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A B S T R A C T

This paper considers a new adaptive-critic optimal output regulation scheme for continuous-time general linear
systems with unknown dynamics and unmeasurable disturbance. The objective of researching the optimal
output regulation problem is pursuing the stability of the closed-loop system while enabling the output
to optimally track the reference signal with disturbance rejection. The problem is solved by employing an
approximate optimal regulator that consist of optimal feedback control obtained by a data-driven learning
algorithm and optimal feedforward control achieved by solving regulator equation. The missing system
matrices of the plant are exactly figured out by employing state/input data. Moreover, by employing the
minimal polynomial of the exosystem matrix, the parameter of interference in the output equation is available.
Then, a predefined cost function is presented based on the regulator equation that aims to design the optimal
control law. The stability analysis demonstrate that the presented control scheme can stabilize the closed-
loop system, meanwhile the output asymptotically tracks the reference signal. Finally, the effectiveness of the
developed optimal control scheme is validated through an application towards the drum water level control
of boiler-turbine systems.
1. Introduction

Owing to the rapid development of power generation technology,
the new energy industry has became the spotlight in resent years.
However in 2019, China’s thermal power generation still accounted for
more than 70 percent of the whole electricity (Chen, Yan, Guo, & Liu,
2020), which means the coal-fired power plant is still an indispensable
part of the electricity supply. As the core of power generation units, co-
ordinated control of the boiler-turbine system (BTS) exert an enormous
function on the safe and economical operation of the power plant (Gao,
Zeng, Ping, Zhang, & Liu, 2020), hence it becomes a hotspot of the
research in related field.

Adaptive-critic designs (ACDs) (Dhar, Verma, & Behera, 2017; Liu,
Zhang, & Tu, 2020; Wei, Zhu, Li, & Liu, 2021b; Yang & He, 2018;
Zhang, Zhang, Xiao, & Jiang, 2019), a method of reinforcement learn-
ing theory (Guo, Yan, & Cui, 2019; Sutton, Barto, et al., 1998; Wei,
Li, & Liu, 2020a; Zhang, Zhang, Cai, & Su, 2019; Zhou, Subagdja, Tan,
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& Ong, 2021), is an effective approach to address model-free adaptive
optimization problem (Chen, Hu et al., 2020). Since having almost the
same structure and property in addressing optimal control problems,
adaptive dynamic programming (ADP) is regarded as the synonym for
ACDs (Liu, Wei, Wang, Yang, & Li, 2017). Several originally innovative,
model-free learning algorithms are proposed for optimization problem
of systems with unknown dynamics (Massenio, Naso, Lewis, & Davoudi,
2020; Modares & Lewis, 2014; Wei et al., 2020b; Xue, Luo, Liu, &
Li, 2020). Djordjevic et al. (2022) consider control problem of the
hydraulic servo actuators (HSA) with unknown dynamics. Through
combining ADP technology with output feedback, an online learning
data-driven controller based on measured input and output data is
designed. In the work of Modares and Lewis (2014), a novel ADP
algorithm is applied to solutions of optimal tracking problems with
partially unknown system dynamics. An ADP based event-triggered
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control scheme is proposed by Xue et al. (2020) to address the opti-
mization problem of nonlinear systems with unknown parameter and
input constraints. Zhan, Wu, Jiang, and Jiang (2015) study the optimal
control problem of network systems under channel noise. In the work
of Wei et al. (2020b), authors employ ADP method to achieve the
optimal controller for ice-storage air conditioning system.

The output regulation is a significant theory in the field of cybernet-
ics that applies to address output tracking problem combined with in-
terference suppression while maintaining closed-loop stability (Huang,
2004). Meanwhile, some researchers pursue optimal performance of
the output regulator through minimizing a reasonable designed cost
function. This kind of problems are known as optimal output regulation
problem. Quit a few related researches are studied , see Liu and Huang
(2019), Saberi, Stoorvogel, Sannuti, and Shi (2003). A learning-based
method is developed by utilizing input/partial-state data for the linear
system with unknown dynamics and unmeasurable disturbance (Gao &
Jiang, 2016). Jiang et al. (2022) investigate the learning-based adaptive
optimal output regulation problem of disturbed linear continuous-time
systems with convergence rate limitation. Without accurately modeling
the system or a stabilizing feedback control gain, a new online iteration
algorithm is presented, which can learn both the optimal feedback and
feedforward control gain by measurable data. However, the controllers
presented by Gao and Jiang (2016) and Jiang et al. (2022) are only
suitable for the system excluded control input in output equation. This
strong pre-condition limits its application in practice. Wu, Liang, and
Hu (2021) improve the method proposed by Gao and Jiang (2016) to
solve the optimization problem of general linear system with unknown
dynamics.

In BTS, the boiler and turbine are considered as an integrated
whole to address the discrepancies of their dynamic characteristics.
Thus, the major objective of BTS is to balance the supply and demand
between the power plant and grid. To track the load command, some
progressive control schemes are proposed (Ławryńczuk, 2017; Pan,
Shen, Wu, Nguang, & Chen, 2020; Zhu, Wu, & Shen, 2019). In the work
of Ławryńczuk (2017), an efficient nonlinear predictive control law is
presented through linearizing the local state-space online. An effective
state-feedback controller for boiler-turbine nonlinear systems is devel-
oped by Zhu et al. (2019). Pan et al. (2020) propose an internal-model
robust adaptive control approach to handle nonlinearity and long-time
delay of BTS. Meanwhile, model predict control (MPC) algorithms are
introduced to enhance energy-saving capacity of power generation in
some researches. In the work of Zhang, Decardi-Nelson, Liu, Shen,
and Liu (2020), a zone economic model predictive control scheme is
presented to optimize the coal economy while satisfying the power
generation demand from the grid. Klaučo and Kvasnica (2017) design
a MPC-based optimal controller to improve safety and economical
performance of a boiler-turbine system. Nevertheless, most existing
control methods of BTS focus on command tracking or economy raising,
which can be abstracted as state regulation/tracking problems. The
drum water level, which only appears in the output equation of BTS, is
rarely investigated as a crucial index for the safe operation of the sys-
tem (Moradi, Saffar-Avval, & Bakhtiari-Nejad, 2012; Wang, Wu, & Ma,
2020). Moreover, most researches ignored the presence of disturbance
that is unavoidable in the process of power generation.

In practical applications, input saturation, and fault detection are
important problems to be considered (Wei, Lu, Zhou, Cheng, & Wang,
2021a; Zhang, Mu, Gao, & Wang, 2021). Zhuang, Tao, Chen, Sto-
janovic, and Paszke (2022) propose a novel iterative learning control
(ILC) approach based on successive projection scheme for repetitive
systems. By a simulation model, the presented algorithm is verified at
occasions with and without input constraints. A new consensus control
method of multi-agent systems with and without input saturation is
proposed in Lu, Wu, Zhan, Han, and Yan (2021). The asynchronous
fault detection (FD) observer design is studied for Markov jump systems
2

(MJSs) by Cheng et al. (2021). A multi-objective scheme to the FD T
problem is designed through combining the 𝐻∞ attenuation index and
𝐻− increscent index.

According to its output tracking and optimization property, the
application of optimal output regulation towards BTS can make power
requirement economically suffice and stabilize drum water level with
existence of disturbance simultaneously. However, the operation mech-
anism of BTS is sophisticated and tough to model, even if the precise
model is established, the control protocol is difficult to design be-
cause of its complexity. In general, the model will be transformed into
an affine nonlinear form, then linearize it at equilibrium point. But
the accuracy can hardly be guaranteed in this process. Therefore, it
is meaningful to design a control scheme for system with unknown
dynamics and unmeasurable disturbance.

Motivated by aforementioned references, especially Gao and Jiang
(2016), in this paper, we present a novel optimal output regulation
control scheme for systems with unknown dynamics and unmeasur-
able disturbance to track the reference signal while optimizing the
predefined cost function. By employing ACDs algorithm and output
regulation method, a new adaptive optimal output tracker with in-
terference suppression is designed. Meanwhile, we give a rigorous
convergence analysis which can demonstrate the stability of presented
controller. Finally, simulation results show that the output of the
closed-loop system can asymptotically track the signal representing the
desired water level with unmeasurable disturbance.

Comparing with the previous work, we underline the major con-
tributions of this manuscript from the following aspects. First, we
present an ACDs-based adaptive optimal controller for BTS. Different
from Klaučo and Kvasnica (2017), Ławryńczuk (2017), linearizing the
affine nonlinear model before designing the control scheme, the con-
troller proposed in this paper is computed by measured state/input
data and no longer require the state equation of BTS. Djordjevic et al.
(2022) also utilize the data-driven method to design an online learning
controller for HSA without knowledge of dynamics. However, the
considered model is a linear discrete system, which is different from
BTS. Second, by conclusions drawn from Gao and Jiang (2016), Jiang
et al. (2022) and Wu et al. (2021), we achieve the approach to solve
the optimal output regulation problem for model-free system with
unmeasurable disturbance. Third, to the best of our knowledge, this
manuscript is the first trial integrating output regulation and ACDs
for control of drum water level in BTS. By integrating output regula-
tion and ACDs, our proposed method can pursue the stability of the
closed-loop system while enabling the output to optimally track the
reference signal with disturbance rejection and no longer require the
state equation of BTS to design the controller.

Notations. In this paper, Z+ represents the set of non-negative in-
egers. C− means the open left-half complex plane. For matrix 𝐴 ∈
R𝑛×𝑛, 𝜎(𝐴) is complex spectrum of 𝐴. col(⋅) denotes a concatenation.
⊗ denotes the Kronecker product operator. For matrix 𝐵, vec(𝐵) =
[𝑏𝑇1 , 𝑏

𝑇
2 ,… , 𝑏𝑇𝑚], where 𝑏𝑖 ∈ R𝑟 is the columns of 𝐵 ∈ R𝑟×𝑚, ker(𝐵)

represents the kernel of matrix 𝐵. For symmetric matrix 𝐶 ∈ R𝑛×𝑛,
vecs(𝐶) = [𝑐11, 2𝑐12,… , 2𝑐1𝑛, 𝑐22, 2𝑐23,… , 2𝑐𝑖−1,𝑖, 𝑐𝑖𝑖]𝑇 ∈ R

𝑖(𝑖+1)
2 , in which

𝑐𝑛𝑚 represents the 𝑛th row and 𝑚th column of matrix 𝐶. For column
vector 𝑥 ∈ R𝑖, vecv(𝑥) = [𝑥21, 𝑥1𝑥2,… , 𝑥1𝑥𝑛, 𝑥22, 𝑥2𝑥3,… , 𝑥𝑖−1𝑥𝑖, 𝑥2𝑖 ]

𝑇 ∈

R
𝑖(𝑖+1)
2 , where 𝑥𝑛 represents the 𝑛th element of the vector.

2. Problem formulation

In general, BTS can be considered as a three-input and three-output
system (Åström & Bell, 1987; Wu, Shen, Li, & Lee, 2013) with the state
vector 𝑥(𝑡) ∈ R3, the output vector 𝑦(𝑡) ∈ R3 and the input vector
(𝑡) ∈ R3, where the states 𝑥 = [𝑥1, 𝑥2, 𝑥3]T represent drum steam
ressure, power of steam turbine and fluid density in drum respectively.
hile the inputs 𝑢 = [𝑢1, 𝑢2, 𝑢3]T consist of flow rate of fuel, flow rate

f steam and feedwater to drum. The output 𝑦 = [𝑦1, 𝑦2, 𝑦3]T is drum
team pressure, power of steam turbine and water level of the drum.
he schematic of BTS is demonstrated in Fig. 1.
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Fig. 1. The schematic diagram of a boiler-turbine power system.

2.1. Boiler-turbine system and drum water level control problem

BTS integrates the boiler and turbine into a coherent entirety to
guarantee the global performance of the power plant. Since the con-
version of water into saturated water vapor in the drum involves the
calculation of physical parameters, which are discontinuous within
the temperature range, it is difficult to establish an accurate mathe-
matical model. In order to make the state track the load command
from grid or manual setting and stable at the desired equilibrium
point, most methods of current related research linearize the simplified
model near the equilibrium point and then design the controller by
the model predictive control (MPC) combined with fuzzy membership
function (Hou, Gong, Huang, & Zhang, 2019; Kong & Yuan, 2019). It
is notable that these methods require a high precision of the model,
and the accuracy has great influence on the control effect. To solve
this problem, the system model can be regarded as a linear model with
unknown dynamics, meanwhile employ ADP algorithm to calculate an
approximate optimal control law by state/input data.

Remark 1. Though the actual model of drum water level should be
nonlinear model, in order to enable the designed controller to timely re-
spond to the requirements of state adjustment, most current researches
are linearizing the simplified model near the equilibrium point and then
designing the controller by some optimal control methods (Hou et al.,
2019; Kong & Yuan, 2019). The effectiveness of these methods are
proved in several papers through practical application. Different from
the methods that linearize the affine nonlinear model before designing
the control scheme, the controller proposed in this manuscript no
longer require the state equation of BTS and avoid the influence on
the control effect caused by the inaccuracy of the equilibrium point.

The drum water level indirectly reflects the balance between steam
load and water supply. Meanwhile, keeping the level at a proper value
(generally called zero benchmark) is one of the prerequisites to ensure
the stability of the power units. Overall, the main objective of drum
water level control for BTS is satisfying power demand while stabilizing
drum water level at zero benchmark with unmeasurable disturbance.
Therefore, control effect of the drum water level has significant impact
on safe operation. The process of conversion between water and steam
in the drum is shown in Fig. 2.

According to the property of BTS and output regulation analyzed
above, we can convert the drum water level control problem into the
general linear output regulation problem.

2.2. Optimal output regulation problem

As assuming above, we first study a continuous-time linear system
written as
̇ = �̄�𝑥 + �̄�𝑢 + �̄�𝜃,

�̇� = �̂�𝜃, (1)
3

𝑒 = �̄�𝑥 + �̄�𝑢 + 𝐹𝜃,
Fig. 2. The schematic of water-steam system in a coal-fired power plant.

in which 𝑥 ∈ R𝑛 is the measurable state vector, 𝑢 ∈ R𝑚 is control input,
𝑒 ∈ R𝑟 is the tracking error. �̄� ∈ R𝑛×𝑛, �̄� ∈ R𝑛×𝑚, �̄� ∈ R𝑛×𝑞 , �̄� ∈ R𝑟×𝑛,
�̄� ∈ R𝑟×𝑚, 𝐹 ∈ R𝑟×𝑞 and �̂� ∈ R𝑞×𝑞 are constant matrices. To reflect the
unknown dynamics of the system, �̄�, �̄� and �̄� are assumed unknown
throughout this paper. 𝜃 ∈ R𝑞 is the state of exosystem, 𝑑 = �̄�𝜃 denotes
the exogenous disturbances and 𝑦𝑑 = −𝐹𝜃 represents the reference
signal. Some necessary assumptions are given as follows.

Assumption 1. The signal of exosystem 𝜃 is unmeasurable.

Assumption 2. (�̄�, �̄�) is stabilizable.

Assumption 3. rank
(

𝜆𝐼𝑛 − �̄� �̄�
�̄� �̄�

)

= 𝑛 + 𝑟, in which 𝜆 ∈ 𝜎(�̂�).

Assumption 4. The minimal polynomial of �̂� can be obtained, which
is

𝛼𝑛(�̂�) =
𝑀
∏

𝑖=1
(�̂� − �̂�𝑖)

𝑎𝑖
𝑁
∏

𝑗=1
(�̂�2 − 2�̂�𝑗 �̂� + �̂�2

𝑗 + �̂�2
𝑗 )

𝑏𝑗

in which the degree of the polynomial 𝛼𝑛(�̂�) is 𝑞𝑛, 𝑞𝑛 ≤ 𝑞.

According to Assumption 4, we are able to obtain 𝑤 ∈ R𝑞𝑛 and
𝛺 ∈ R𝑞𝑛×𝑞𝑛 satisfying

�̇� = 𝛺𝑤,

𝜃 = 𝐺𝑤,
(2)

where 𝐺 ∈ R𝑞×𝑞𝑛 is an unknown constant matrix.
Combining (2) into (1), the system can be transformed into the

following form

�̇� = �̄�𝑥 + �̄�𝑢 + 𝐸𝑤,

�̇� = 𝛺𝑤,

𝑒 = �̄�𝑥 + �̄�𝑢 + 𝐹𝑤,

(3)

where 𝐸 = �̄�𝐺 and 𝐹 = 𝐹𝐺.
The optimal control law is designed for system (3) in the form as

follow

𝑢 = −𝐾𝑥𝑥 +𝐾𝑣𝑤 (4)

where the closed-loop system has exponential stability and the tracking
error 𝑒(𝑡) asymptotically converges to 0. 𝐾𝑥 ∈ R𝑚×𝑛, 𝐾𝑣 ∈ R𝑚×𝑞𝑛 can be
called feedback gain matrix and feedforward gain matrix, respectively.
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Theorem 1 (Huang, 2004). Under Assumptions 3 and 4, find a 𝐾𝑥 that
atisfies 𝜎(�̄� + �̄�𝐾𝑥) ⊂ C−. Then, the output regulation problem can be
ddressed by control scheme (4), if there exist 𝑋 ∈ R𝑛×𝑞𝑛 , 𝑈 ∈ R𝑚×𝑞𝑛 that

satisfy the following matrix equation:

𝑋𝛺 = �̄�𝑋 + �̄�𝑈 + 𝐸,

0 = �̄�𝑋 + �̄�𝑈 + 𝐹 ,
(5)

with the feedforward gain 𝐾𝑣 given by

𝐾𝑣 = 𝑈 +𝐾𝑥𝑋. (6)

Remark 2. Matrices 𝑋 and 𝑈 can be regarded as the result of solving
regulator Eqs. (5) in this manuscript. Moreover, (𝑋,𝑈 ) and (𝐾𝑣, 𝐾𝑥)
are related to each other by Eq. (6). Then, we have the following
conclusion. Under Assumptions 2–3 in this manuscript, let the feedback
gain 𝐾𝑥 be such that (𝐴+𝐵𝐾𝑥) is exponentially stable. The linear output
regulation is solvable by a feedback control of the form 𝑢 = −𝐾𝑥𝑥+𝐾𝑣𝜔,
if and only if there exist two matrices 𝑋 and 𝑈 that satisfy the linear
matrix Eq. (5), with the feedforward gain 𝐾𝑣 being given by 𝐾𝑣 =
𝑈 +𝐾𝑥𝑋.

For any initial state 𝑥0 and 𝑤0, controller (4) that address the
regulator Eq. (5) can make lim𝑡→∞(𝑢(𝑡) − 𝑈𝑤(𝑡)) = 0, meanwhile
lim𝑡→∞(𝑥(𝑡) −𝑋𝑤(𝑡)) = 0.

Let �̂� = 𝑥−𝑋∗𝑤, �̂� = 𝑢−𝑈∗𝑤, by (3) and (4), we can form the error
system as follows

̇̂ = �̄��̂� + �̄��̂� (7)

𝑒 = �̄��̂� + �̄��̂�. (8)

The control objective of BTS in this paper is stabilizing drum water
level while minimizing the prescribed performance function which
represents energy cost in the process of operation. To achieve this
goal, we need to optimize (𝑋∗, 𝑈∗) of Problem 1. Meanwhile, solving
the optimization Problem 2 to obtain the optimal control law (Krener,
1992). These two problems are constructed as follows.

Problem 1.

minimize
(𝑋,𝑈 )

vec𝑇
(

𝑋
𝑈

)

vec
(

𝑋
𝑈

)

subject to (5).

Problem 2.
minimize

(�̂�,�̂�)
𝐽 (�̂�, �̂�) = ∫ ∞

0 (�̂�𝑇𝑄�̂� + �̂�𝑇𝑅�̂�)𝑑𝑡

subject to (7) and (8)

where 𝑄 ∈ R𝑛×𝑛 is a positive semi-definite matrix, 𝑅 ∈ R𝑚×𝑚 is a
positive matrix and (�̄�,

√

𝑄) is observable.

By analysis above, control objective of the closed-loop system in this
ote can be completed if we present a control scheme 𝑢 = −𝐾𝑥

∗𝑥+𝐾𝑣
∗𝑤

here:
(1) 𝐾𝑥

∗ can be obtained by optimizing Problem 2
(2) 𝐾𝑣

∗ = 𝑈∗ + 𝐾𝑥
∗𝑋∗, in which (𝑋∗, 𝑈∗) is optimization solution

of Problem 1.

3. Data-driven optimal output regulator design

In this section, a new adaptive optimal output regulator with in-
terference suppression is designed. First, by employing an ACDs-based
data-driven algorithm, the absent system matrices �̄�, �̄� and 𝐸 are
obtain. Then, we utilize the classical regulator equation to achieve
the objective control law. Finally, the stability of the designed output
4

regulation system is analyzed theoretically.
3.1. Solution of LQR problem

As Problem 2 is a normal LQR problem, the optimal feedback
gain 𝐾𝑥

∗ can be computed through the method of Lewis, Vrabie, and
Vamvoudakis (2012)

𝐾𝑥
∗ = 𝑅−1𝐵𝑇 𝑃 , (9)

where 𝑃 is the positive definite symmetric matrix and the unique
solution of the equation written as follows

�̄�𝑇 𝑃 + 𝑃 �̄� − 𝑃 �̄�𝑅−1�̄�𝑇 𝑃 +𝑄 = 0. (10)

As (10) is nonlinear in terms of 𝑃 , it is hard to compute 𝑃 from (10). To
approximate it, several algorithms are designed. One of them is recalled
in the following.

Lemma 1 (Kleinman, 1968). Let 𝐾𝑥0 ∈ R𝑚×𝑛 be an arbitrary feedback
ain that can stable the system. Positive definite matrix 𝑃𝑗 can be solved by

the following Lyapunov equation

(�̄� − �̄�𝐾𝑥𝑗 )𝑇 𝑃𝑗 + 𝑃𝑗 (�̄� − �̄�𝐾𝑥𝑗 ) +𝑄 +𝐾𝑇
𝑥𝑗𝑅𝐾𝑥𝑗 = 0, (11)

for each 𝑗 = 1, 2,…

𝐾𝑥𝑗 = 𝑅−1�̄�𝑇 𝑃𝑗−1. (12)

Therefore, the properties below hold:
(1) 𝜎(�̄� − �̄�𝐾𝑥𝑗 ) ⊂ C−;
(2) 𝑃 ∗ ≤ 𝑃𝑗+1 ≤ 𝑃𝑗 ;
(3) lim𝑗→∞ 𝐾𝑥𝑗 = 𝐾𝑥

∗, lim𝑗→∞ 𝑃𝑗 = 𝑃 ∗.

.2. ACDs-based solution of optimal feedback gain

Under the condition that the coefficient of matrices �̄�, �̄� and 𝐸
re absent, we propose an ACDs-based data-driven algorithm that can
pproximately compute the matrix 𝑃 ∗ and the optimal feedback gain
∗
𝑥 in (9).

Let �̄�𝑗 = �̄� − �̄�𝐾𝑥𝑗 . Then we can transform system (3) into

�̇� = �̄�𝑗𝑥 + �̄�(𝐾𝑥𝑗𝑥 + 𝑢) + 𝐸𝑤. (13)

Let 𝑄𝑗 = 𝑄 + 𝐾𝑥𝑗
𝑇𝑅𝐾𝑥𝑗 . According to (10) and (13), on [𝑡, 𝑡 + 𝛥𝑡],

e have

𝑥𝑇 (𝑡 + 𝛥𝑡)𝑃𝑗𝑥(𝑡 + 𝛥𝑡) − 𝑥𝑇 (𝑡)𝑃𝑗𝑥(𝑡)

∫

𝑡+𝛥𝑡

𝑡
[𝑥𝑇 (�̄�𝑇

𝑗 𝑃𝑗 + 𝑃𝑗�̄�𝑗 )𝑥 + 2(𝑢 +𝐾𝑥𝑗𝑥)
𝑇 �̄�𝑃𝑗𝑥

+ 2𝑤𝑇𝐸𝑇 𝑃𝑗𝑥]𝑑𝜏

∫

𝑡+𝛥𝑡

𝑡
[ − 𝑥𝑇𝑄𝑥 + 2(𝑢 +𝐾𝑥𝑗𝑥)

𝑇𝑅𝐾𝑥(𝑗+1)𝑥

+ 2𝑤𝑇𝐸𝑇 𝑃𝑗𝑥]𝑑𝜏.

(14)

By introducing Kronecker product, we convert Eq. (14) as the
ollowing form

𝑥𝑇𝑄𝑗𝑥 = (𝑥𝑇 ⊗ 𝑥𝑇 )vec(𝑄𝑗 )

𝑢 +𝐾𝑥𝑗 )
𝑇𝑅𝐾𝑥(𝑗+1)𝑥 = [(𝑥𝑇 ⊗ 𝑥𝑇 )(𝐼𝑛 ⊗ (𝐾𝑥𝑗𝑅))+

(𝑥𝑇 ⊗ 𝑢𝑇 )(𝐼𝑛 ⊗𝑅)]vec(𝐾𝑥(𝑗+1))
𝑇 𝑇 𝑇 𝑇 𝑇

(15)
𝑤 𝐸 𝑃𝑗𝑥 = (𝑥 ⊗ 𝑤 )vec(𝐸 𝑃𝑗 ).
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⎜

⎜

⎜
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Furthermore, for positive integer 𝑙, we define

𝑥𝑥(𝑡𝑙) =[vecv(𝑥(𝑡1)) − vecv(𝑥(𝑡0)), vecv(𝑥(𝑡2))−

vecv(𝑥(𝑡1)),… , vecv𝑥(𝑡𝑙) − vecv(𝑥(𝑡𝑙−1))]𝑇 ,

𝛤𝑥𝑥(𝑡𝑙) =

[

∫

𝑡1

𝑡0
𝑥 ⊗ 𝑥𝑑𝜏,… ,∫

𝑡𝑙

𝑡𝑙−1
𝑥 ⊗ 𝑥𝑑𝜏

]𝑇

,

𝛤�̄�(𝑡𝑙) =

[

∫

𝑡1

𝑡0
vecv(𝑥)𝑑𝜏,… ,∫

𝑡𝑙

𝑡𝑙−1
vecv(𝑥)𝑑𝜏

]𝑇

,

𝛤𝑥𝑢(𝑡𝑙) =

[

∫

𝑡1

𝑡0
𝑥 ⊗ 𝑢𝑑𝜏,… ,∫

𝑡𝑙

𝑡𝑙−1
𝑥 ⊗ 𝑢𝑑𝜏

]𝑇

,

𝛤𝑥𝑤(𝑡𝑙) =

[

∫

𝑡1

𝑡0
𝑥 ⊗ 𝑤𝑑𝜏,… ,∫

𝑡𝑙

𝑡𝑙−1
𝑥 ⊗ 𝑤𝑑𝜏

]𝑇

,

(16)

in which 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑙 are positive integers. By (15) and (16), we
transform (14) as

𝛹𝑗

⎛

⎜

⎜

⎜

⎝

vecs(𝑃𝑗 )

vec(𝐾𝑥(𝑗+1))

vec(𝐸𝑇 𝑃𝑗 )

⎞

⎟

⎟

⎟

⎠

= 𝛷𝑗 , (17)

where 𝛹𝑗 = [𝛿𝑥𝑥(𝑡𝑙),−2𝛤𝑥𝑥(𝑡𝑙)(𝐼𝑛⊗ (𝐾𝑥𝑗
𝑇𝑅))−2𝛤𝑥𝑢(𝑡𝑙)(𝐼𝑛⊗𝑅),−2𝛤𝑥𝑤(𝑡𝑙)]

and 𝛷𝑗 = −𝛤𝑥𝑥(𝑡𝑙)vec(𝑄𝑗 ).

Lemma 2.

rank(𝛤𝑥𝑥(𝑡𝑙)) = rank(𝛤�̄�(𝑡𝑙)) ≤
𝑛(𝑛 + 1)

2
.

Proof. For 𝑘 = 0, 1,… , 𝑛−2 and 𝑗 = 𝑘+2,… , 𝑛, the (𝑘𝑛+𝑗)th row of 𝛤 𝑇
𝑥𝑥

s (∫ 𝑡1
𝑡0

𝑥𝑗𝑥𝑘+1𝑑𝜏⋯ ∫ 𝑡𝑠
𝑡𝑠−1

𝑥𝑗𝑥𝑘+1𝑑𝜏), which is same as the ((𝑗−1)𝑛+𝑘+1)th
row of 𝛤 𝑇

𝑥𝑥. Obviously, there are 𝑛(𝑛−1)
2 pairs in total. It is noted that

𝛤�̄� is obtained by omitting the ((𝑗 − 1)𝑛 + 𝑘 + 1)th row. Therefore,
rank(𝛤𝑥𝑥) = rank(𝛤�̄�) ≤ 𝑛2 − 𝑛(𝑛−1)

2 = 𝑛(𝑛+1)
2 . The proof is completed.

Lemma 3. If there exists a 𝑙∗ ∈ Z+, for all 𝑙 > 𝑙∗, any sequence
0 < 𝑡1 < ⋯ < 𝑡𝑙

ank
(

[𝛤𝑥𝑥(𝑡𝑙), 𝛤𝑥𝑢(𝑡𝑙), 𝛤𝑥𝑤(𝑡𝑙)]
)

=
𝑛(𝑛 + 1)

2
+ (𝑚 + 𝑞𝑛)𝑛. (18)

Matrix 𝛹𝑗 𝑗 ∈ Z+ is full column rank.

roof. The detail of this proof is similar to Lemma 3 in Gao and Jiang
2016), so we omit it here.

According to Lemma 3, if the related assumptions hold, Eq. (17) can
e solved as follows

vecs(𝑃𝑗 )

vec(𝐾𝑥(𝑗+1))

vec(𝐸𝑇 𝑃𝑗 )

⎞

⎟

⎟

⎟

⎠

= (𝛹𝑇
𝑗 𝛹𝑗 )

−1𝛹𝑇
𝑗 𝛷𝑗 . (19)

Both 𝑃𝑗 and 𝐾𝑘+1 can be computed by (19). From (12), we obtain
that

�̄� = 𝑃−1
𝑗 𝐾𝑇

𝑥(𝑗+1)𝑅. (20)

It is noted that after iteratively figuring out the matrix 𝑃𝑗 , matrix 𝐸
is obtained simultaneously.

Theorem 2. If there exists a 𝑙∗ ∈ Z+ such that for all 𝑙 > 𝑙∗ any sequence
𝑡0 < 𝑡1 < ⋯ < 𝑡𝑙 that satisfies Eq. (18), by a initial admissible feedback
matrix 𝐾𝑥0 ∈ R𝑚×𝑛, the sequence (𝑃𝑗 , 𝐾𝑥(𝑗+1))(𝑗 = 0, 1,…) obtained from
Algorithm 1 converge to (𝑃 ∗, 𝐾∗

𝑥 ).

Proof. In Lemma 3, the matrix 𝛹𝑗 is full column rank. Therefore, 𝑃𝑗
and 𝐾𝑥(𝑗+1) can be obtained from (19). If Assumption 3 holds, 𝑃𝑗 and
𝐾𝑥(𝑗+1) satisfy (11) and (12), respectively. Thus, the convergence of 𝑃𝑗
and 𝐾𝑥(𝑗+1) is proved by Lemma 1.
5

w

Algorithm 1 ACDs-based data-driven algorithm for the optimal
feedback gain
1: Utilize 𝑢 = −𝐾𝑥0𝑥 + 𝜉 on [𝑡0, 𝑡𝑙] with bounded exploration noise 𝜉

and 𝜎(�̄� − �̄�𝐾𝑥0) ⊂ C− to create initial admissible control;
2: Compute 𝛿𝑥𝑥(𝑡𝑙), 𝛤𝑥𝑥(𝑡𝑙), 𝛤𝑥𝑢(𝑡𝑙), 𝛤𝑥𝑤(𝑡𝑙) until the rank condition (18)

is guaranteed;
3: Solve 𝐸, 𝑃𝑗 and 𝐾𝑥(𝑗+1) from (19);
4: Let 𝑗 ← 𝑗 + 1, repeat computing 𝑃𝑗 until ‖‖

‖

𝑃𝑗+1 − 𝑃𝑗
‖

‖

‖

≤ 𝜀 with 𝑗 ≥ 1
and a small positive constant 𝜀;

5: Calculate �̄� from (20).

3.3. Solving system matrix �̄�

To solve the optimal regulator (4), the unknown matrices �̄�, �̄� and
𝐸 should be achieved in advance. Algorithm 1 is applied to obtain
matrices �̄� and 𝐸. Next, another method is presented to solve the
matrix �̄�.

Before moving on, we introduce some customized matrices for

concision. Let 𝑆1 = 𝐼𝑛, 𝑆2 =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 ⋯ 0
1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑆3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 ⋯ 0
0 0 0 ⋯ 0
1 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

, 𝑆 𝑛2−𝑛+2
2

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 1
0 0 ⋯ 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. 𝑆1, 𝑆2,… , 𝑆 𝑛2−𝑛+2
2

∈ R𝑛×𝑛. As the

derivation in (14), following from (3), we have

𝑥𝑇 (𝑡 + 𝛥𝑡)𝑆𝑖𝑥(𝑡 + 𝛥𝑡) − 𝑥𝑇 (𝑡)𝑆𝑖𝑥(𝑡) =

∫

𝑡+𝛥𝑡

𝑡

[

𝑥𝑇 (�̄�𝑇𝑆𝑖 + 𝑆𝑖�̄�)𝑥 + 2(𝑢𝑇 �̄� + 𝜔𝑇𝐸𝑇 )𝑆𝑖𝑥
]

𝑑𝜏,
(21)

n which 𝑖 = 1, 2,… , 𝑛
2−𝑛+2
2 .

Similar to Eq. (15), we transform (21) into Kronecker product
representation

𝑥𝑇 (�̄�𝑇𝑆𝑖 + 𝑆𝑖�̄�)𝑥 = 2(𝑥𝑇 ⊗ 𝑥𝑇 )vec(�̄�𝑇𝑆𝑖)

= (vec(𝑥))𝑇 vecs(�̄�𝑇𝑆𝑖 + 𝑆𝑖�̄�),

𝑢𝑇 �̄�𝑆𝑖𝑥 = (𝑥𝑇 ⊗ 𝑢𝑇 )vec(�̄�𝑆𝑖),

𝑤𝑇𝐸𝑇𝑆𝑖𝑥 = (𝑥𝑇 ⊗𝑤𝑇 )vec(𝐸𝑇𝑆𝑖),

(22)

Then (22) can be rewritten as the following form

̂ vecs(�̄�𝑇𝑆𝑖 + 𝑆𝑖�̄�) = �̂�

⎛

⎜

⎜

⎜

⎝

vecs(𝑃𝑗 )

vec(𝐾𝑥(𝑗+1))

vec(𝐸𝑇 𝑃𝑗 )

⎞

⎟

⎟

⎟

⎠

, (23)

here �̂� = [𝛿𝑥𝑥(𝑡𝑙1),−2𝛤𝑥𝑢(𝑡𝑙1),−2𝛤𝑥𝑤(𝑡𝑙1)] and �̂� = 𝛤�̄�(𝑡𝑙1).

emma 4. If there exists a 𝑙∗1 ∈ Z+ such that for all 𝑙 > 𝑙∗1 , for any
equence 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑙1

ank(�̂�) =
𝑛(𝑛 + 1)

2
. (24)

Therefore,

vecs(�̄�𝑇𝑆𝑖 + 𝑆𝑖�̄�) = (�̂�𝑇 �̂�)−1�̂�𝑇 �̂�

⎛

⎜

⎜

⎜

⎝

vecs(𝑆𝑖)

vec(�̄�𝑆𝑖)

vec(𝐸𝑇𝑆𝑖)

⎞

⎟

⎟

⎟

⎠

. (25)

roof. Since the matrix �̂� has full column rank, �̂�𝑇 �̂� is nonsingular,
e can multiply the left side of (23) with (�̂�𝑇 �̂�)−1�̂�𝑇 and obtain (25).
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As �̄�, 𝐸 are obtained by Algorithm 1, �̂�, �̂� and
⎛

⎜

⎜

⎜

⎝

vecs(𝑆𝑖)

vec(�̄�𝑆𝑖)

vec(𝐸𝑇𝑆𝑖)

⎞

⎟

⎟

⎟

⎠

can

all be computed. Let �̄� = (𝑎𝑘𝑗 )𝑛×𝑛 and 𝑆𝑖 = (𝑠(𝑖)𝑘𝑗 )𝑛×𝑛. obviously,
ecs(�̄�𝑇𝑆𝑖 + 𝑆𝑖�̄�) = 𝑠𝑖, in which 𝑠𝑖 = col(2

∑𝑛
𝑘=1 𝑎𝑘1𝑠

(𝑖)
𝑘1, 2(

∑𝑛
𝑘=1 𝑎𝑘1𝑠

(𝑖)
𝑘2 +

𝑘2𝑠
(𝑖)
𝑘1),… , 2(

∑𝑛
𝑘=1 𝑎𝑘𝑗𝑠

(𝑖)
𝑘𝑚 + 𝑎𝑘𝑚𝑠

(𝑖)
𝑘𝑗 ),… , 2

∑𝑛
𝑘=1 𝑎𝑘𝑛𝑠

(𝑖)
𝑘𝑛) ∈ R

𝑛(𝑛+1)
2 . Sub-

tituting 𝑆1 = 𝐼𝑛 into (25), 𝑎12 and 𝑎21 are available. Similarly,
ubstituting 𝑆 𝑛2−𝑛+2

2
into (25), 𝑎𝑛−1,𝑛 and 𝑎𝑛,𝑛−1 can be figured out. Then,

the system matrix �̄� is reached.

3.4. Optimal feedforward gain

Since unknown matrices �̄�, �̄�, 𝐸 and the approximate optimal feed-
back gain matrix 𝐾∗

𝑥 is obtained by the analysis above, we are able to
figure out the optimal feedforward gain matrix 𝐾∗

𝑣 . To obtain it, we
first solve Problem 1, which is subjected to regulator Eq. (5).

The regulator Eq. (5) can be put into the following form (Huang,
2004):
[

𝐼𝑛 0𝑛×𝑚
0𝑟×𝑛 0𝑟×𝑚

] [

𝑋
𝑈

]

𝛺

−
[

�̄� �̄�
�̄� �̄�

] [

𝑋
𝑈

]

=
[

𝐸
𝐹

]

.
(26)

Using the properties of Kronecker product, we can transform (26) into
a standard linear algebraic equation of the form

𝑇𝑥 = 𝑏, (27)

where

𝑇 = 𝛺𝑇 ⊗
[

𝐼𝑛 0𝑛×𝑚
0𝑟×𝑛 0𝑟×𝑚

]

− 𝐼𝑞𝑛 ⊗
[

�̄� �̄�
�̄� �̄�

]

,

= vec
([

𝑋
𝑈

])

, 𝑏 = vec
([

𝐸
𝐹

])

.

The ACDs-based algorithm for optimal output regulation with un-
nown system matrices is presented as follows.
Algorithm 2 ACDs-based data-driven algorithm for general linear
optimal output regulation problem.
1: Utilize 𝑢 = −𝐾𝑥0𝑥 + 𝜉 on [𝑡0, 𝑡𝑙] with bounded exploration noise 𝜉

and 𝜎(�̄� − �̄�𝐾𝑥0) ⊂ C− to create initial admissible control;
2: Solve the optimal feedback gain 𝐾∗

𝑥 and matrices �̄�, 𝐸 by algorithm
1;

3: Calculate the matrix �̄� by (25);
4: Solve Problem 1 by (26) and (27) to find (𝑋∗, 𝑈∗);
5: Compute 𝐾𝑣 by (6), the approximate optimal output regulator is

𝑢 = −𝐾∗
𝑥𝑥 +𝐾∗

𝑣𝑤.

Remark 3. The Algorithm 1 and 2 presented in this paper both contain
three quantities that should be specified to begin the algorithm. They
consist of one arbitrary feedback gain 𝐾𝑥0 that can stable the system, a
bounded exploration noise 𝜉 and the data sampling time period [𝑡0, 𝑡𝑙].
Two of them can affect the outcome as assigning different initial value.
If the amplitude of the exploration noise is too large, the state will be far
from the equilibrium point and the system will be unstable. Therefore,
the amplitude of the noise components is limited from −0.5 to 0.5, −0.3
to 0.3 and −2 to 2, respectively in simulation process. If the time period
is too short, the amount of data is not enough to solve the unknown
matrices �̄�, �̄� and 𝐸. Hence, the time period should be set long enough.

3.5. Stability analysis

In this subsection, the stability of system (3) with the optimal output
regulator achieved by using ACDs-based data driven algorithm 2 is
analyzed theoretically.
6

Theorem 3. Under Assumptions 1–4 and conditions in Lemmas 3–4,
the optimal output regulation problem of system (3) can be obtained by the
following control scheme

𝑢 = −𝐾∗
𝑥𝑥 +𝐾∗

𝑣𝑤

where 𝐾∗
𝑥 and 𝐾∗

𝑣 are computed by Algorithm 1 and Algorithm 2, respec-
tively. Then we have:

(1) The closed-loop system is stabilized by the presented control scheme;
(2) The tracking error 𝑒(𝑡) converges to 0 asymptotically.

roof. (1) Suppose Assumption 3, 𝜎(�̄� − �̄�𝐾∗
𝑥 ) ⊂ C− can be directly

proved by Lemma 1 and Theorem 2.
(2) Since Assumptions 1–3 and conditions in Lemmas 3–4 hold,

the approximate optimal feedback control gain 𝐾∗
𝑥 can be achieved.

The system (3) in closed-loop with the approximate optimal control law
ensure that
̇̂ = (�̄� − �̄�𝐾∗

𝑥 )�̂�,

𝑒 = (�̄� − �̄�𝐾∗
𝑥 )�̂�.

From (1), we get lim𝑡→∞ �̄�(𝑡) = 0, and therefore lim𝑡→∞ 𝑒(𝑡) = 0. The
proof is completed.

4. Numerical analysis

In the section above, we achieve the approximate optimal output
regulation control scheme of system (3) theoretically by ACDs-based
data driven algorithm 2. To demonstrate the effectiveness of the pre-
sented scheme, we apply it towards the boiler-turbine system in this
section.

We collect operation data from a 160MW boiler-turbine coordinate
system. The output equation of this system can be written as (Åström
& Bell, 1987)

𝑦1 = 𝑥1,

𝑦2 = 𝑥2,

𝑦3 = 0.05(0.13073𝑥3 + 100𝛼𝑠 + 𝑞𝑒∕9 − 67.975),
(28)

here 𝑞𝑒 = ((0.854𝑢2 − 0.147)𝑥1 + 45.59𝑢1 − 2.51𝑢3 − 2.096) and 𝛼𝑠 = (1 −
0.00154𝑥3)(0.8𝑥1−25.6)∕𝑥3(1.039−0.0012304𝑥1). Considering the equilib-
rium point under load 60MW with the state 𝑥𝑑 = [102, 60, 438.93]𝑇 and
control 𝑢0 = [0.3102, 0.671, 0.3971], we can linearize the output equation
by Taylor expansion at the set equilibrium point. Then we obtain the
linear output equation

𝑦 = �̄�𝑥 + �̄�𝑢,

where

�̄� =
⎡

⎢

⎢

⎣

1 0 0
0 1 0

0.0065 0 0.0054

⎤

⎥

⎥

⎦

,

�̄� =
⎡

⎢

⎢

⎣

0 0 0
0 0 0

0.2786 0.5323 −0.0153

⎤

⎥

⎥

⎦

.

We assume that state of BTS fluctuates around the equilibrium point
𝑥𝑑 , so the exosystem can be written as

�̇� =

⎡

⎢

⎢

⎢

⎢

⎣

0 −𝜋 0 0
𝜋 0 0 0
0 0 0 −1.5𝜋
0 0 1.5𝜋 0

⎤

⎥

⎥

⎥

⎥

⎦

𝑤.

Remark 4. It is noted that 𝑑 = �̄�𝜃 denotes the exogenous disturbances,
where �̇� = 𝛺𝜔, 𝜃 = 𝐺𝜔 and 𝐺, �̄� are unknown constant matrices. The
dynamic model of 𝜔 given in the simulation part is used to describe the
exosystem. Therefore, we just know the eigenvalue of the system matrix
of disturbance and the unknown constant matrices 𝐺, �̄� can reflect the

unpredictability of the disturbance.
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Fig. 3. The ACDs-based optimal output regulation control law and relative output of the BTS.
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𝐾
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The initial state is 𝑤(0) = [1, 0, 1, 0]𝑇 . To stabilize drum water level
at the zero benchmark under the existence of state fluctuation, we can
generate the reference signal as

𝑦𝑑 = 𝐹𝑤 =

⎡

⎢

⎢

⎢

⎣

√

3 1 0 0
√

3 1 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎦

𝑤.

emark 5. The prescribed performance function used in this paper
s written as 𝐽 (�̂�, �̂�) = ∫ ∞

0 (�̂�𝑇𝑄�̂� + �̂�𝑇𝑅�̂�)𝑑𝑡, where �̂� = 𝑥 − 𝑋∗𝑤,
̂ = 𝑢−𝑈∗𝑤. Finding the optimal control scheme for BTS that minimizes
this performance function can make power requirement economically
suffice and stabilize drum water level with existence of disturbance
simultaneously. The requirement of quickly or slowly responding to
demand for certain state component can be achieved by changing the
related element on the diagonal of the weight matrices 𝑄. Similarly,
changing the related element on the diagonal of the weight matrices
𝑅 can make the corresponding input factor have a strong or weak
willing to save the relevant energy. For the sake of generality, we chose
matrices 𝑄 and 𝑅 as identity matrix with appropriate dimensions.

The matrices �̄�, �̄�, and 𝐸 are unknown. Meanwhile 𝑄 and 𝑅 are
chosen as identity matrix. The noise 𝜉 consist of sinusoidal waves with
diverse frequencies. The feedback gain matrix 𝐾𝑥𝑗 updates after each
teration and the optimal one 𝐾∗

𝑥 is

∗
𝑥 =

⎡

⎢

⎢

0.5758 0.0166 0.0332
−0.0131 0.5722 −0.0527

⎤

⎥

⎥

,

7

⎣ −0.0347 0.0498 0.5740 ⎦
rom the initial admissible one

𝑥0 =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

.

he solution of (𝑋,𝑈 ) is unique and optimal. Then 𝐾∗
𝑣 can be computed

nd the result is

∗
𝑣 =

⎡

⎢

⎢

⎣

−0.2133 −1.7815 0 0
−1.4552 −0.2826 0 0
7.1495 −7.0930 0 0

⎤

⎥

⎥

⎦

.

Fig. 3 displays the optimal control law generated by ACDs-based
learning Algorithm 2 and the relative output of the system (com-
pared with the equilibrium point). Fig. 4 shows the state trajectory
of BTS with designed optimal controller. Since the state of BTS is
interfered by sinusoidal disturbance, the control scheme need regular
fluctuation to keep the drum water level stabilizing at the zero bench-
mark. Fig. 5 demonstrates that the ACDs-based approximate optimal
controller render the output of BTS asymptotically track the refer-
ence signal. Therefore, the drum water level can be stabilized at the
benchmark point with unknown disturbance.

To more clearly illustrate the presented algorithm in this paper, we
add an extended example to further prove the effectiveness of the pre-
sented scheme. In this case, we assume that the transfer of equilibrium
point will occur during the operation, which happens commonly in
practice.

As shown in Fig. 6, the transfer occurs at 400th step, where
the tracking error suddenly increases because the system equation

switches. After that the designed algorithm recalculates the system
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Fig. 4. State trajectory of BTS with optimal controller.

Fig. 5. Output tracking errors of BTS with optimal controller.

Fig. 6. Output tracking errors of BTS with equilibrium point transfer.

matrix through the data obtained at the new equilibrium point and the
corresponding optimal output regulator is obtained. When the newly
calculated input is applied to the system, the output tracking error
gradually converges to 0. About 500 steps later, the output tracking
error converges to 0. Through the extended experiment, it is proved
that the algorithm is also effective even when the equilibrium point
transfer occurs during the operation.

5. Conclusion

In this note, a data-driven optimal output regulation algorithm is
presented towards water level control of BTS with unknown dynamics
and disturbance. To obtain the optimal feedback control gain, we
utilize an ACDs-based learning method to update the feedback gain
during each iteration. Then, by solving optimization Problem 1 under
the regulator Eq. (5), the feedforward control gain is also achieved.
Moreover, convergence analysis is presented to validate stability of the
optimal control law. Finally, results of the application to water level
control of boiler-turbine system are shown to prove effectiveness of
8

the designed method. The main limitation of the proposed method is
that the unmeasurable disturbance of the system should be linear and
the eigenvalues of it need be known in advance, which renders the
application of this method is limited. The implication for practice is
highlighted in the way that optimal output regulation towards BTS can
make power requirement economically suffice and stabilize drum water
level with existence of disturbance simultaneously. Future work will
focus on the solution of optimal output regulation for nonlinear system
with completely unknown disturbances.
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