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Abstract—Fast and efficient evacuation of pedestrians from an
enclosed area is a difficult but crucial issue in modern society.
In this paper, the optimization of evacuation from a building is
studied. A graph is adopted to describe the building layout with
nodes representing areas and edges representing connections. The
dynamics of the evacuation process in the graph is formulated by
a nonlinear discrete-time model at a macroscopic level. To find
the optimal evacuation plan, a consecutive differential dynamic
programming is developed. It inherits the differential dynamic
programming property that solves the value and optimal policy
locally. Additionally, it consecutively executes actions for multiple
steps in the trajectory, which is beneficial to reduce computational
burden and lower optimization difficulty. Simulations on a four-
storey building layout demonstrates our method is efficient and
suitable for on-site evacuation plan making.

I. INTRODUCTION

With the increase of population and enrichment of recre-

ation, people are now prone to crowd in certain places like

movie theaters, stadiums, and subway stations, to attend social

activities. Along with that is the fact that mass event has

become a serious threat to human health and safety [1].

When people are crowded in an enclosed area, fire alarm,

terrorist attack, or maybe just a sudden movement of someone

will cause panic and create a rush for exits. Trampling and

congestion occurs and may lead to serious injury or even

casualty to evacuees. In recent years, frequency and severity of

such events has increased gradually with years, and becomes

a serious social issue for many places.

Through the study of praxeology and psychology, people in

panic are easy to fall into the ’faster-is-slower’ phenomena.

When an enclosed area has few people, they feel free to

move at their willing speed. However, with the increase of

pedestrians, the inter-distance is shortened and people slow

down their movement for a personal privacy consideration.

When the density continues to increase, the movement will be

seriously jammed and the flow comes to a complete stoppage.
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This phenomena is easily observed when two crowds run into

a narrow area like doors or exits. In order to have a deep

understanding, researchers study the pedestrian movement

at a microscopic and a macroscopic levels separately. The

famous microscopic model is the social force model that uses

interactive forces between human and human, human and

goal, and human and objectives, to govern the movement of

individual agent [2]. For macroscopic models, researchers use

density to describe the crowdedness, and apply fluid dynamic

theory to the dynamics of pedestrian flow. In general, flow

speed follows a decreasing function of density, and [3] gives

a comprehensive study of the relationship.

After mounting pressure sensors at floor or installing cam-

eras at ceiling, flow density and average velocity in an area can

be fully detected with modern processing techniques. With the

support of audio or visual display instructions, the behaviour

of evacuees can be guided. Then it is possible to regulate the

evacuation process to avoid jams and maximize the evacuation

discharge. In [4], evacuation in a corridor is considered. The

corridor area is partitioned into several parts and the system

dynamics is described with a finite-dimensional ordinary dif-

ferential equation. A calculus of variations method convert the

problem to a two-point boundary value problem that is solved

for the optimal control. [5] uses partial differential equation

to describe the crowd model in one dimension. Three control

models are proposed to avoid jams and shocks. Their feedback

control is in a distributed setting in contrast to [4] that is

discretized into different sections. To ensure the maximum

discharge, [6] formulates a linear programming subject to

control constraints so that the system tracks the critical density

in all sections. They further extend the work to a network of

corridors that uses nodes and edges to describe the connection

and layout of evacuation route [7]. Still penetration rate and

flow speed are determined by a linear programming that tries

to make each node and edge track their critical states.

In the view of optimal control, the objective is to maximize

the sum of costs of the system over a finite or infinite steps,

and reinforcement learning (RL) has been proved to be a

powerful tool to that [8], [9]. The optimal solution follows

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

978-1-7281-2009-6/$31.00 ©2019 IEEE

Personal use is permitted, but republication/distribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

paper N-19916.pdf



the Bellman’s optimality principle, so some RL methods try to

solve the Bellman equation over the state space, which is quite

computationally expensive. Differential dynamics program-

ming (DDP) is a RL method that approximates the optimal

solution locally. It uses second partial derivatives of value,

cost, and dynamics around the nominal trajectory, and tries to

find the improved control policy sequence to generate a better

candidate solution. Through iteration, values are approximated

more and more accurately, and the trajectory is improved

closer and closer to the optimal one. To deal with control

limits, [10] proposes a projected Newton method to search

the improved control policy in the constrained control space.

Compared to other approaches that tries to solve the Bellman

equation, DDP approximates values locally, so it avoids the

curse of dimensionality and is suitable to problems with high

dimensions. In [11], authors use iLQG, a variant of DDP,

as the guided policy to the end-to-end deep reinforcement

learning (DRL) of deep visuomoter policy and the results show

promising performance for manipulating complicated robots.

In this paper, we study the optimal evacuation of people

in a building at a macroscopic level. The building layout is

described by a graph. The areas are represented by nodes and

the connections between areas are specified with edges. The

state of the system is composed of pedestrian masses and

densities in different nodes, and the control vector includes

penetration rates and maximum allowed flow speeds. To

lower optimization difficulty, a control action is executed for

consecutive steps and a consecutive DDP algorithm is devel-

oped to optimize the control sequence. Through simulation

experiments, it is demonstrated that the method provides an

efficient way to make on-site optimal evacuation plan based

on building and evacuation conditions.

II. MODELING PEDESTRIAN EVACUATION IN BUILDING

A. Graph representation of building layout

According to space partitions, a building layout can be

generally subdivided into following types of areas: rooms,

passages, staircases, and exits. A room has the capacity for

a number of people and is connected to a passage via a door.

Passages and staircases are areas that allow the movement

of people. Exits are connections of building interior and the

outside world. It is reasonable that every area is not isolated,

but connected to other areas and finally to the exits. During

the evacuation process, people will follow an escape route and

move to the building outside.

To describe the building layout efficiently, a graph is

adopted to represent the partitioned areas and connections

between them. A graph is composed of nodes and edges,

denoted by G = {V,E}. Each node represents an area, and

each edge specifies the connection of two nodes n, n′ ∈ V

that are adjacent in layout, denoted by (n, n′). Note that

the edge does not include any distance information, but just

the effective width of the connection area. According to the

area characteristics, there are three kinds of nodes in V: the

source set VS , the corridor set VC , and the exit set VE . The

source node ns ∈ VS corresponds to areas like classroom

or laboratory where a certain number of people assemble for

study or work. The corridor node nc ∈ VC constitutes an

evacuation route for people to move. The exit node ne ∈ VE

can be seen as a special corridor node that is the connection

between the building interior and the outside world. Exit nodes

naturally have output discharge to the outside.

Based on the category of nodes, there are three kinds of

edges in E: source-to-corridor (S2C) edge (ns, nc), corridor-

to-corridor (C2C) edge (nc, nc), and corridor-to-exit (C2E)

edge (nc, ne). In this work, it is assumed that S2C edge

is unidirectional so that people only move from source to

corridor, and C2C/C2E edge is bidirectional so that tail-to-

head or head-to-tail directions are all valid. For two nodes n
and n′, if there exists an edge (n, n′) in E, it is said that n′

is a neighbor of n, and vice versa. The neighbor set N (n) of

n denotes the set of all nodes in V that are neighbors of n.

The neighbor set of a source is composed of corridors. The

neighbor set of a corridor may includes sources, corridors, and

exits. The neighbor set of an exit is composed of corridors.

Fig. 1a presents the layout of the second floor of Morrill

Hall in the University of Rhode Island (URI). There are four

rooms that are used as classrooms and laboratories. They are

marked in the figure and considered as the source nodes. Along

the passage there are three staircases, separately located at

both ends and the middle position. The graph representation

of the second floor is given in Fig. 1b. We use squares to

represent sources and circles to represent corridors and exits.

The whole building has four floors. Each floor has basically

the same layout but the middle staircase does not reach the

forth floor. Ends of the three staircases are the exits. The graph

of the whole building is given in Fig. 1c. All nodes are fully

connected. When an evacuation signal is given, people in the

building will follow a sequence of connected nodes to the

outside.

B. Pedestrian flow model

After representing a building with a graph, the current state

of evacuation process is composed of states in each node.

In the next, we separately introduce the dynamics of source,

corridor, and exit.

A source ns ∈ VS is a compartment of the building, so its

core state is the pedestrian mass (number of people), denoted

by Ps. The evolution of Ps is determined by the sum of its

discharges to the neighbor corridors

Ṗs = −
∑

n′∈N (ns)

q(ns,n′). (1)

To distinguish with other discharges, q(ns,n′) is termed as

penetration rate, and each edge corresponds to a value η(ns,n′)

q(ns,n′) = η(ns,n′). (2)

By controlling η(ns,n′), one can regulates the dynamics of

pedestrian mass in sources. Unfortunately, due to the limit of

effective width between two nodes, η(ns,n′) is upper bounded.

In [3], a maximum penetration rate is suggested with 1.3

Person/s/m of effective width.
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(a) Layout of the 2nd floor.

(b) Graph representation of the 2nd floor.
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(c) Graph representation of the whole building.

Fig. 1: Layout and graph representation of Morrill Hall in URI.

The movement of people in an area can be considered as

a flow, so fluid dynamic theory is applicable. The core state

of corridors and exits is density ρ, which describes the degree

of crowdedness of the area. The flow speed μ can be seen

as a function of ρ. The relationship between μ and ρ has

been studied thoroughly in literature. The consensus is that the

flow speed is a decreasing function of density. [3] provides a

function for flow speed, and has been used in the analysis of

many evacuation cases. The function follows the curve given in

Fig. 2a, where θ indicates the maximum possible flow speed.

When density is lower than ρ0, people can move freely at their

willing speed. When ρ exceeds ρ0, the flow speed decreases

linearly with the increase of ρ, and finally comes to a complete

jam at ρm. In [3], it is suggested that the maximum value of

θ is bounded by θmax = 1.19 m/s, and ρ0 = 0.54 Persons/m2,

ρm = 3.8 Persons/m2. To facilitate our study, we use a smooth

(0,0) ρ0 ρm

θ

ρ

v(ρ)

(a) Suggested relationship between evacuation speed and density in
[3].

(0,0) 0.54 3.8

1.19

ρ

v(ρ)

(b) Smooth approximated function to μ(ρ).

Fig. 2: Evacuation speed as a function of density.

function to approximate the curve with

μ(ρ) = θh(ρ) = θ

[
1− smax

(
ρ− ρ0
ρm − ρ0

, p1

)]
(3)

where smax(z, p) is the smooth form of maximum function

max(0, z) with

smax(z, p) =
1

2

(√
z2 + p2 + z

)
. (4)

Under θ = 1.19 and p1 = 0.1, the smooth speed function with

respect to density is plotted in Fig. 2b.

For a corridor node nc, the core state is the density ρc and

its dynamics is governed by the sum of discharges connected

to nc

ρ̇c = − 1

Ac

∑
n′∈N (nc)

q(nc,n′) (5)

where Ac is the effective area of nc. If n′ ∈ VS , the discharge

is the penetration rate between n′ and nc

q(nc,n′) = −η(n′,nc). (6)

If n′ ∈ {VC ∪VE}, the inter-node discharge is the product of

density, flow speed, and effective width according to fluid dy-

namic theory. Since the movement in (nc, n
′) is bidirectional,

so we have

q(nc,n′) =

{
μ(nc,n′)ρcW(nc,n′) if μ(nc,n′) ≥ 0 (7)

−μ(n′,nc)ρ
′W(n′,nc) if μ(n′,nc) > 0 (8)

where μ(nc,n′) indicates the flow speed from nc to n′. Then

it holds that μ(nc,n′) = −μ(n′,nc). W(nc,n′) and W(n′,nc)

indicate the effective width of the connection between nc and
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n′, and they have the same value. ρ′ is the density in n′. In

this paper, we assume that there can exist only one direction

of flow between two nodes at one step. The discharge can be

rewritten as

q(nc,n′) =max(0, μ(nc,n′)ρcW(nc,n′))

−max(0, μ(n′,nc)ρ
′W(n′,nc)).

(9)

Based on the speed function given in (3), a smooth form of

discharge is obtained

q(nc,n′) =smax(θ(nc,n′)h(ρc)ρcW(nc,n′), p2)

− smax(θ(n′,nc)h(ρ
′)ρ′W(n′,nc), p2)

(10)

where −θmax ≤ θ(nc,n′) = −θ(n′,nc) ≤ θmax.

For an exit node ne ∈ VE , in addition to the discharges

q(ne,n′) to its neighbors, there is an output discharge qe to the

outside of the building, so

ρ̇e = −qe −
∑

n′∈N (ne)

q(ne,n′) (11)

where q(ne,n′) follows the formula given in (10). When people

are in exits, it is nature for them to move at their maximum

speed so that they can escape the building as soon as possible.

Therefore, the outside discharge qe has

qe = θmaxh(ρe)ρeWe (12)

where We is the effective width of exit.

C. System dynamics and optimization objective

Now the whole system dynamics of pedestrian evacuation in

a graph is described as follows. The system state is composed

of all source pedestrian masses, corridor densities, and exit

densities

x = [P1, . . . , P|VS |, ρ1, . . . , ρ|VC |+|VE |]T (13)

and the control vector includes penetration rates in S2C edges

and maximum allowed speeds in C2C/C2E edges

u = [. . . , η(∗,∗), . . . , θ(∗,∗), . . . ]T (14)

where (∗, ∗) indicates arbitrary edges in E. Note that for

bidirectional C2C and C2E edges, only one direction of flow

speed is stored in u, since the other direction speed has the

same value but the opposite sign.

Combined with the above node model given in (1), (5), and

(11), the system continuous-time dynamics can be described

by a nonlinear function ẋ = f(x, u), and the control variables

are limited with

0 ≤ η(∗,∗) ≤ ηmax,−θmax ≤ θ(∗,∗) ≤ θmax. (15)

In order to simulate in computers, zero-order holder discretiza-

tion is usually adopted to convert the continuous-time system

to a discrete-time system with

xk+1 = F (xk, uk) ≈ xk + δtf(xk, uk) (16)

where k is the discrete-time step index and δt is the sampling

time. For the sake of simulation accuracy, δt generally selects

small values (e.g. 0.1s herein).

For finite-time horizontal optimal control, the objective is to

minimize the total cost of the system starting from an initial

x0

J(x0) =
N−1∑
k=0

c(xk, uk) + cf (xN ). (17)

c(xk, uk) specifies the cost at each step with respect to state

and control, and cf (xN ) specifies the final cost with terminal

state. In the evacuation process, the biggest concern is to

evacuate pedestrians as fast as possible. At each step, the

number of people still staying in the building is

∑
ns∈VS

|Ps|+
∑

nc∈{VC∪VE}
|ρcAc|. (18)

The absolute value operator is adopted to avoid the pedestrian

masses and densities being negative. In order to smoothen the

cost, a smooth absolute function is adopted with

sabs(z, p) =
√

z2 + p2 − p. (19)

In this way, the cost function at each time step is defined

c(x, u) =
∑

ns∈VS

sabs(Ps, p3) +
∑

nc∈{VC∪VE}
sabs(ρcAc, p3)

+ wuu
Tu

(20)

where wu is the weight coefficient for control. The final cost

is selected similarly

cf (x) =
∑

ns∈VS

sabs(Ps, p3) +
∑

nc∈{VC∪VE}
sabs(ρcAc, p3).

(21)

Based on such definitions, the smaller J(x0) is minimized, the

faster people escape from the building.

III. DIFFERENTIAL DYNAMIC PROGRAMMING

A. Differential dynamic programming

The aim of optimal control is to find a control sequence

{u0, . . . , uN} that minimizes the total cost J(x0). The value
Vk is a function that specifies the minimum value for any state

at step k. According to the Bellman’s optimality principle, the

value satisfies

Vk(x) = min
u

[c(x, u) + Vk+1(F (x, u))], 0 ≤ k ≤ N (22)

VN+1(x) = cf (x). (23)

Generally speaking, Vk is a complicated function and it is hard

to give an analytic solution [12]. To address that, a quadratic

form is adopted to approximate the value at a certain point.

Suppose we have had a sequence of control actions

{u0, . . . , uN}, and following it we obtain a nominal state

trajectory {x0, . . . , xN+1}. At step k, define the Q function

Qk(x, u) = c(x, u) + Vk+1(F (x, u)). (24)
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Applying Taylor expansion to Qk at nominal pair (xk, uk) we

have1

Qk(x, u) ≈ Qk +QT
x,kδxk +QT

u,kδuk + δuT
kQux,kδxk

+
1

2
δxT

kQxx,kδxk +
1

2
δuT

kQuu,kδuk (25)

with δxk = x− xk, δuk = u− uk, and

Qk = ck +Vk+1 (26)

Qx,k = cx,k + FT
x,kVx,k+1 (27)

Qu,k = cu,k + FT
u,kQx,k+1 (28)

Qxx,k = cxx,k + FT
x,kVxx,k+1Fx,k +Vx,k+1 · Fxx,k (29)

Qux,k = cux,k + FT
u,kVxx,k+1Fx,k +Vx,k+1 · Fux,k (30)

Quu,k = cuu,k + FT
u,kVxx,k+1Fu,k +Vx,k+1 · Fuu,k (31)

where the last items in (29)–(31) denote the contraction with

a tensor.

To achieve the minimization at the right-hand side of (22),

the optimal δu∗
k should be

δu∗
k = argmin

δuk

Qk(x, uk + δuk) = kk +Kkδxk (32)

with

kk = −Q−1
uu,kQu,k,Kk = −Q−1

uu,kQux,k. (33)

Inserting the control policy into (22), the value at step k has

quadratic approximation with

Vk = Qk − 1

2
QT

u,kQ
−1
uu,kQu,k (34)

Vx,k = Qx,k −QT
ux,kQ

−1
uu,kQu,k (35)

Vxx,k = Qxx,k −QT
ux,kQ

−1
uu,kQux,k. (36)

After obtaining Vk, we are able to proceed the backward pass

to optimize the control policy for the (k − 1)-th step. The

whole process starts from VN+1(xN ) = cf (xN ).
Note that in (32), the minimization is reached only if

Quu,k is positive definite. But in many cases, the positivity

is not guaranteed along the nominal trajectory. Therefore,

regularization is necessary for the backward pass. In literature,

two kinds of regularization is mostly used, and they can be

combined together to redefine matrices with

Q̃uu,k = cuu,k + FT
u,k(Vxx,k+1 + μ1I)Fu,k

+Vx,k+1 · Fuu,k + μ2I

Q̃ux,k = cux,k + FT
u,k(Vxx,k+1 + μ1I)Fx,k +Vx,k+1 · Fux,k.

The values of regularization parameters μ1 and μ2 can be ad-

justed dynamically to accelerate the learning process. Increase

the parameters if the algorithm is divergent or the total cost is

not reduced, and decrease otherwise. More detailed description

on the adjustment of μ1 and μ2 is available in [13]. Then the

1We use italic symbols (e.g. Qk) to indicate the function, and the non-italic
symbols (e.g. Qk) to indicate the function value at the nominal trajectory (e.g.
Qk = Qk(xk, uk))

calculation of control policy kk and Kk are made with the

regularized matrices

kk = −Q̃−1
uu,kQu,k,Kk = −Q̃−1

uu,kQ̃ux,k. (37)

Based on that, the update of values is improved to cancel

matrix inversion calculations

Vk = Qk +
1

2
kTkQuu,kkk + kTkQu,k (38)

Vx,k = Qx,k +KT
kQuu,kkk +KT

kQu,k +QT
ux,kkk (39)

Vxx,k = Qxx,k +KT
kQuu,kKk +KT

kQux,k +QT
ux,kKk.

(40)

After the backward pass, we have a new sequence of control

policies {kk,Kk}. When executing them through a forward

pass, it has a high probability to reduce the total cost. Because

polices are generated around the last nominal pair (xk, uk),
if the system deviates too far from the original trajectory,

the improvement effect may disappear. To overcome that,

a backtracking method is adopted to linear search the best

solution with 0 < α ≤ 1 following

ûk = uk + αkk +Kk(x̂k − xk) (41)

x̂k+1 = F (x̂k, ûk). (42)

Once the best candidate solution is obtained, take it as the new

nominal trajectory and repeat the backward pass and forward

pass to further optimize the control sequence. The algorithm

stops when the reduction of total cost is lower than a small

threshold.

B. Control limitation

In the above description of DDP algorithm, the control

limit is not considered in both backward pass and forward

pass. In fact, in the evacuation process, pedestrian rate and

flow speed are bounded, generalized into the element-wise

constraint u ≤ u ≤ u. The minimization in the right-hand

side of (22) becomes a constrained optimization. Based on

the quadratic approximation and letting q = Qu,k+Qux,kδxk,

H = Quu,k, z = δuk, z = u−uk, and z = u−uk, the problem

is formulated as a constrained quadratic programming

z∗ = argmin qT z + 1
2z

THz
s.t. z ≤ z ≤ z.

(43)

Using the box constraint characteristics, the problem can be

effectively solved by projected Newton search method [10],

[14].

Given an initial guess of z (e.g. z = 0), calculate the

gradient of objective g(z) = q +Hz and check the clamped

and free dimensions in z

c(z) =

{
j ∈ 1, . . . , n

∣∣∣∣ zj = zj , gj > 0
zj = zj , gj < 0

}
(44)

f(z) = {j ∈ 1, . . . , n |j /∈ c(z)}. (45)

For ease of analysis, rearrange the elements of vectors and

matrix in the form

z =

[
zf
zc

]
, q =

[
qf
qc

]
, H =

[
Hff Hfc

Hcf Hcc

]
. (46)
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Therefore the free gradient in g is gf = qf + Hffzf + Hfczc,
and the projected Newton step for whole z has

δz =

[ −H−1
ff gf
0

]
=

[ −zf −H−1
ff (qf +Hfczc)

0

]
. (47)

We can use a line-search method to find a better candidate

solution

ẑ(α) = min(z,max(z, z + αδz)). (48)

The process is repeated for the new ẑ until the reduction of

objective is less than a small threshold.

The optimal solution to the constrained quadratic program-

ming should equal boundary values at the clamped dimensions

and zero gradient at the free dimensions, so we have

z∗f = −H−1
ff qf −H−1

ff Hfcz
∗
c . (49)

Recover the original notations with z = δuk, q = Qu,k +
Qux,kδxk, and H = Quu,k, the optimized policy has

kk =

[
−(Quu,k)

−1
ff (Qu,k)f−(Quu,k)

−1
ff (Quu,k)fcz

∗
c

z∗c

]
(50)

Kk =

[
−(Quu,k)

−1
ff (Qux,k)ff −(Quu,k)

−1
ff (Qux,k)fc

0 0

]
. (51)

In the forward pass, the new trajectory is generated with the

constrained control sequence

ûk = min(u,max(u, uk + αkk +Kk(x̂k − xk)). (52)

IV. CONSECUTIVE DDP

The original DDP optimizes control actions at every step.

In many cases, this may lead to huge computational burden.

For instance, the evacuation process chooses step size 0.1s. If

the system simulates 250s and adjusts control at every step,

the number of actions that need to be optimized is 2500. If we

adjust control actions every 50 steps, i.e. every 5 seconds, the

control sequence is reduced to the length of 50. The system

still maintains a satisfying performance, but the optimization

burden and learning difficulty is greatly reduced. Motivated by

that, consecutive control execution is adopted and a new DDP

algorithm is developed.

Suppose at i-th step, a new control action ui is calculated

based on current state xi. ui is repeatedly executed for

M consecutive steps. Then at (i + M)-th step, the system

calculates a new ui+M and execute it for the next M steps.

Following (22), the Bellman equation now becomes

Vi(xi) = min
ui

[c(xi, ui) + · · ·+ c(xi+N−1, ui) + Vi+N (xi+N )]

(53)

with

xj+1 = F (xj , ui), i ≤ j < i+N. (54)

Given the value Vi+N , let Qi+N (x, u) = Vi+N (x) and define

quadratic Q functions for every i ≤ j < i+N in a backward

pass

Qj(x, u) =Qj +QT
x,jδxj +QT

u,jδui + δuT
i Qux,jδxj

+
1

2
δxT

j Qxx,jδxj +
1

2
δuT

i Quu,jδui

(55)

with δui = u− ui, δxj = x− xj , and

Qj =cj +Qj+1

Qx,j =cx,j + FT
x,jQx,j+1

Qu,j =cu,j + FT
u,jQx,j+1 +Qu,j+1

Qxx,j =cxx,j + FT
x,jQxx,j+1Fx,j +Qx,j+1 · Fxx,j

Qux,j =cux,j + FT
u,jQxx,j+1Fx,j +Qux,j+1Fx,j

+Qx,j+1 · Fux,j

Quu,j =cuu,j + FT
u,jQxx,j+1Fu,j +Qx,j+1 · Fuu,j

+Quu,j+1 + 2Qux,j+1Fu,j .

(56)

After obtaining Qi at the beginning of the M consecutive

steps, generate the improved control policy following

δu∗
i = argmin

δui

Qi(x, ui + δui) = ki +Kiδxi (57)

where ki and Ki are determined by (33) if no control limits,

or (50), (50) with box constraints.

Still to ensure the positivity of Qxx,i in the minimization,

two regularization terms are introduced in the backward pass

Q̃xx,i+N = Vxx,i+N + μ1I (58)

Q̃uu,i = Quu,i + μ2I. (59)

ki and Ki are generated with the regularized Q̃uu,i and Q̃ux,i.

The value for the i-th step is approximated with (38)–(40).

Then the backward pass is repeated with Vi(x) for the previous

(i − M), . . . , i steps. For ease of implementation, the total

length of nominal trajectory is (TM + 1) and the backward

pass starts with VTM (x) = cf (x). In other words, there are T
control actions that are to be optimized.

After obtaining the control policy sequence {ki,Ki} for

steps i = 0,M, . . . , (T − 1)M , the forward pass tries to find

a better nominal trajectory with

ûi = ui + αki +Ki(x̂i − xi), i = 0,M, . . . , (T − 1)M

x̂j+1 = F (x̂j , ûi), i ≤ j < i+M.
(60)

V. SIMULATION STUDY

Now we consider the graph illustrated in Fig. 1c, and use

the proposed consecutive DDP algorithm to learn the optimal

evacuation plan. For simplicity, all corridor nodes have the

area of 12.5 m2. The exit nodes have the area of 12 m2.

The effective widths in C2C and C2E edges are 2.5 m, and

the effective widths of exits to the outside are 1.5 m. The

penetration rate has limit 0 ≤ η ≤ 1.3 Person/s and the

maximum flow speed is set to θmax = 1.19 m/s. The smooth

parameters select p1 = p2 = p3 = 0.1.

In the simulation, each source node has an initial pedestrian

mass 30 Persons, and each corridor node has a density of

0.1 Person/m2. The consecutive DDP algorithm calculates the

optimal evacuation plan. Once the evacuation is triggered,

people will follow the audio/display instructions that give the

optimal penetration rates and flow speeds, and move towards

the building exits.
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Fig. 3: Learning curve of consecutive DDP for case 1.
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1.

A. Case 1: All exits available

In the first experiment, three exits are all available for

evacuees. The learning curve of consecutive DDP is given in

Fig. 3. The total cost of the nominal trajectory at each iteration

is shown in the plot. Through backward pass and forward

pass, the total cost is reduced from the initial 1.22 × 105

to 3.32 × 104. The optimal control sequence is presented

in Fig. 4. It is observed that actions are adjusted every 50

steps, which lowers the control frequency without deteriorating

performance. It helps to decrease the optimization difficulty.

All actions are within their limits. Following the evacuation

plan, the system trajectory is plotted in Fig. 5. It is obvious that

the pedestrian mass in the building is successfully evacuated.

The optimal actions avoid the blockage that may happen.

The optimal evacuation plan ensures the density of three

exit nodes is maintained at 1.9 Person/m2 so that the exit

discharge is maximized with 1.98 Person/s. This requires the

cooperation of interior nodes so that the input discharge and

output discharge of exits are balanced. The reduction of total

number of people is illustrated in Fig. 6. After a short initial

phase, the reduction trends to be stable until the mass is close

to zero.

500 1000 1500 2000 2500
0

10

20

30

P (
Pe

rso
n)

500 1000 1500 2000 2500
0

0.5

1

1.5

2

ρ (
Pe

rso
n/m

2 )

step

e1,e2,e3

Fig. 5: Optimal state trajectory by consecutive DDP for case

1.
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Fig. 6: Curve of pedestrian mass for case 1.

B. Case 2: Two exits available

Next we consider the case that exit e1 is blocked due to

certain reasons like damaged or out of operation. Only exits

e2 and e3 are available during the evacuation process, and

e1 becomes an ordinary corridor node that has no output

discharge to the outside.

Based on the modified graph, our consecutive DDP learns

a new optimal evacuation plan. In Figs. 7 and 8, the optimal

control sequence and the corresponding state trajectory are

presented. Due to the change of layout, the optimal actions

for many nodes are changed. The curve of the total pedestrian

mass in the building is shown in Fig. 9. Compared to Fig.

6, the evacuation time is obviously lengthened, but it still

successfully evacuates the building without the occurrence of

jams. It demonstrates that our algorithm is suitable to make

on-site optimal evacuation plan according to building and

pedestrian conditions.

VI. CONCLUSION

The optimization of building evacuation is studied in this

paper. The introduction of graph representation makes it possi-

ble to describe building layout mathematically. The system of

the evacuation process is established with states of all nodes,

including pedestrian masses and densities. The control vector

is composed of penetration rates and flow velocities in edges.
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2.
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Fig. 8: Optimal state trajectory by consecutive DDP for case

2.

The optimization objective is to accelerate the evacuation,

which is reflected in the minimization of total cost that is

the sum of evacuees staying in the building over steps. To

reduce optimization difficulty, control actions are executed

consecutively for multiple steps, and consecutive DDP is

developed to solve the optimal control problem with control

limits. It is an online process since only the current state

is inserted to the algorithm. In macroscopic simulations, the

method has promising performance. Unfortunately, in real-
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Fig. 9: Curve of pedestrian mass for case 2.

world situations, the movement of pedestrians is individual and

the evacuation process should be performed at the microscopic

level. The future work is to shorten the gap between the

macroscopic evacuation optimization and the microscopic real-

world performance.
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