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Abstract—Achieving robust 3D object detection by fusing 

images and point clouds remains challenging. In this paper, 

we propose a novel 3D object detector (SimpleFusion) that 

enables simple and efficient multi-sensor fusion. Our main 

motivation is to boost feature extraction from a single 

modality and fuse them into a unified space. Specifically, we 

build a new visual 3D object detector in the camera stream 

that leverages point cloud supervision for more accurate 

depth prediction; in the lidar stream, we introduce a robust 

3D object detector that utilizes multi-view and multi-scale 

features to overcome the sparsity of point clouds. Finally, we 

propose a dynamic fusion module to focus on more confident 

features and achieve accurate 3D object detection based on 

dynamic weights. Our method has been evaluated on the 

nuScenes dataset, and the experimental results indicate that 

it outperforms other state-of-the-art methods by a significant 

margin. 

Keywords-3D object detection; multi-sensor fusion; BEV 

detetion; multi-scale fusion 

I. INTRODUCTION 

With the application of deep learning technology in 
computer vision and robotics, object detection methods 
based on image and point cloud have been developed 
rapidly. In recent years, 3D point clouds acquisition 
equipment represented by depth cameras and lidar has 
become increasingly low cost, making the focus of visual 
object detection tasks gradually shift from 2D to 3D. The 
aim of 3D object detection is to detect objects in 3D space. 
Relying on point cloud data with 3D spatial information, 
3D object detection has extra depth information and 

focuses on identifying and positioning targets in the real 
world. At the same time, the development of hardware 
technology has also enabled more applications of 3D object 

 

Figure 1.  Existing data fusion methods on 3D object detection mainly 
consist of two branches. (a) point-level fusion: they fuse both features of 

images and point clouds at the early stage. (b) object-level fusion: they 

independently handle the detection results of images and point clouds. 

detection on scenarios such as autonomous driving and 
industrial robot. 

Among all the sensors in a perception system, lidars 
and cameras remain the two most critical sensors, precisely 
capturing point clouds and images about the world. Point 
cloud data, obtained from lidars, has rich spatial 
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information and can provide detailed surface structure 
information in the real world. But its sparsity and lack of 
rich texture information in RGB images make small object 
detection difficult. Among them, the point cloud data 
about 3D objects cannot meet the needs of 

 

Figure 2.  The main architecture of SimpleFusion. SimpleFusion 

contains three parts: camera stream, lidar stream, and dynamic fusion 
module. The camera stream predicts the depth probability distribution at 

the pixel level and converts the image feature space to the BEV space 

based on camera parameters and depth. The lidar stream uses the 
features in both perspective view and BEV to overcome the sparsity of 

point clouds and use deformable convolution to obtain object-level 

features for multi-scale and multi-view fusion. The multi-sensor fusion 

uses a simple fusion module to focus on more confident features based 

on dynamic weights. 

industrial applications well, and 2D RGB image data lacks 
spatial depth information, resulting in the inability to 
locate objects accurately in 3D space. Therefore, how to 
better use the rich texture information in the visual image 
and the spatial position information in the point cloud data 
has become the key to improving the 3D object detection 
algorithms. 

Existing data fusion methods on 3D object detection 
mainly consist of two branches. On the one hand, they fuse 
both features of images and point clouds at the early stage. 
For example, given an input image, a depth estimation 
network outputs the depths of objects. And a pseudo point 
cloud is generated by combining the RGB image and 
converting it into a 3D space. Next, such a pseudo point 
cloud and the point cloud data collected by the radar are 
fused. On the other hand, post-fusion methods separately 
handle the detection results of images and point clouds. 
And the final object detection results are filtered according 
to their confidence. One of the biggest challenges in both 
branches is to find a unified representation between the 
lidar and the camera suitable for multi-modal fusion. 

To solve the above problem, we introduce a novel 
multimodal data fusion framework named SimpleFusion 
that achieves robust and efficient 3D object detection in a 
shared bird’s-eye view (BEV). Specifically, Our 
framework comprises of two separate streams, each of 
which encodes the raw images and point clouds into 
features, all within the same Bird's Eye View (BEV) space. 
Within the image stream, the depth estimation network is 
supervised by the point cloud and facilitates the conversion 
of 2D image features into BEV features. Meanwhile, in the 
lidar stream, we utilize multi-view and multi-scale features 
to generate more densely packed BEV features. Then we 
design a simple module that dynamically fuses these BEV-
level features that achieve better performances. 
Experiments conducted on the nuScenes dataset [1] 
demonstrate that our proposed method, SimpleFusion, 
outperforms other state-of-the-art approaches significantly. 

The main contributions of our work are as follows: 

• We introduce a novel multi-modal data fusion 
framework, named Simple Fusion, which enables 
efficient and reliable 3D object detection.  

• We build a new visual 3D object detector that 
leverages point cloud supervision for more 
accurate depth predictions.  

• We present a robust 3D object detector on point 
clouds, which utilizes multi-scale and multi-view 
features to solve the problem of point cloud 
feature sparsity.  

• We design a simple adaptive-weight fusion 
module that makes our framework achieve state-
of-the-art performances. 

II. RELATED WORK 

Our work takes insights from 3D object detection 
methods based on camera-only, lidar-only, and camera-
lidar fusion. 

3D object detection on images. In the autonomous 
driving field, researchers have paid many attentions on 
camera-only 3D object detection. DOP [2], 3DOP-Stereo 
[3], and Mono3D [4] are pioneer works, which mainly 
obtain 2D object detection results and use specific area 
prior information such as shape, height, and position 
distribution to generate final 3D object boxes. DETR3D [5] 
and PETR [6] use learnable object queries in the 3D space 
to detect the 3D objects. Instead of detecting objects in the 
perspective view, BEVDet [7] and M2BEV [8] are 
extensions of the Lift-Splat-Shoot (LSS) [9] technique that 
utilize multi-perspective images to extract implicit depth 
information, and subsequently transform the camera 
feature maps into Bird's Eye View (BEV) space to perform 
3D object detection within the BEV feature space. In our 
camera stream, we build a new visual 3D object detector 
that leverages point cloud supervision for depth map 
prediction, so we obtain more accurate depth maps and 
generate stable and reliable BEV features. 

3D object detection on point clouds. Current 3D 
object detection methods that are based on point clouds 
can be broadly categorized into two groups based on their 
feature modality: voxels and points. Voxel-based methods 
[10]mainly divide the point clouds into a regular grid and 
use dense convolution for voxel feature extraction. To 
increase the efficiency of feature extraction, SECOND 
adopts sparse convolution to output features from non-
empty grids. Point-based detectors are born to be fully 
sparse. To address the disorder, sparsity, and rotation 
variance in point clouds, PointNet and PointNet+ utilize 
max pooling operations to obtain the most critical feature 
vector from the point clouds. VoteNet [10] groups point 
sets into voxels, and it uses a 3D CNN that learns voxel 
features to generate 3D boxes. CenterPoint uses the 
geometric center point to regress the parameters of the 
target box. Our lidar-only detector utilizes multi-scale and 
multi-view features to solve the problem of feature sparsity 
of point clouds.  

Lidar-camera fusion. Current multi-sensor fusion 
arouses increasing interest in 3D object detection. And we 
classify existing works into point-level, feature-level, and 
proposal-level approaches. Point-level fusion methods, 
including PointPainting, PointAugmenting, MVP, 
FusionPainting, AutoAlign, and FocalSparseCNN, usually 
add image features onto raw point clouds and perform 
lidar-based object detection. Featurelevel methods fuse the 
multi-sensor features and output more dominant features. 
DeepFusion is a method that projects point cloud features 



onto images and subsequently employs cross-attention 
modules to effectively fuse the features from both 
modalities. BevFusion utilizes separate detection branches 
for cameras and radars to enhance detection stability. 
Unlike proposal-level fusion methods, BevFusion does not 
require the fetching of proposals in advance, as it is object-
centric. FPointNet, F-ConvNet, and CenterFusionneed 
image proposals as priors. FUTR3D and 
TransFusiondefine object queries in 3D space and use 
crosstransform to fuse image features onto these proposals.  

III. METHOD 

In Figure 2, we introduce an overview of our 
framework, SimpleFusion, for 3D object detection. Given 
different in put data from sensors, modality-specific 
encoders extract features independently. Then these 
features are transformed into a unified BEV space that 
keeps geometric and semantic information. Finally, a 
dynamic feature fusion module incorporates the above 
representations, and a detection head outputs the results. 

A. Camera Stream 

In the camera stream, we design a new image encoder 
that can extract the multiple image features and convert  

 

Figure 3.  The main structure of the camera stream: we predict the depth 

probability distribution at the pixel level and convert the image feature 

space to the BEV space based on camera parameters and depth. Note 

that our depth labels come from point cloud data. 

them to the BEV representation, as shown in Figure 3. 
Specifically, the camera stream includes two parts: an 
image view encoder and a view projector module. An 
image view encoder aims to extract rich semantic features 
from input images. It is composed of two main 
components: a backbone for fundamental 2D image feature 
encoding, and a neck module for multi-scale feature 
representation. In line with LSS [9], our approach employs 
a ResNet as the backbone network and incorporates a 
Feature Pyramid Network (FPN) to utilize features at 
multiple scales. Additionally, we employ a view projector 
module to map 2D features into the 3D ego-car space. This 
view projector module is similar to that of BevDet [7], and 
utilizes the lift-splat technique [9] to project 2D features 
onto the BEV space.  Besides, we use a depth prediction 
network supervised by point clouds to obtain more 
accurate depth values.  

B. Lidar Stream 

In the lidar stream, we present a robust 3D point cloud 
object detector that utilizes multi-scale and multi-view 
features to solve feature sparsity of point clouds, as 
illustrated in Figure 4. Similar to H2-3D, we extract 
perspective-view features based on polar coordinates and 

paint these features to raw point clouds. After that, our 
detector voxelizes the painted point clouds to reduce the Z 
dimension and use networks to efficiently output features 
in the BEV space. In practice, we utilize PointPillar as our 
point cloud encoder. We adopt the deformable 
convolutionto generate object-level features. Then we 
concatenate them with the BEV feature to obtain the multi-
scale features. 

 

Figure 4.  The main structure of our lidar stream: we use the 
perspectiveview and the BEV features to overcome the sparsity of point 

clouds and use deformable convolution to obtain object-level features for 

multi-scale and multi-view fusion. 

C. Dynamic Fusion Module 

The camera and lidar streams respectively provide the 

image feature ( )imgX Y C

imgF R
 

  and point cloud feature 

( )ptsX Y C

ptsF R
 

  in BEV space. To efficiently integrate 

features from multiple sensors, we introduce a dynamic 
fusion module. As depicted in Figure 5, when given two 
feature maps of the same dimensions, the conventional 
approach would be to concatenate the features. However, 
our proposed fusion method employs a straightforward 
channel attention module to emphasize critical features. 
This process can be mathematically expressed as follows:  

( )( ),fusion img img pts pts
i i i i iF MLP CAT w F w F=          (1) 

Adaptive weights ( ),img pts
i iw w  are generated according to 

the respective input features: 

( ) ( )( ), ,img pts img pts
i i i iw w MLP F F=                (2) 

where MLP is a multi-layer perception, CAT means the 
concatenation operation, and σ denotes the Sigmoid 
function. In practice, we process all pairs of grid features 
in a batch in parallel, using 1 × 1 convolution instead of 
MLP. 

D. Detection Head 

Our framework outputs fused features in BEV space, 
and we can use the common 3D detection heads from 
previous works. At the same time, this also demonstrates 
the generalization ability of SimpleFusion. To reduce the 
time consumption of our model, we adopt CenterHead as 
our final detection head. 

IV. EXPERIMENTS 

In this section, we describe our experimental setup and 
evaluate the performance of our detector against other 
state-of-the-art methods using the nuScenes dataset [1]. 



The comparison results demonstrate the effectiveness and 
robustness of our proposed method. 

A. Experimental Settings 

Dataset. The nuScenes dataset comprises 1000 scenes, 
each of which is captured by a 32-beam lidar that 

generates point clouds. Additionally, there are six cameras 
with surrounding views that capture images of the scenes. 
The dataset is divided into three subsets: 700 scenes for 
training, 150 scenes for validation, and 150 scenes for 
testing. 

 

TABLE I.  EXTENSIVE COMPARISONS ON NUSCENES DATASET WITH PILLAR SIZE (0.2, 0.2). NOTE THAT C DENOTES CAMERA-BASED METHODS. 

Method Modality mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑ 

MonoDIS  C 30.4% 73.8% 26.3% 54.6% 155.3% 13.4% 38.4% 

CenterNet  C 30.6% 71.6% 26.4% 60.9% 142.6% 65.8% 32.8% 

FCOS3D  C 29.5% 80.6% 26.8% 51.1% 131.5% 17.0% 37.2% 

DETR3D  C 30.3% 86.0% 27.8% 43.7% 96.7% 23.5% 37.4% 

BevDet-R50  C 28.6% 72.4% 27.8% 59.0% 87.3% 24.7% 37.2% 

BevDet-Tiny  C 31.2% 69.1% 27.2% 52.3% 90.9% 24.7% 39.2% 

PETR-R50  C 31.3% 76.8% 27.8% 56.4% 92.3% 22.5% 38.1% 

Ours C (0.2, 0.2) 32.7% 65.6% 27.3% 59.2% 75.0% 27.0% 38.7% 
 

 

Figure 5.  The dynamic fusion module. We design a simple fusion 

module to to focus on more confident features based on dynamic weights. 

Implementation details. To fairly compare different 
methods, we define the detection region within 51.2 meters 
on the ground plane and select AdamW as the optimizer, 
where the learning rate is 2e-4. Our network runs on the 
open-source MMDetection3D. The chosen pillar size is 
(0.2, 0.2, 10), and our training contains two steps. 

We first train the lidar stream and camera stream 
respectively. Then we train SimpleFusion in both streams 
for another five epochs, in which we freeze parameters in 
backbones from the two trained streams. As for testing, we 
follow settings of the lidar-only detector. 

Evaluation metrics. The nuScenes dataset provides 
official predefined evaluation metrics, including mean 
Average Precision (mAP), Average Translation Error 
(ATE), Average Scale Error (ASE), Average Orientation 
Error (AOE), Average Velocity (AVE), Average Attribute 
Error (AAE), and NuScenes Detection Score (NDS). We 
employ these metrics to evaluate the performance of our 
detector across ten detection classes. mAP measures 
precision and recall, while NDS is a composite metric that 
evaluates the detection capacity comprehensively by 
incorporating other indicators. Other metrics such as scale, 
orientation, translation, velocity, and attribute evaluate the 
accuracy of positive results. 

TABLE II.  EXTENSIVE COMPARISONS ON NUSCENES DATASET 

WITH PILLAR SIZE (0.2, 0.2). NOTE THAT L MEANS LIDAR-BASED 

METHODS. 

Method Modality mAP↑ NDS↑ 

WYSIWYG  L 0.350 0.419 

PointPillar  L 0.401 0.550 

PMPNet  L 0.454 0.531 

SSN  L 0.467 0.582 

CenterPoint L 0.491 0.597 

Ours L (0.2, 0.2) 0.513 0.613 

PointPainting C + L 0.464 0.581 

3D-CVF C + L 0.527 0.623 

SimpleFusion C + L (0.2, 0.2) 0.537 0.653 

B. Comprehensive Comparisons 

Comparisons with camera-based methods. We 
compare our camera stream with existing visual 3D object 
detection approaches. For fair comparisons, we use the 
detection head of our camera stream from BevDet with the 
same settings and compare on validation dataset in 
nuScenes. As shown in Table I, the detector using our 
camera stream outperforms state-of-the-art methods on 
nearly all the evaluation metrics (above 1.14% increase on 
mAP). Our detector utilizes point clouds to supervise depth 
prediction during training and only input images for testing. 
Existing visual 3D object detectors mainly rely on the final 
loss to train the depth prediction, which is prone to more 
errors. Experimental results show the superiority of our 
method. 

Comparisons with lidar-based methods. We 
compare our SimpleFusion with existing 3D object 
detectors based on multi-sensor fusion. As shown in Table 
II, SimpleFusion has a better performance compared to 
popular fusion methods( above 1% increase on mAP and 
NDS). At the same time, it has a significantly 
improvement compared to the singlesensor methods. 
Specifically, we adopt an adaptive fusion module, which 
can dynamically fuse the features of multiple sensors to 
obtain a better performance. Experimental results 
demonstrate the superiority of our method.  

C. Ablation Study 

Effectiveness of our fusion method. To verify the 
effectiveness of our fusion method, we conduct 
experiments with a single sensor, including camera-only, 
lidar-only, and multisensor fusion. As listed in Table III, 
our fusion method achieves better performances than those 
using single sensors. Experimental results prove the 
superiority of our dynamic fusion: the lidar stream plays a 
more crucial role than the camera stream in 3D object 
detection, but the added visual features can further 
improve the effect of 3D object detection. 



Effectiveness of adaptive fusion module.  To evaluate 
the effectiveness of the adaptive fusion module, we 
experimented with several fusion methods, including direct 
addition, maximum, concatenation, and dynamic 
weighting, in our SimpleFusion framework. As shown in 
Table. IV, the results show the effectiveness of our 
dynamic weight fusion. General fusion methods such as 
addition and maximum cannot obtain effective information 
in fusion, but dynamic fusion can effectively obtain key 
parts of features in the fusion process and give it a larger 
weight to achieve more robust 3D object detection. 

 
 

TABLE III.  EFFECTIVENESS OF OUR FUSION METHOD. 

Method Modality mAP↑ NDS↑ 

Camera-Only C 0.327 0.387 

Lidar-Only L 0.513 0.613 

SimpleFusion C + L 0.537 0.653 

TABLE IV.  EFFECTIVENESS OF ADAPTIVE FUSION MODULE. 

Fusion Method Modality mAP↑ NDS↑ 

Addition C + L 0.509 0.613 

MaxPooling C + L 0.513 0.607 

Concatnation C + L 0.521 0.638 
Our Default Setting C + L 0.537 0.653 

V. CONCLUSION 

This paper proposes a novel 3D object detector to 
dynamically fuse multi-sensor features. In the camera 
stream, we predict the depth probability distribution at the 
pixel level and convert the image feature space to the BEV 
space based on camera parameters and depth map. In the 
lidar stream, we use the perspective view and the BEV 
features to overcome the sparsity of point clouds and use 
deformable convolution to obtain object-level features for 
multi-scale and multi-view fusion. For multi-sensor fusion, 
we integrate a simple fusion module to focus on more 
confident features based on dynamic weights. Experiments 
on nuScenes dataset show that our method outperforms 
other state-of-the-art models by a large margin.  
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