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   Dear Editor,
This  letter  provides  a  simple  framework  to  generalized  zero-shot

learning for fault diagnosis. For industrial process monitoring, super-
vised learning and zero-shot learning (ZSL) can only deal with seen
and  unseen  faults,  respectively.  However,  in  the  online  monitoring
stage  of  the  actual  industrial  process,  both  seen  and  unseen  faults
may  occur.  This  makes  supervised  learning  and  zero-shot  learning
impractical  in  industrial  process  monitoring.  Generalized  zero-shot
learning  (GZSL)  can  handle  this  problem,  but  its  implementation
process  is  too  complicated.  This  letter  introduces  GZSL into  indus-
trial  process  fault  diagnosis,  and  a  simple  end-to-end  framework  is
provided  to  implement  GZSL-based  fault  diagnosis.  In  this  frame-
work,  GZSL-based  fault  diagnosis  can  be  realized  by  using  only  a
binary  classification  algorithm.  Experimental  results  show  that  the
proposed framework can  accomplish  this  challenging task  of  GZSL
for fault diagnosis.

With the further advancement of intelligent manufacturing, indus-
trial  processes  are  becoming  more  complex.  At  this  time,  the  fault
types  will  become  more  diversified,  and  this  place  higher  demands
on diagnostic methods. Traditional fault diagnosis methods based on
supervised learning rely on a large number of labeled fault samples,
which  is  difficult  to  meet  in  industrial  processes,  especially  some
zero-sample, but known faults (unseen faults), which cannot be han-
dled by supervised learning. ZSL [1] method has been proven to clas-
sify unseen faults [2], and it only has seen fault (fault types with sam-
ples  and  participating  in  model  training)  samples  in  the  training
stage.  However,  the  ZSL  fault  diagnosis  method  can  only  classify
unseen  faults  during  the  online  monitoring  stage,  it  cannot  classify
the  cases  in  which  both  seen  and  unseen  faults  may  occur,  which
seriously  limits  its  practical  application.  To  clarify  the  basic  con-
cepts, in Fig. 1, we divide the faults into three categories: seen fault,
unseen fault, and unknown fault. The methods we discuss in this let-
ter  are  all  trying  to  solve  the  classification  problem  of  seen  and
unseen  faults,  and  we  believe  it  is  difficult  to  deal  with  unknown
faults at present.
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Fig. 1. The category of the fault.
 

To solve the problems mentioned above,  it  is  necessary to  extend
the ZSL method, which is GZSL [3], so that it can classify both seen
and unseen faults during the online monitoring stage. By introducing
semantic  description  information,  GZSL  can  establish  the  connec-
tion  between the  disjoint  seen  faults  and  unseen  faults,  so  that  both
seen faults and unseen faults can be handled during the online moni-
toring stage.
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Semantic  description  information  is  the  key  to  realizing  GZSL,
 and  are the semantic description informa-

tion of seen faults and unseen faults, respectively.  represents the
jth  attribute  value  of  the ith  seen  fault  and  represents  the jth
attribute value of the kth unseen fault.  is
the semantic description information of ith seen fault. The attributes
of  seen  and  unseen  faults  are  the  same.  Attribute  values  can  come
from sensors’ measurements or  artificial  definition based on experi-
ence  and  are  marked  as  one  if  an  exception  occurs  or  zero  if  not.
Attributes  can  be  semantically  described,  and  semantic  description
information  and  can  be  obtained  even  if  there  are  zero  sam-
ples for unseen faults.

There is a lack of studies on ZSL/GZSL in the field of fault diag-
nosis, and most of them are concentrated in the field of rolling bear-
ing fault  diagnosis  [4]–[8] and a few of them are for  industrial  pro-
cess [9] and [10]. Feng and Zhao [2] first introduced ZSL into indus-
trial  process  fault  diagnosis.  Our  previous  work  transformed  GZSL
into ZSL and supervised learning through a domain discriminator [9].
However,  our  previous  implementation  of  GZSL  contains  many
learning  steps  and  is  too  complex  to  implement.  In  addition,  the
existing  ZSL  and  GZSL  have  the  problem  of  the  semantic  bias
because the artificial definition of semantic description information is
too subjective, which can reduce the classification accuracy.

To  this  end,  a  simple  end-to-end  framework  to  GZSL  for  fault
diagnosis  of  industrial  processes  is  proposed.  In  this  framework,
GZSL can be realized only with a binary classification algorithm. To
solve  the  semantic  bias  problem  that  the  artificial  definition  of
semantic description information subjectivity is  too strong. This let-
ter  also  develops  an  approach  to  correct  the  semantic  description
information  of  seen  faults  by  predicting  the  error  rate  of  attributes.
Experiments  on  Tennessee-Eastman  process  show  the  effectiveness
of the proposed method.

Proposed framework:
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GZSL problem formulation: In this letter, the training set of GZSL
is  denoted  by  ,  where

 represents the D-dimensional features;  represents the
semantic  description  information  of  seen  faults;  is
the label set of the seen fault;  is the number of seen faults.
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The  label  set  of  unseen  faults  is  represented  by ,
where  is the number of unseen faults. The whole set of seen and
unseen faults can be expressed as , where . The
aim of GZSL is to learn a model that can classify the online samples
from both seen and unseen faults.
Domain discriminator: Although supervised learning and zero-shot
learning can deal with seen and unseen faults,  respectively, we can-
not know in advance whether there are seen or unseen faults during
online monitoring. If a domain discriminator can be designed to real-
ize the identification of seen and unseen fault samples before classifi-
cation,  GZSL  can  be  realized.  However,  it  is  difficult  to  train  an
effective domain discriminator because no unseen fault  samples can
be used for model training. In this letter, the domain discrimination is
achieved  by  judging  whether  the  predicted  attribute  vector  of  the
online  sample  belongs  to  the  semantic  description  information  of
seen fault. If the output attribute vector belongs to one of the seman-
tic  description  information  of  seen  faults,  it  is  considered  that  the
sample belongs to seen faults; otherwise, it belongs to unseen faults.
The diagram of GZSL implementation based on domain discrimina-
tion is shown in Fig. 2.
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Semantic  correction: Binary  semantic  description  information  is
used  as  auxiliary  information,  and  the  marking  of  its  attributes  is
often  affected  by  the  subjectivity  of  the  marker,  which  is  called
semantic bias.

To solve the semantic bias problem, a method was proposed to cor-
rect  the  semantic  description  information  of  the  seen  faults  by  pre-
dicting  the  error  rate  of  attributes,  so  as  to  reduce  the  influence  of
human subjectivity on the results and improve the classification accu-
racy of the model.
E = [ei j]m×r

ei, j
ei, j > λ vi, j

 is  the  attribute  prediction  rate  matrix  obtained  from
the trained model with the input of the seen fault data that participat-
ing  in  the  model  training.  represents  the  prediction  error  rate  of
the jth attribute of the ith seen fault. If , the value of  will
be modified according to (1)
 

v̂s
i, j = vs

i, j ⊕ I(ei, j > λ) (1)

I(·) ⊕
V̂s

where  represents  the  characteristic  function,  represents  the
exclusive  OR; λ is  the  threshold  for  correcting  attributes.  is  the
modified semantic description matrix of seen fault.
End-to-end framework overview:

1) Prepare j binary classifiers according to the number of attributes
in the semantic description information (if an attribute is all 0 or all
1, delete the attribute directly).

2)  In  the  training  stage, j binary  classifiers  are  trained  with  seen
fault  samples and their corresponding semantic description informa-
tion, and the label of each binary classifier is an attribute value in the
corresponding semantic description information of the samples.

3) Input the training samples into the trained j binary classifiers to
obtain the attribute vector output by each sample. If the binary classi-
fiers  output  continuous  values,  discretize  the  output  results  (if  the
value is greater than 0.5, it becomes 1; otherwise, it becomes 0).

ei, j4) Calculate the error rate for each attribute of each fault . Cor-
rect the attributes of the seen fault according to (1).

V̂s

5) Train the above j binary classifiers again with the new semantic
description  (if an attribute is all 0 or all 1 after correction, delete
the attribute directly).

6) In the test stage, the predicted attribute vector of online samples
are provided by those j binary classifiers trained in Step 5.

7) If the predicted attribute vector (discretized if the output is con-
tinuous value)  is  the same as one of  the semantic description of  the
seen  fault,  the  nearest  neighbor  search  is  carried  out  between  the
original  vector  output  of  the  binary  classifier  and  the  semantic
description of the seen fault; otherwise, the nearest neighbor search is
carried out between the original vector output of the binary classifier
and the semantic description of the unseen fault.

Main results: The end-to-end (e2e) GZSL framework proposed in
this  letter  uses  Naive  Bayes  (NB),  linear  support  vector  machine
(LSVM),  RandomForest  (RF),  Adaboost  (Ada),  Gradient  Boosted
Decision Trees (GBDT),  and fully connected Neural  Network (NN)
to conduct the experiments on Tennessee-Eastman process [11]. The
fault  semantic  description  information  and  the  division  of
seen/unseen faults are the same as [2]. The proposed method is veri-
fied in groups A, B, C, D and E respectively according to the five dif-
ferent division of seen/unseen faults.

As Au
A

H = 2× (As ×Au)/(As +Au)

 and  are the average classification accuracy of the seen fault
and unseen fault, respectively.  represents the overall classification
accuracy. The harmonic mean .
Impact of semantic correction on results: Fig. 3 shows the matrix

of attribute prediction error rate on group A by using the NN classi-
fier.  The  semantic  description  information  of  the  seen  fault  can  be
corrected by (1).
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Fig. 3. Attribute prediction error rate.
 

Table 1 shows  the  overall  attribute  prediction  error  rate  when  the
attribute  classifier  is  NN,  where λ is  0.6,  0.7,  0.8,  0.9,  and  1.0,
respectively. When λ is 1.0, the attribute will not be corrected. If λ is
less than 0.5 for attribute correction, its attribute prediction error rate
will increase.
 

Table 1.  Effects of Different Correction Thresholds on Attribute Error Rate
λ A B C D E

0.6 3.00 2.41 2.11 1.31 1.75
0.7 3.26 3.29 2.11 2.57 2.49
0.8 3.26 3.71 2.11 2.86 3.14
0.9 4.02 4.23 3.43 3.29 3.48
1.0 7.31 7.26 5.88 6.78 5.30

 
 

It can be seen from Table 1 that attribute correction can effectively
reduce the  error  rate  of  attribute  prediction.  The attribute  prediction
error rate gradually increases with the increase of λ.

λ = 0.9

Final  classification  results: This  section  shows  the  performance  of
the  proposed  framework  over  a  variety  of  binary  algorithms  and

.  The  effect  of  different λ values  on  the  results  is  discussed
below. Tables 2 and 3 show the results of 5 groups.

In Table 4 shows the average of the final results of 5 groups, all the
other  methods  except  e2e-NB  and  e2e-LSVM  can  achieve  good
accuracy,  but  the  harmonic  mean  of  e2e-NN  is  much  higher  than
other  methods  which  is  due  to  the  multi-nearest  neighbor  problem,
 

Table 2.  Classification Results

Methods
A B C D E

As Au As Au As Au As Au As Au

e2e-NB 22.53 34.51 31.32 5.35 39.93 14.37 21.20 11.32 32.17 5.62

e2e-LSVM 38.32 8.96 33.26 0 42.95 8.89 30.99 2.57 39.76 20.28

e2e-RF 48.45 8.47 52.73 19.44 60.05 21.60 57.20 51.53 73.40 25.56

e2e-Ada 43.72 20.07 49.38 22.99 63.25 25.83 51.84 31.32 66.06 29.10

e2e-GBDT 47.22 17.92 57.10 27.22 63.21 19.24 56.96 27.71 72.86 19.79

e2e-NN 49.22 74.72 51.55 34.86 61.93 35.62 49.97 56.18 58.39 36.94
 

 

Table 3.  Results of A and H

Methods
A B C D E

A H A H A H A H A H

e2e-NB 24.93 27.26 26.13 9.14 34.82 21.13 19.22 14.76 26.86 9.57

e2e-LSVM 32.45 14.52 26.61 0 36.14 14.73 26.31 4.75 35.86 26.86

e2e-RF 40.45 14.42 46.07 28.41 52.36 31.77 56.07 54.22 63.83 37.92

e2e-Ada 38.99 27.51 44.10 31.37 55.77 36.68 47.74 39.05 58.67 40.40

e2e-GBDT 41.36 25.98 51.12 36.87 54.42 29.50 51.11 37.28 62.25 31.13

e2e-NN 54.32 59.35 48.21 41.59 56.67 45.23 51.21 52.89 54.10 45.25
 

 

Data GZSL

Classifier 1x v1
−

v = (v1, v2, …, vM)− − − −

v2
−

vM
−

x

x

Classifier 2

Classifier M

…

v ∈ Vs
− −v = arg min ||v − vs

i||2^

v ∉ Vs
−

vs
i

−v = arg min ||v − vu
k||2^

vu
k

 
Fig. 2. The realization of GZSL based on domain discriminator.
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and we will be analyzed in the next section.
Multi-nearest neighbor problem: It  can be seen from the previous
section  that  the  harmonic  mean  of  NN  is  much  higher  than  other
methods.  Due  with  the  NN  output  continuous  values,  it  is  almost
impossible to have multiple nearest neighbors that we can see result
in Table 5.
 

Table 5.  The Proportion of Multi-Nearest Neighbors
A B C D E

e2e-NB 22.49 20.62 34.22 29.67 19.46
e2e-LSVM 13.56 10.71 40.62 8.00 10.67

e2e-RF 17.21 13.21 24.62 12.56 8.49
e2e-Ada 13.33 5.88 14.85 7.08 13.60

e2e-GBDT 7.10 3.32 18.19 7.04 8.75
e2e-NN 0.00 0.00 0.00 0.00 0.00

 
 

As Au

As

The  influence  of  different  thresholds  on  the  results: In Table 6,
when the binary classifier is NN. As λ gradually increases, for most
groups  gradually  decreases,  and  gradually  increases.  After
attribute  correction,  the  lower  the  attribute  prediction  error  rate,  the
higher  the .  Therefore,  the  intermediate  value  of  0.7  or  0.8  for λ
should be selected.
 

Table 6.  The Influence of Different Thresholds on the Final Results

As
A B C D E

As Au As Au As Au As Au As Au

0.6 51.37 76.25 56.18 23.06 65.09 32.15 56.18 36.60 67.45 11.46

0.7 50.47 74.86 53.85 39.03 65.09 32.15 54.64 47.15 61.68 24.79

0.8 50.47 74.86 53.49 34.58 65.09 32.15 50.35 52.22 59.22 35.90

0.9 49.22 74.72 51.55 34.86 61.93 35.62 49.97 56.18 58.39 36.94
 
 

Shortcomings  of  the  end-to-end  GZSL  framework: The  confu-
sion matrix of the final classification results for group A of the e2e-
NN method is  shown in Fig. 4,  which is  the best  result  of  all  meth-
ods. Since no samples of unseen fault for model training and the con-
ditions  for  identifying  online  samples  as  seen  faults  are  very  strict,
the domain discriminator  of  the proposed method has a  high proba-
bility of identifying the seen faults as unseen faults.

Conclusion: In this letter, a simple end-to-end framework to GZSL
for  fault  diagnosis  of  industrial  processes  is  proposed,  which  only
needs  a  binary  classification  algorithm  to  achieve  GZSL.  It  can  be
found that this framework performs well with most binary classifica-
tion  algorithms.  Aiming  at  the  problem  that  artificially  defined
semantic  description  information  is  too  subjective,  the  proposed
method  can  realize  the  correction  of  the  semantic  description  infor-
mation of seen faults. Finally, the multi-nearest neighbor problem is
found,  and  experiments  show that  the  neural  network  with  continu-
ous output value does not have the multi-nearest neighbor problem in
the final fault classification, which makes the final performance bet-
ter than other binary classification algorithms.

The  quality  of  the  samples  generated  by  the  variational  autoen-
coder  has  a  significant  impact  on  the  performance  of  the  previous
proposed method [9], and its training is not easy. Hence, designing a
model  that  is  easier  to  train  and  has  better  quality  of  the  generated
samples  is  expected  to  further  improve  the  performance  of  the  pro-
posed method.
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Fig. 4. The  confusion  matrix  of  the  final  classification  result  of  the  e2e-NN
method on group A.
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