracy. At the same time, the value of the cell 
represents the height of the berm, which solves the problem 
that current research methods cannot provide the height 
information. There are five steps to extract a 2D berm grid 
map.  

First, we set a probability threshold and a berm length 
threshold. And, we find 3D probability cells of the 3D 
dynamic grid map which must be greater than the probability 
threshold.  

Second, we convert coordinates of the 3D probability cells 
from the 3D dynamic grid map coordinate system to the 
Vehicle coordinate system of the current frame.  

Third, we project the 3D probability cells of the Vehicle 
coordinate system onto a 2D grid map to acquire a 2D 
occupancy grid map. Value of projected cells is 1 and value of 
other cells is 0. The 2D occupancy grid map not only contains 
the coordinate of the two-dimensional cell but also includes 
the occupied state (0 or 1).  

Fourth, we use the fitting rectangle technique [17] to fit the 
occupancy area of the 2D occupancy grid map. The result is a 
rectangle, which is the smallest rectangle enclosing the 
occupied cells and is perpendicular to the truck. If the length 
of the fitted rectangle is greater than the berm length threshold, 
we use the skeleton extraction technique [18] to extract 
skeleton cells of the occupied area inside the rectangle and set 
the value of all other cells to 0.  

Last, reset the value of a skeleton cell to the maximum 
height value of the 3D probability cells projected to the 
skeleton cell and we will obtain the 2D berm grid map.  

As shown in Fig. 6, this is a cropped figure of a 2D berm 
grid map, and the berm detection result is in the yellow 
rectangle. The height or color of the 2D cell represents the 
height of the berm; and the coordinate of the occupied cell is 
the berm’s position. 

 

Fig. 6.    A cropped figure of a 2D berm grid map. The berm detection result is 
in the yellow rectangle. The value of cells in the red area is 0, which is the 
non-berm area; the height or color of the 2D cell represents the height of the 
berm; and the coordinate of the occupied cell is the berm’s position. 

IV. EXPERIMENT RESULTS AND ANALYSIS 

A. Experiment Scenes 

We have done experiments in two different surface mines. 
Fig. 7(a) is the Baoli surface coal mine in Inner Mongolia, 
China. The standard height range of the berm in the Baoli 
surface coal mine is between 0.6m and 1m. Fig. 7(b) is the 
Heshangqiao surface iron mine in Anhui, China. The standard 
height range of the berm in the Heshangqiao surface iron mine 
is between 0.4 meters and 0.8 meters. The width of the berm is 
usually less than 0.5 meters. We select midpoints in the width 
direction of the berm as the labeled points. As shown in Fig. 7, 
berm points in Google Earth are labeled in red. 

     

    (a)                                              (b)     

Fig. 7.    Berm points in Google Earth are labeled in red. (a) is the Baoli surface 
coal mine in Inner Mongolia, China. (b) is the Heshangqiao surface iron mine 
in Anhui, China.  

B. Experimental Platform 

The experimental platform that this paper adopts is shown 
in Fig.3. We use the same experimental platform to do 
experiments in Baoli surface coal mine and Heshangqiao 
surface iron mine, so as to ensure the experiment results are 
only affected by the different scenes. The experimental 
platform’s model is CMT96 of Shandong Lingong 
Construction Machinery Co., Ltd. (SDLG). A 3D LiDAR 
whose model is RS-Bpearl was mounted on the rear of the 
autonomous truck and the height is 1.2 meters. As shown in 
Table Ⅰ, the ranging accuracy of the LiDAR is very high and 
the frequency is 10hz. So, the frequency of this algorithm is 
also 10hz. Similarly, an INS whose model is OXTS Inertial+ 
was mounted on the rear of the autonomous truck and the 
height is 1.5 meters. Performance parameters of the INS are 
shown in Table Ⅱ.  

TABLE I.  PERFORMANCE PARAMETERS OF RS-BPEARL 

Parameters Value 

Range 0.1m-30m 

Range Accuracy ±3cm 

Horizontal FoV 360° 

Vertical FoV 90° 

Horizontal Resolution 0.2° 

Vertical Resolution 2.81° 
Frame Rate 10Hz 

TABLE II.  PERFORMANCE PARAMETERS OF OXTS INERTIAL+ 

Parameters Value 

Position Accuracy 0.02m 
Roll/Pitch Accuracy 0.03° 

Heading Accuracy 0.1° 

Frame Rate 100Hz 

We use an Industrial Personal Computer (IPC) whose 
model is MIC-770 to run the program. The IPC is a 
high-performance intel core i7-6825EQ processor-based 
controller. With the 2.8 GHz base frequency, the IPC can 
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process point clouds data in real-time. The operating system is 
Ubuntu18.04.  

There are some performance indexes of the 3D dynamic 
probability grid map we defined: every 3D dynamic 
probability grid map contains at most 60 frames of berm 
candidate 3D LiDAR points; the resolution is 0.1 meters. And 
there are some performance indexes of the 2D grid map we 

defined: the size of the grid map is 240 40m ; the resolution 

is 0.1 meters; the origin is at the lower left corner; the 
coordinate of the origin of the Vehicle coordinate system is 

 20,20 , and the unit is meter.  

C. Results in Dataset 

We compared the PGBD algorithm with two 
state-of-the-art curb detection algorithms which are Hough 
Transformation and Haar Wavelet Transformation to evaluate 
their performance [12], [13]. To facilitate comparison of data, 
the experiments were carried out in MATLAB using offline 
datasets, which were collected by the experimental platform in 
the Baoli surface coal mine. We have done experiments using 
the four datasets collected in the process of backing the 
autonomous truck at four different areas in Fig. 7(a). The truck 
velocity is 10 km / h and every dataset includes 200 frames of 
data. The datasets consist of raw point clouds from LiDAR, 
poses of the INS, and the reference data sequences (the 
coordinates of the labeled data of Fig. 7(a) in the Vehicle 
coordinate system of each frame). 

The detection results of one frame in each dataset of the 
three algorithms are shown in Fig. 8. The results in Fig. 8(a) 
and Fig. 8(b) show that the Hough Transformation algorithm 
has many points far away from the reference values, so it is 
difficult for the Hough Transformation algorithm to handle an 
irregular-shaped berm. From Fig. 8(c) and Fig. 8(d), we can 
find that the Haar Wavelet Transformation algorithm has 
many false-positive results and it cannot be adopted in the 
dump area without noise filtering. As shown in Fig. 8(a), Fig. 
8(b), Fig. 8(c) and Fig. 8(d), the results of the PGBD algorithm 
we propose are relatively accurate in the irregular-shaped 
berm, and there are few false-positive results.  

There are some performance indexes of the three 
algorithms in Table Ⅲ. To evaluate accuracy and average 
period of the PGBD algorithm and the Hough Transformation 
algorithm, we selected a group of points at intervals of 0.1 
meters in the direction of the berm in Fig. 8(a). To evaluate 
accuracy and average period of the Haar Wavelet 
Transformation algorithm, we also selected a group of points 
at intervals of 0.1 meters in the direction of the berm in Fig. 
8(c). According to the actual situation, the width of the berm is 
usually less than 0.5 meters. And the midpoints in the width 
direction of the berm are the labeled points. So, if the 
difference between the detection result and the true value is 
less than 0.25 meters, we determine that the detection result is 
accurate. Though the Haar Wavelet Transformation algorithm 
has a short average period, its accuracy is lower than the 
PGBD algorithm. The accuracy of the Hough Transformation 
algorithm is relatively high, but its average period is the 
longest. The PGBD algorithm not only has the highest 
accuracy but also its time complexity is lower. Since the Haar 
Wavelet Transformation algorithm and Hough 

Transformation algorithm both have obvious disadvantages, 
we only test the PGBD algorithm in the real-time experiment. 

TABLE III.  PERFORMANCE INDEX OF THREE ALGORITHMS 

Algorithms Average period Accuracy 

PGBD 63.2ms 96.1% 

Hough 82.6ms 91.3% 
Wavelet 19.8ms 74.2% 

 

                 

(a)                                                            (b) 

             

(c)                                                            (d) 

Fig. 8.    The detection results of one frame in each dataset of the three 

algorithms. 

D. Real-time Experiment 

After the comparison of the three algorithms, we tested the 
PGBD algorithm using the experimental platform in Baoli 
surface coal mine and Heshangqiao surface iron mine. 
Experimental results in Baoli surface coal mine are shown in 
Fig. 9(a) and Fig. 9(b). And experimental results in 
Heshangqiao surface iron mine are shown in Fig. 9(c) and Fig. 
9(d). The left half of each figure is the berm 3D probability 
points which is greater than the probability threshold, and the 
right half of each figure is the 2D berm grid map. Different 
color of the berm 3D probability points represents different 
probability, and blue represents the maximum probability. As 
we can see from Fig. 10, the 2D berm grid map can provide 
height information of the berm. Besides, through the real-time 
experiment, it can be concluded that the farthest detection 
distance of the algorithm is 15 meters. 
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(a) 

  

(b) 

  

(c) 

  

(d) 

Fig. 9.    Real-time detection results: the left half of each figure is the berm 3D 

probability points which is greater than the probability threshold; different 
color of the berm 3D probability points represents different probability, and 

blue represents the maximum probability; the right half of each figure is the 

2D berm grid map. 

V. CONCLUSION 

This paper proposes a berm detection algorithm for the 
safety of trucks. The main contributions of the PGBD 
algorithm reside with its ability to provide berm height and 
accurate detection of irregular-shape berms. And the 
algorithm’s two advantages have been proved by experiment 
results. 

There are two limitations for our research. The first one is 
that our algorithm can only work within 15meters. So, future 
researchers can try to expend detection distance. Another one 
is the limited numbers of dump areas where it can apply. This 
algorithm targets dump areas where a berm is longer than 8m 
and all other dynamic obstacles shorter than 8m. And future 
work can focus on finding out methods that can be applied to a 
larger scale of different dump areas. 
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