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   Dear Editor,
Human activity recognition (HAR) using WiFi  signals  has been a

significant  task  due  to  its  potential  applications  in  for  example,
healthcare services and smart homes. This letter deals with the WiFi
channel  state  information  (CSI)-based  HAR  task.  To  capture  the
dynamics  of  human  activities  well  from  CSI  without  using  a  huge
number of training samples, we propose a recurrent model of convo-
lution blocks and transformer encoders. Firstly, the model utilizes the
convolution  blocks  to  capture  local  variation  and  the  self-attention
mechanism  in  transformer  encoders  to  characterize  long-range
dependencies. Secondly and more importantly, the recurrent architec-
ture  models  the  context  information  well  within  CSI  signals  and
allows the network to deepen without  scale increase,  making it  par-
ticularly suited to learning from a small amount of CSI samples.

With  the  rapid  development  of  deep  learning  models,  an  increas-
ing  number  of  approaches  utilize  deep  learning  to  solve  HAR tasks
using WiFi signals. Various deep models for CSI-based human activ-
ity  recognition  have  been  proposed.  One  sort  of  studies  [1]–[3]  uti-
lized  CNN  structures  to  extract  features.  Wang et  al.  [1]  processed
the  temporal  information  of  CSI  signals  by  1D-ResNet  [4].  GS  [2]
encoded the input into a 2D RGB image and fed it into the 2D-CNN
structure  EfficientNet  [5].  Zhang et  al.  [3]  proposed  a  3D-CNN  to
learn the spatiotemporal dynamic patterns. Considering the temporal
characteristics  of  the  CSI  signal,  there  are  studies  performing  time
series classifications.  Yousefi et  al.  [6]  compared several  traditional
feature-based  methods  with  the  long  short-term  memory  (LSTM),
demonstrating  the  potential  of  employing  recurrent  deep  models  to
process  CSI  signals.  Afterwards,  Meng et  al.  [7]  proposed  a  modi-
fied attention-based bi-directional  GRU network to learn features in
two directions.  In  [8],  CSI  signals  were  transformed to  the  domain-
independent feature and then fed into a CNN-GRU structure to cap-
ture spatial and temporal features. Yadav et al. [9] regarded the CSI-
based HAR as a multi-variate time series problem and modified the
InceptionTime  network  to  extract  features.  OneFi  in  [10]  trans-
formed  the  CSI  series  to  the  Doppler  spectrogram  by  short-time
Fourier  transform  and  applied  transformer  for  classification.  THAT
in [11] adopted two-stream transformer to process raw CSI signals by
the dimension of time and channel, respectively.

Though  promising  progress  has  been  made,  there  are  still  limita-
tions:  1)  Over-parameterized  deep  models  are  easy  to  overfit  on
small datasets. Deep models usually require a large amount of train-
ing  data  while  most  datasets  for  CSI-based  HAR  only  have  a  size
from  hundreds  to  thousands  of  samples  [1],  [6]  and  [10].  2)  Deep
CNN models with fixed convolution kernel size can extract local fea-
tures  but  have  difficulty  capturing  long-range  relations  within  sig-
nals [12].

To address these problems, in this letter, we propose a lightweight
and  efficient  Recurrent  model  of  CONvolution  blocks  and  trans-
FORMER encoders (Recurrent ConFormer) for HAR using CSI sig-

nals.  The main contribution lies in two aspects: Firstly,  we incorpo-
rate  the  recurrent  mechanism into  the  transformer  encoder  and  pro-
pose the recurrent transformer module, which allows for building the
deep  architecture  with  a  fixed  number  of  parameters.  Secondly,  we
propose  to  cascade  the  recurrent  convolution  and  transformer  mod-
ules.  This  architecture  captures  the  local  variation  by  convolution
blocks  and  models  the  long-range  dependencies  among  local  fea-
tures by transformer encoders. To the best of our knowledge, this is
the first time to combine the recurrent mechanism with the cascaded
CNN and transformer for CSI-based recognition.

:

Problem statement: Given the raw CSI data of the received WiFi
signals,  we  build  a  model  with  a  feature  extractor  to  capture  the
dynamics and a classifier head to recognize the types of human activ-
ities. In concrete, consider the system below
 {

z = fω(x)
ŷ = h(z) (1)

x ∈ Rd×T

ŷ

D fω

where  is a time sequence of the amplitude of CSI singals as
the input. As [1], we only use the information of CSI amplitude and
ignore  other  information  such  as  the  CSI  phrase  to  recognize  the
activities. d and T are  the  number  of  sub-carriers  and  timestamps,
respectively.  is  the  output  of  the  system  to  approach  the  ground-
truth label y. The CSI samples and corresponding ground-truth labels
consist of the training dataset .  is the feature extractor with the
parameters ω to extract the dynamic feature of inputs, and h is a clas-
sifier head to recognize the activities given the feature extracted.

We formulate  the  feature  extractor  as  a  composition  of  two func-
tions to fully characterize the dynamic information of CSI signals.
 

fω(x) = fg( fl(x)) (2)
fl fg

zl zg fl fg
where  aims to capture local variation and  further encodes long-
range  dependencies.  Let  and  denote  the  outputs  of  and 
respectively. The system can be rewritten as
 

zl = fl(x)
zg = fg(zl)
ŷ = h(zg).

(3)

fl fg
Method: The proposed model consists of three parts: the recurrent

CNN module , the recurrent transformer module  and a classifier
head h, as illustrated in Fig. 1. The recurrent CNN module uses con-
volution  operations  to  extract  local  feature.  The  recurrent  trans-
former module then takes advantage of the self-attention operation to
get  global  correlations  of  these  local  features.  Finally,  the  classifier
head with a fully-connected layer is provided to make prediction.

x0 ∈ Rd′×T ′

7×1
T ′ = T/4 d′

Recurrent CNN: Fig. 2 illustrates the architecture of the recurrent
CNN module, which consists of a downsample stage and a recurrent
convolution stage. In the downsample stage, we downsample the raw
CSI  data x to  by  an  1-D  convolution  operation1 with  a
kernel size of  and a max pooling operation as in [1]. Obviously,

.  is the number of convolution channel.

ψ(·)

x0

In  the  recurrent  convolution  stage,  we  incorporate  the  recurrent
mechanism [13] with the residual  structure.  As shown in Fig. 2,  the
recurrent convolution stage is composed of the recurrent convolution
block  and  a  residual  connection  [4].  The  convolution  block ,  as
the  basic  unit  in  recurrence  (abbreviated  by  recurrent  unit)  evolves
over time steps through the recurrent and the feed-forward computa-
tion.  In  concrete,  given  the  downsampled  CSI  data  as  the  input,
the recurrent convolution stage is formulated as follows:
 

x1 = ψ(x0;θ0)
xk+1 = ψ(xk;θ)+ψ0(x0;θ0)
zl = ReLU(xNC + x0)

(4)
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1 Considering the time-sequence characteristics of CSI signals, 1-D convolu-
tional operation (Conv-1D) is  used to capture the feature along the temporal
dimension.
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zl
NC xk

kth k = 1,2, . . . ,NC −1
ψ(·;θ) ψ0(·;θ0)

θ0 ψ(·;θ)

ReLU(·) ψ0(·;θ0) x0

ψ(·) θ0
NC = 1

where  is  the  output  of  the  recurrent  convolution  stage  obtained
after  time steps.  is the output of the convolution block after the

 time  step,  for ,  and  works  as  the  input  to  the
next  time  step.  The  convolution  block  and  represent
the  recurrent  and  the  feed-forward  computation  functions,  with  the
parameter settings θ and  respectively.  is made up of two 1D
convolution  operators,  two  1D batch  normalizations,  and  an  activa-
tion function .  is obtained by using  as the input to

 with the parameter , which is stored during the recurrent evo-
lution.  When ,  (4) degrades into the normal 1D residual con-
volution  block  in  ResNet  [4].  It  is  worth  mentioning  that  compared
with the original recurrent structure in [13], the presented one is with
a residual connection and multiple convolution operations.

zl zl
zl T ′

ei

Recurrent  transformer: This  module  deals  with  global  correla-
tions  between  the  local  features  extracted  in  recurrent  CNN.  The
overall  architecture  is  shown on the  left  of Fig. 3.  It  has  an  embed-
ding and a recurrent encoder stage, and takes the output of recurrent
CNN  as  the  input.  The  embedding  stage  encodes  into  embed-
ding  vectors.  Specifically,  we  first  split  into  time  patches  and
apply a linear projection to get the embedding  of each time patch

Rdh Rdh

i = 1,2, . . . ,T ′ cls ∈
Rdh

p= (p0, p1, . . . , pT ′ ) pi ∈ Rdh ,

i = 0,1, . . . ,T ′

e0 = (cls+ p0,e1 + p1,e2 + p2, . . . ,eT ′ + pT ′ )

with the size of ,  where  reflects the hidden dimension of the
transformer  encoder, .  Moreover,  a  class  token 

 is  attached.  After  that,  for  better  timestamp  sensitivity,  we  add
learnable  position  embedding ,  where 

,  to  maintain the absolute position information of  each
patch  embedding.  Thus,  we  have  the  embedding  sequence

 and  input  it  into  the
recurrent encoder stage.

d f

As shown in Fig. 3, the main part in the recurrent encoder stage is a
transformer  encoder  [12],  which  also  served  as  the  recurrent  unit.
Inside the transformer encoder, the multi-head self-attention (MHSA)
with h heads  is  used  to  characterize  the  long-range  interactions  in
sequential embeddings and capture global high-level feature by com-
puting the  attention scores  between any two embeddings.  The feed-
forward  layer  is  an  MLP  with  a  depth  of  2  and  the  feed-forward
dimension  of .  More  details  about  Transformer  Encoder  can  be
found in [12]. The recurrent encoder is formulated as follows:
 

ek = ξ(ek−1;δ)+ e0

eNT = ξ(eNT−1;δ)
zg = eNT (1)

(5)

zg NT

eNT ξ(·;δ)
ek kth

k = 1,2, . . . ,NT −1
NT = 1

where  the  output  is  the  class  embedding  after  iterations,  i.e.,
the  first  element of ,  and  is  a  transformer  encoder  with
parameter setting δ.  is the output of the  recurrent transformer
encoder for . Note that the module degrades into a
normal transformer encoder when .  The recurrent structure is
similar to the one in the recurrent CNN module. The only difference
is to replace the feed-forward computation by an identity connection.

W ∈ Rdh×c b ∈ Rc
Classifier  head: The  classifier  head  is  a  fully  connected  linear

layer  with parameters  weight  and bias ,  where c is
the  number  of  categories.  The  prediction  turns  out  in  the  form  of
score with the softmax function σ as follows:
 

ŷ = σ(WT zg +b). (6)
Loss  function: The  cross-entropy  loss  is  used  as  loss  function  to

optimize our recurrent ConFormer network
 

L =
∑

(x,y)∈D
−y log ŷ. (7)

Datasets: We conduct extensive experiments on two WiFi human
activity recognition datasets to verify our proposed method.

ARIL: ARIL [1]  contains 1398 samples  of  6  activities,  i.e.,  hand
up,  hand  down,  hand  left,  hand  right,  hand  circle  and  hand  cross,
each performed 15 times at  16 different locations.  One out of every
five trials are evenly selected to build the test set (278) and the oth-
ers  are  used  for  training  (1116).  All  the  instances  are  collected  by
universal software radio peripherals with one WiFi antenna to broad-
cast and receive WiFi signals. The raw CSI data includes CSI phase
and amplitude. The number of sub-carriers and the streams for each
CSI data is 52 and 192.

(30×3)×2000

UT-HAR: UT-HAR  [6]  contains  557  samples  of  7  activities  (lie
down,  fall,  pick  up,  run,  sit  down,  stand  up,  walk)  with  raw  CSI
phase  and  amplitude.  The  samples  are  collected  by  transmitter  and
receiver  with  3  antennas.  The  receiver  is  equipped  with  Intel 5300
NIC, with the sampling rate of 1 kHz. We randomly split the dataset
into non-overlapping training set (80%) and test set (20%). The num-
ber of sub-carriers and the streams for each sample are 30 and 2000.
Therefore,  the  shape  of  one  CSI  amplitude  sequence  sample  is

.
Results and discussion: In this section, we provide the implemen-

tation details and the comparative results.
dh

d f
d′

NC
NT

When implementing the network,  we set  the hidden dimension 
and  feed-forward  dimension  in  transformer  encoder  to  128  and
256,  and the output  dimension  for  Conv-1D in recurrent  CNN to
128. The number of heads h in MHSA is set to 8 and 4 for ARIL and
UT-HAR,  respectively.  The  recurrent  depth  of  recurrent  CNN 
and recurrent transformer  are both set to 4.

The  network  is  implemented  by  Pytorch  1.12.0  with  Python  3.9
and trained on an NVIDIA GeForce RTX 3060 GPU. The model is

 

Recurrent
CNN

Recurrent
transformer

Classifier
head …

fl fg h
 
Fig. 1. The overall  architecture of the proposed model.  The feature extracted
by recurrent  CNN is  divided into patches  along the temporal  dimension and
then fed into the recurrent transformer. Finally, the prediction of activity can
be obtained by the classifier head.
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Fig. 2. Detailed  structure  of  the  recurrent  CNN,  where  Conv.  Block  is  short
for the convolution block and Conv-1D  stands for Conv-1D with a ker-
nel size of . The parameters of the convolution blocks are shared during
iterations.
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Fig. 3. Detailed architecture of the recurrent transformer. Parameters of trans-
former encoder are shared during iterations.
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trained  for  100  and  50  epochs  in  total  on  ARIL  and  UT-HAR,
respectively. In the training process, we set the batch size to 64 and
the  learning  rate  to 0.0001,  which  decreases  by  0.1  after  75  epochs
for ARIL. As for UT-HAR, we set the batch size to 16 and the learn-
ing rate decreases by 0.1 after 40 epochs. We repeat the experiments
with different random seeds for ten times for reliable evaluation and
report the average top-1 accuracy (avg Acc.) and the standard devia-
tion (Std.).

Results on ARIL: We compare our network with two state-of-art
works  on  ARIL,  i.e.,  ResNet1D  [1]  and  Gimme’ signals  (GS)  [2].
Wang et  al.  [1]  used  the  1D ResNet  along  the  temporal  dimension.
Memmesheimer et al. [2] encoded the CSI series to an image and fed
it into the 2D CNN EfficientNet [5]. They used a re-implementation
and pre-trained weights of EfficientNet.

We use the  source code of  the  method and repeat  it  for  ten times
for reliable and fair comparisons. To exclude the interference of other
issues,  we  only  list  the  accuracy  of  the  methods  without  data  aug-
mentation.  As  reported  in Table 1,  the  accuracy  of  our  proposed
model  is  95.83% which  is  6% higher  than  ResNet1D  and  2.7%
higher than GS. It demonstrates our recurrent ConFormer framework
achieve a superior performance on HAR tasks. Moreover, our model
has far fewer parameters than the other two, indicating the role of the
recurrence mechanism in reducing the complexity of the model.
 

Table 1.  Comparative Experimental Results on ARIL

Method Framework Params Avg Acc. Std.

ResNet1D [1] ResNet-1D 2.69 MB 89.78% 1.73

GS [2] EfficientNet-2D 9.11 MB 93.07% 1.47

Ours Recurrent ConFormer 0.40 MB 95.83% 0.62
 
 

Results  on  UT-HAR: We  also  compare  our  network  with  two
state-of-art  works  on  UT-HAR,  including  the  methods  based  on
LSTM  [6]  and  two-stream  augmented  transformer  (THAT)  in  [11].
The comparative results are presented in Table 2.
 

Table 2.  Comparative Experimental Results on UT-HAR.

Method Framework Params Avg Acc. Std.

Yousefi et al. [6] LSTM 0.24 MB 90.90% 2.27

THAT [11] Transformer 49.3 MB 95.71% 1.32

Ours Recurrent ConFormer 0.50 MB 96.16% 0.74
 
 

As  reported  in Table 2,  our  method  outperforms  LSTM  by  more
than 5% and THAT by about 0.4%. Meanwhile, including 1.3 MB in
the channel stream and 48 MB in the temporal stream, the amount of
parameters evolved in THAT is about 100 times than ours. The com-
parison  with  THAT  indicates  that  the  recurrent  ConFormer  is  a
lighter  model  with  comparable  performance,  which  can  be  well-
trained when meets smaller datasets. The results demonstrate that our
model has a good balance of accuracy and complexity.

t = 1

Discussion: The results demonstrate the proposed recurrent mech-
anism,  which  is  built  on  the  recurrent  units,  and  the  recurrent  and
feed-forward connections. The recurrent units are formed by the con-
volution block and the transformer encoder in the recurrent CNN and
the  recurrent  transformer  modules,  respectively. Fig. 4 shows  how
unfolding  the  recurrent  units  leads  to  recurrence.  As  we  can  see,  it
degrades into a single layer when . More importantly, the depth
of  the  network  built  by  recurrent  units  is  increased  when t goes
larger.  As  a  result,  deep  enough  networks  can  be  efficiently  built
without adding any parameters.

Conclusion: This  letter  has  investigated  the  problem  of  human
activity  recognition  using  WiFi  signals.  To  learn  the  model  effi-
ciently  from  a  limited  number  of  training  samples,  we  propose  the
recurrent  ConFormer  for  CSI-based  HAR.  The  proposed  recurrent
model not only combines the advantages of CNN and transformer but

also builds a deep enough structure with a fixed number of parame-
ters.  Results  of  comparative  experiments  on  ARIL  and  UT-HAR
indicate the superiority of the proposed method in both accuracy and
efficiency.  Future  work  will  focus  on  developing  more  lightweight
and training-efficient solutions.
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