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Abstract—Due to exhaustive proposal generations, conven-
tional 3D object tracking methods based on template matching
are time-consuming. Some recent works that leverage template
clues to directly obtain 3D boxes are more efficient, but they
don’t take full advantage of the template context. In this work, we
propose a novel Multi-Level Context Fusion Network (MLCFNet)
to track objects robustly. Our main idea is to fuse template
context in multiple levels (point, local, and global features) into
the search area and utilize the joint information to predict the
final box. Specifically, a 3D Siamese Network firstly extracts
multi-level features in the search area and template. Then, to
promote the guidance of the template, a Context Fusion Network
fuses these features into the search area and generates guided
points. Finally, these points are used to regress potential object
centers and cluster 3D object proposals. Experiments on KITTI
and nuScenes tracking datasets demonstrate that MLCFNet
outperforms other state-of-the-art methods by a large margin.

I. INTRODUCTION

Object tracking, a key field in robotics and computer vision,
involves many applications, such as self-driving cars and
mobile robotics. Normally, the tracking process is that once
an object is initially detected, the robot tracks the one for a
while. The robot determines its tracking policy by sensing its
surroundings. Modules for object detection [1], [2] and path
recognition [3]–[6] instruct the robot where and how to run.

Traditionally, 2D RGB cameras, with the advantages of
extracting rich illumination information, are widely equipped
in existing tracking systems. But visual tracking methods
may fail when 2D RGB visual information is degraded with
illumination change. In addition, 2D images lack the accurate
space information which is essential for object following and
obstacle avoidance in practice.

Nowadays, 3D LIDAR systems are widely used in au-
tonomous vehicles and intelligent robots. Compared to 2D
RGB cameras, LIDAR sensors directly sense geometric struc-
tures and generate point clouds more accurately. Furthermore,
3D LIDAR sensors are insensitive to illuminations, so they
provide reliable point clouds in a larger range of the real-world
scene.

Towards the 3D object tracking, we focus on using point
clouds only and propose a end-to-end 3D object tracking
framework, Multi-Level Context Fusion Network, to improve
the performance of the state-of-the-art Point-to-Box Network
(P2B) [7]. Different from P2B, our work fuses multi-level

template search area

search areatemplate

point feature

local feature

global feature

local feature

b: Our approach (MLCFNet)

a: Point-to-Box Network (P2B)

Success:     
Presicion:  

56.2
72.8  

Success:     
Presicion:  

58.1
74.4

Fig. 1. Comparison between the state-of-the-art method [7] and ours.

context (point, local, and global features) from the template
into the search area to guide 3D object tracking. As shown
in Fig. 2, we firstly feed the template and the search area
into the shared backbone to obtain points and local features
of key points, respectively. Then, we use Context Fusion
Network to fuse multi-level features into the search area
and generate guided points. The multi-level context from the
template mainly contain four components: 1) point features:
3D coordinates to retain spatial geometric information; 2) local
features: point-wise features from the backbone to obtain the
local contexts; 3) similarity: the cosine distance between the
template and the search area to mine resembling patterns and
reveal the local tracking clue; 4) global features: global fea-
tures by max-pooling to obtain the global tracking guidance.
Finally, we send these guided points to the Vote-Proposal Net
to predict the final 3D box.

Experiments on KITTI [8] and nuScenes [9] tracking dataset
demonstrate that our method significantly outperforms other
state-of-the-art methods and has better performance under the
same experimental conditions.

The contributions of this paper can be summarized as
follows:

1) We propose a novel network that utilizes the multi-level
template context (point, local, and global features) to
achieve 3D object tracking.

2) Compared with expensive search and rough template
matching, we directly obtain the final box by point-wise
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Fig. 2. The main structure of MLCFNet. MLCFNet has three parts: a) 3D Siamese Network, b) Context Fusion Network and c) Vote-Proposal Net. The
backbone applies modified PointNet++ to extract the local features in template and search area. With the multi-level context fusion, Context Fusion Network
utilizes the point, local and global features from template and similarity to instruct the search area to generate guided features and points. Then the Vote-
Proposal Net regresses potential object centers and clusters 3D object proposals.

voting in guided search areas.
3) Extensive experiments demonstrate MLCFNet outper-

forms other state-of-the-art methods by a large margin.

II. RELATED WORK

A. 2D Object Tracking in Images

Object tracking focuses on visual objects across consecutive
frames such as people [10], vehicles [11], and visual attributes
[12]. Early works relied on correlation filtering [13]–[15],
which utilized the correlation between the template and the
search area to precisely localize the object. Many feature
extraction methods such as Histogram of Oriented Gradient
(HOG) [16] and Scale-Invariant Feature Transform (SIFT)
[17] were applied to improve the performance of the tracking.
However, such manual features are sensitive to illumination
changes, occlusions, and complex backgrounds, and current
methods based on deep CNN and Siamese Network [18]–
[20] alleviate this problem. Generally, Siamese Network has
two branches for the template and the search area with
shared weights to measure their similarity in an implicitly
embedding space. Afterward, [21] unites the region proposal
network and Siamese Network to improve both speed and
accuracy. However, the above methods driven by 2D CNN
are inapplicable to point clouds. Therefore, MLCFNet extends
the siamese object tracking paradigm to the 3D field using an
effective 3D object proposal.

B. 3D Object Detection in Point Clouds

Compared to 2D visual tracking, 3D object detection pro-
vides plenty of ideas to promote the development of 3D
objecting tracking. Various methods, especially PointNet [22],
PointNet++ [23], and VoxelNet [24] were proposed to gain
discriminative features from sparse 3D point clouds. To ad-
dress disorder, sparsity, and rotation variance in point clouds,

[22] and [23] utilized Max-Pooling to obtain the most critical
feature vector in all the point clouds. [24] grouped points into
voxels and used 3D CNN that learned features of voxels to
generate 3D boxes. Afterward, PointRCNN [25] extended 2D
RCNN [26] to 3D point clouds and built 3D RPN to localize
3D bounding boxes, and it frequently appears in 3D object
detection and tracking. Then Qi et al. got inspiration from
Hough Voting [27] and proposed VoteNet [28], which utilized
key seeds to acquire the center of proposals and predict the size
of the 3D bounding box. All these methods effectively promote
the developments of 3D object detection and provide new
ideas for 3D object tracking. In this paper, MLCFNet makes
use of PointNet++ [23] as the siamese tracking paradigm and
obtains object proposals with VoteNet [28], which simplifies
our method and improve the tracking efficiency.

C. 3D Object Tracking in Point Clouds

Different from 2D bounding boxes in images, the 3D object
tracking methods localize objects in the 3D world using
the geometry contained in 3D bounding boxes. Some early
works tackled the 3D tracking problem using the projection
of LIDAR point clouds, such as the bird’s-eye views [29],or
foreground images [30], which input multiple images to the
state-of-the-art 2D object tracking networks to generate object
proposals. However, the above tracking methods lost fine-
grained shape information by projecting point clouds in bird’s-
eye view or failed if visual features degraded. Since the above
issue limited some real-world applications, SC3D [31] and
P2B [7] addresses the above concerns from a pure geometric
perspective. SC3D is the first work that applies the 3D Siamese
tracker to point clouds rather than images, and P2B is a novel
point-to-box network for 3D object tracking, which can be
end-to-end trained. Both achieved state-of-the-art results on
3D object tracking with only point clouds. However, they are
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Fig. 3. Feature Fusion Module. Key points from the search area, point features, local features and the similarities are fused to obtain the output features. The
global features are concatenated with the output features by the extension operation to generate guided points.

not taking full advantage of multi-level features extracted from
Feature Extraction Network. In this paper, we propose a new
strategy of using the multi-level context of the template to
guide 3D object tracking in search areas, which demonstrates
the advantages in the field of 3D object tracking.

III. METHODOLOGY

In 3D object tracking, MLCFNet tracks the object (defined
by a template) in the search area frame by frame. In particular,
to localize the potential object, multi-level context (point
features, local features, and global features) of the template
are fused into the search area to instruct the network.

A. Overview

As shown in Fig. 2, MLCFNet contains three main parts: 3D
Siamese Network, Context Fusion Network, and Vote-Proposal
Net. We feed the template and the search area into a shared
backbone and obtain their local features, respectively. In the
fusion module, we calculate the similarity and use multi-level
features from the template instruct the search area to output the
guided points. After that, we project these guided points from
the search area to potential object centers via Voting Module.
And each potential object center clusters its neighbors for a
3D object proposal. Finally, we define the object proposal with
the highest score as the final bounding box.

B. 3D Siamese Network

To achieve excellent tracking performance, we need to
extract stable and distinctive features from 3D point clouds.
PointNet++ extracts local features effectively using a multi-
level feature extraction structure. Therefore, our backbones
consist of the shared PointNet++ (but not restricted to it) as our
Siamese Network (see Fig. 2. a). The input of one backbone is
the point clouds from the template, and the other is the point
clouds in the search area. For a frame at time t, the template
contains the ground truth of the object in the first frame and
the predicted results in t − 1 frames. The search area in the
current frame is determined by previous results.

Feature Encoding on Point Clouds. Points in the template
Pt (of size N1) and those in the search area Ps (of size N2)

are inputs of the shared backbone to output key points (M1

templates T = {ti}M1
i=1 and M2 search areas S = {si}M2

i=1),
both are represented with local features (fl ∈ Rd1 ). Due to the
hierarchical feature learning architecture in PointNet++ [23],
the key points T and S preserve local contexts within Pt and
Ps. Meanwhile, according to indices of the key points, we
obtain 3D coordinates of the raw point clouds as point features
(fp ∈ R3). Every key point is finally represented as [fp; fl] ∈
R3+d1 , in which fp denotes the 3D position and fl means the
local feature.

C. Context Fusion Network

Context Fusion is a crucial part of our object tracking
framework. Compared with the conventional matching method
between the template and the search area, the proposed module
uses the template features (point features, local features, and
global features) to generate guided points (see Fig. 2. b).
Context Fusion Network has two main parts: Cosine Similarity
Module and Feature Fusion Module. Cosine Similarity Module
calculates the similarity between local features of the template
and those of the search area, then Context Fusion Network
combines the similarity and all the features from the template,
the search area. MaxPool operated on the local features of the
template generates the global features.

Cosine Similarity Module. To find the relationship between
the template and the search area, a natural approach is to
compute the feature similarity Sim (of size M2×M1) between
T (of size M1) and S (of size M2), e.g., using cosine distance:

Simj,i =
fT
ti · fsj

∥fti∥2 ·
∥∥fsj∥∥2 ,∀ti ∈ T, sj ∈ S (1)

where fti , fsj denote the local feature from the search area
and that from the template. Note that the size of Simj,i is
M2×M1. Simj,: means the similarity between sj and all key
points from template.

Feature Fusion Module. To make the template information
instruct the search area, we design Feature Fusion Module
(FFM) that adds the features from the template to the search
area and satisfy the permutation invariance. Our FFM fuses
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Fig. 4. Vote-Proposal Net that consists of Voting Module and Proposal
Module. The guided points are the input of Voting Module and MLP to obtain
centers of the proposal and scores of the guided points, respectively. Then the
centers with the above scores are fed into Proposal Module to get proposals
and their scores where the highest score corresponds to the final 3D box.

four features: the similarity, point features, local features, and
global features, as shown in Fig. 3.

To ensure the dimensional consistency, we augment each
Sim:,i (the similarity) with key points from the search area
S and then add point features and local features from the
template T to each Simj,:, yielding a tensor of size M2×M1×
(1+3+d1+3+d1). Then we feed this tensor into the MLP1

to fuse the point and local features from the template to the
search area and obtain new feature points of size M2 ×M1 ×
d2. By MaxPool on M1 channels, we ensure the permutation
invariance and acquire the candidate points (of size M2×d2),
which combine point and local features from the template.

To make candidate points attached with global features, the
local features from the template are fed into MaxPool on M1

channels to generate the global features (of size 1×d1). Then
candidate points with global features are sent to MLP2 and
obtain guided features fgj ∈ Rd2 . And we clip the coordinates
of sj (fsj

p ∈ R3) as the point feature xgj and finally represent
the guided point gj (of size M2 × (3 + d2) ) as [xgj ; fgj ] ∈
R3+d2 .

Besides, there are other selections for context fusion: leav-
ing out context fusion, leaving out the local features of T , or
leaving out the global features of T . All of them are inferior,
as detailed in the ablation study.

D. Vote-Proposal Net

Traditionally, embedded with template features, each guided
point can be treated as a center to directly predict one proposal.
However, the point clouds generated by LIDAR are distributed
on the surface of the object, and generating object proposals
from surface points will cause large errors. We follow the
idea in VoteNet [28] to regress guided points into potential
object centers via Hough voting in Voting Module and cluster
neighboring centers to leverage the ensemble power and obtain
object proposals in the Proposal Module, as shown in Fig. 2.
c and Fig. 4.

Voting Module. Each guided point gj with feature
[xgj ; fgj ] ∈ R3+d2 can roughly predict a potential object
center via Voting Module. Following VoteNet [28], in Voting
Module, we apply a Multi-Layer Perceptron (MLP) with fully
connected layers, ReLU, and batch normalization to predict

the Euclidean space offset ∆xgj ∈ R3 from gj to the ground
truth object center and the feature offset ∆fgj ∈ Rd

2 from
fgj . We represent the potential center cj using the feature
[xcj ; fcj ] ∈ R3+d2 . As a result, xcj = xgj + ∆xgj and
fcj = fgj +∆fgj .

The predicted 3D offset ∆xgj ∈ R3 is explicitly supervised
with a regression loss.

Lreg =
1

Gobj

∑
i

∥∥∆xgi −∆x∗
gi

∥∥ · I [gi on object ] (2)

where I [gi on object ] indicates whether the guided point gi
is on the surface of the ground truth object, and Gobj is the
total number of guided points on the object surface. ∆x∗

gi is
the ground truth displacement from the guided point position
xgi to the bounding box center of the object. Note that we
only train these guided points located on the surface of the
ground truth object.

Proposal Module. Vote Module creates canonical centers
C for an object. There are many center candidates, so we
firstly cluster neighboring centers to leverage the ensemble
power and obtain object proposals. Then we sample a subset
of K clusters using farthest point sampling based on cj in
3D Euclidean space to get ck with k = 1, ...,K. For each ck,
we use ball query [23] to generate the cluster Hj with the
radius d in 3D space: Hk =

{
ck | ∥ck − cj∥2 < d

}
, where

k = 1, ...,K. It is easy to integrate this clustering technique
into an end-to-end pipeline, and this module works well in
practice.

After clustering, we feed each Hk into the a PointNet-like
module (MLP-MaxPool-MLP) and obtain the object proposal
pk = [boxp

k; score
p
k].

[boxp
k; score

p
k] = MLP

{
max

i=1,...,n
{MLP(Hk)}

}
(3)

where boxp
j has four parameters: offsets for the 3D position

(x, y, z) and rotation in the X-Y plane, and scorepk denotes
the proposal-wise object score.

In K proposals generated from Vote-Proposal Net, one with
the highest score is the final tracking result.

Improved Proposal with Voting Score. In the search area,
some guided points are not on the surface of the object
and affect the final object proposal negatively. Therefore, we
follow the idea from P2B [7], which assesses the guided point
gj with its object score to estimate its location and strengthen
the learning of a multi-level context fusion network.

Parallel to Voting Module, we feed the guided feature in
{gj}nj=1 into the MLP to generate the score scoregj for each
guided point gj . We regard these guided points located on
the surface of the ground truth object as positives and the
extra as negatives. In the standard binary cross-entropy loss
Lcls, scoregj is related to the location of gj . Except for the
location, Lcls can explicitly constrain the multi-level context
fusion learning to guide object tracking in the search area.

Inheriting from scoregj , we update the representation of
the clustering center ck with [xck ; score

g
ck
; fck ] ∈ R(3+1+d2).

Sequentially, we update clusters with ball query and object



TABLE I
EXTENSIVE COMPARISONS WITH SC3D AND P2B ON KITTI DATASET.

Method
Frame Number

Car
6424

Pedestrian
6088

Van
1248

Cyclist
308

Mean
14068

Success

SC3D-EX [31]
SC3D-KF [31]

P2B [7]
MLCFNet [ours]

21.2
41.3
56.2
58.1

8.1
18.2
28.7
30.8

25.2
40.4
40.8
42.8

11.1
41.5
32.1
34.2

15.7
31.2
42.4
44.3

Precision

SC3D-EX [31]
SC3D-KF [31]

P2B [7]
MLCFNet [ours]

24.8
57.9
72.8
74.4

14.2
37.8
49.6
51.3

28.9
47.0
48.4
49.9

14.8
70.4
44.7
46.2

20.4
48.5
60.0
61.5

TABLE II
ADDITIONAL EXPERIMENT WITH SC3D AND P2B ON NUSCENES DATASET.

Method Car Pedestrian Truck Bicycle Overall

Success

SC3D-EX [31]
SC3D-KF [31]

P2B [7]
MLCFNet [ours]

14.5
22.3
38.8
39.4

7.4
11.3
28.4
30.2

24.1
30.7
45.3
47.0

13.6
35.4
32.8
34.5

16.4
20,7
36.5
39.3

Precision

SC3D-EX [31]
SC3D-KF [31]

P2B [7]
MLCFNet [ours]

12.3
21.9
43.2
45.1

7.9
12.7
52.2
53.6

15.2
27.7
41.6
42.8

15.3
34.7
32.5
32.5

14.1
20.2
45.1
47.3

TABLE III
COMPREHENSIVE COMPARISONS WITH SC3D AND P2B.

Method P-Result P-GT C-GT

Success
SC3D [31]

P2B [7]
MLCFNet [ours]

41.3
56.2
58.1

64.6
82.4
84.7

76.9
84.0
86.4

Precision
SC3D [31]

P2B [7]
MLCFNet [ours]

57.9
72.8
74.4

74.5
90.1
92.3

81.3
90.3
92.9

proposals with Equation (3). Experiments demonstrate that
scoregck can help pick out potential object centers and obtain
object proposals with higher quality.

Ltotal = Lreg + λ1Lcls + λ2Lobj + λ3Lbox (4)

where these losses are weighted with λ1 = 0.2, λ2 = 1.5, and
λ3 = 0.2.

E. Loss Function

The loss functions in MLCFNet consist of classification loss
Lcls, regression loss Lreg , bounding box estimation loss Lbox,
and objectness loss Lobj . We train MLCFNet in an end-to-end
manner and represent the total loss function as Ltotal.

We choose the binary cross-entropy loss for classification
Lcls and objectness Lobj . For Lobj , the proposals whose
centers within 0.3 m of the object center are positive samples,
those far away from the object center (by more than 0.6 m)
are negative samples, and others are abandoned. Meanwhile,
similar to VoteNet [28] and P2B [7], the regression loss Lreg

and box estimation loss Lbox are supervised via the Huber
(smooth-L1 [32]) loss.

IV. EXPERIMENTS

KITTI and NusSenes tracking datasets [8] in 3D LIDAR
is applied for our experiments. Following the same settings
of SC3D [31] and P2B [7] in dataset split, object generation,
and evaluation for fair comparisons, we mainly focus on car
tracking and ablation studies on KITTI. Similar to P2B, we
also test MLCFNet in extensive experiments on trackings of
other objects (Pedestrian, Van, and Cyclist).

A. Dataset Setting

In KITTI tracking dataset, 21 scenes and 8 types of objects
are accessible, and we follow the data split setting in SC3D and
P2B: scenes 0-16 for training, 17-18 for validation, and 19-20
for the test. NuScenes dataset contains 1000 scenes and the
point clouds are captured by a 32-beam LiDAR. This dataset
is split to 700, 150, and 150 scenes for training, validation
and testing, respectively. Each instance of a car appearing in
each scene is considered as a tracklet for 3D single object
tracking. For each tracklet, the ground truth bounding box is
given in the first frame, and our task is to locate the object in
the following frames.

One Pass Evaluation (OPE) [12] is used as an evaluation
metric for single object tracking, which contains Success and
Precision. Specifically, we define IOU between the predicted
box and the ground truth one as Success, then we estimate
Precision by AUC about the 3D distance between centers of
the above boxes from 0 to 2 m.

B. Comparisons

In MLCFNet, we fuse multiple features from the template to
guide 3D object tracking. Similar to SC3D [31] and P2B [7],



TABLE IV
FEATURE FUSION METHODS.

Method Success Precision

without feature fusion 54.6 68.9
feature fusion without the local feature 56.6 70.3

feature fusion without the global feature 56.2 72.8
our default setting 58.1 74.4

our method only use the geometric information from point
clouds. Therefore, we mainly compare MLCFNet with the
above two methods.

Results for 3D car tracking are listed in TABLE III. In
frame T , the search area is output in three ways: the predicted
result in frame T − 1, the ground truth in frame T − 1,
and the ground truth in frame T . However, only using the
previously predicted result for the search area meets the
requirement of realistic application scenarios. The previous
and current ground truths are unreasonable to be used, but they
are considered to assess the discriminative power in SC3D by
approximate exhaustive search and help approximately assess
short-term tracking performances in P2B.

Compared with SC3D and P2B, MLCFNet has better per-
formances in real-time 3D object tracking. In SC3D, the
approximate exhaustive search and poor feature extraction
limit the speed and accuracy. P2B addresses these weaknesses
using VoteNet and greatly improves Success and Precision.
Based on P2B, MLCFNet fuses multiple features from the
template into the search area. The point and local features
instruct the search area to match the template, while global
features help points locate the object center.

Extra Comparisons. In addition to Car, results of ML-
CFNet on Pedestrian, Van, and Cyclist are in TABLE I and II.
MLCFNet outperforms both P2B and SC3D. In KITTI dataset,
our MLCFNet has a 2.1% improvement in Pedestrian and Van.
The mean Success in all frames has improved 1.5%. While in
nuScenes dataset, our MLCFNet outperforms P2B and SC3D
with about 2% improvement on Precision and 2.5% in Success.
Overall, these results demonstrate the advantages of multi-
level context fusion for tracking.

C. Ablation Study

In this section, we mainly present the ablation study to
highlight the importance of Context Fusion Network.

Importance of Context Fusion. We divide results into four
different cases: without context fusion, context fusion without
the local feature, context fusion without the global feature, and
our default setting, as listed in TABLE IV.

Removing Feature Fusion Module degrades by about 3%,
which indicates the importance of context fusion in MLCFNet.
After removing the local features or the global features, results
show the importance of the global features for Success and the
local features for Precision. We consider that the local features
enhance local matching capabilities to improve Precision,
and the global features promote Success by adding global
information of the object. In comparison, our default setting

TABLE V
TEMPLATE GENERATION METHODS

Method Success Precision

the first ground truth 46.9 60.3
the previous result 54.6 70.8

the first ground truth + the previous result 58.1 74.4
all the previous results 52.8 69.1

brings point, local, and global features from the template to
yield a more “directed” object proposal generation.

Fig. 5. Experiments on different number of proposals show that our method
is compatible with a wide range of parameters.

Robustness on Different Number of Object Proposals.
Similar to P2B and SC3D, we also test MLCFNet using the
different number of proposals. As shown in Fig. 5, MLCFNet
and P2B have stronger stabilities when the number of object
proposals degrades dramatically, even when there are only 20
proposals. Without Voting Net, SC3D is sensitive to the num-
ber of object proposals using the expensive search strategy. To
conclude, MLCFNet can generate object proposals of higher
quality, which is crucial to improve efficiency for 3D object
tracking.

Template Generation Methods. In addition to our method
that generates the template within the ground truth in the
first frame and the previous predicted result, we also test the
generation method in SC3D and P2B, including the previous
result, only the first ground truth, and all the previous results.
The network using context fusion of the first ground truth and
the previous result performs better than other settings, as listed
in TABLE V.

V. CONCLUSION

In this paper, we propose a Multi-Level Context Fusion
Network (MLCFNet) for 3D object tracking. We fuse the
multi-level object context (point, local and global features) into
the search area to guide 3D object tracking, and we formulate
a method that can be trained end-to-end using Voting Module
and Proposal Module. With the multi-level features, MLCFNet
can directly operate on the whole search area instead of
redundant extracted 3D object boxes.

Extensive experiments on public dataset show that ML-
CFNet performs better in 3D single object tracking. In the
future, we intend to explore how to track smaller objects
with sparse points and extend MLCFNet into multiple object
tracking, only using the point clouds.
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