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Abstract— Single object tracking in point clouds is a funda-
mental component in enabling autonomous vehicles to under-
stand dynamic traffic environments. Earlier tracking confidence
only relies on IoU between two static boxes, ignoring the motion
properties of objects, which may weaken the association abilities
of trackers. To comprehensively associate an object with the
estimated motion state, we introduce a directed representation.
This representation factorizes the box of an object into its
central position and orientation. To handle under-detection
and over-detection problems, we also present an undirected
range suppression mechanism that automatically enlarges and
stabilizes the view field at the current time step. As a result,
we build a single object tracking system that achieves high
accuracy and real-time performance. On both KITTI and
nuScenes tracking datasets, we demonstrate that our system
outperforms other recent single object trackers in both accuracy
and speed. Besides, we also validate the superiority of our
approach compared to multiple object tracking methods.

I. INTRODUCTION

Object tracking in point clouds aims to detect and track
static or moving objects in dynamic environments. And it has
been widely used in mobile robotics and autonomous driving.
Mainstream works on object tracking in point clouds mainly
consist of single object tracking and multiple object tracking.
As for multiple object tracking, we focus on data association
between objects predicted from detectors in different time
steps. But in single object tracking tasks, we emphasize the
continuity of the trajectory for a single target. Even if the
tracked object disappears, we still should localize it correctly.

Tracking heavily occluded or remote objects in raw point
clouds continuously is the primary challenge. Typically,
under a tracking-by-detection framework, the template sim-
ilarity finally determines 3D boxes [1], [2]. For simplicity,
point clouds are projected into a planar space from a bird’s
eye view, so the method suitable in 2D space predicts 3D
boxes [3]. However, when the initial template in the first
frame is too sparse to yield little information about the target,
the above methods may fail to track.

Finding a proper strategy for spatial and temporal feature
fusion is another challenge. Naturally, an object across con-
secutive frames shares some spatial-temporal consistencies.
Models only consider the spatial features to track objects
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Fig. 1. The workflow of our system. It consists of motion states, detected
boxes, associated boxes, and fused results.

in point clouds, ignoring their motion properties such as
direction, velocity, and acceleration in a continuous 3D
space [2], [4]. As a result, once the appearances of objects
change a lot, significant deviations occur in these methods.

To alleviate the above challenges in 3D single object track-
ing, we propose a directed representation for data association
and an undirected range suppression for detection. Compared
to multiple object tracking methods, our single object tracker
associates directed motion properties of detection represen-
tations at the same frame. Motivated by this, our system can
track 3D objects robustly, even if the scene contains distant
or occluded objects. Compared to simple template matching
or object detection in a single frame, our range suppression
method progressively adjusts the view field in consecutive
frames.

The single object tracking process in our system is shown
in Fig. 1. Specifically, a state estimator outputs the current
motion state from the previous directed motion state. And
a static range suppression mechanism determines an RoI
of the object from the center in this state. Then an object
detector provides bounding boxes inside the RoI. A data
association method with directed representations correlates
the most confident detected box with the estimated box.
Finally, a dynamic range suppression mechanism refines the
detected box according to the previous position trajectory.

Extensive experiments on KITTI [5] and nuScenes [6]
tracking datasets demonstrate that our system outperforms
state-of-the-art methods significantly (about a 10% increase
and 280 FPS using an NVIDIA 1080Ti GPU). And our
approach is also superior to some multiple object trackers.

The main contributions of this paper are as follows:
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Fig. 2. The framework of our system. Given the previous motion state from 0 to t− 1, an estimator provides the motion state at the current frame t. The
static range suppression strategy shrinks the search range of objects, and the object detector provides detected boxes with orientations. Then via directed
representations, we associate the detected box most similar to the estimated state. Finally, according to the short-term trajectory of object positions, the
dynamic range suppression method refines the associated results.

1) To improve the tracking accuracy, we introduce a
directed representation that comprehensively associates
the estimated motion state with detected boxes.

2) To make tracking robust to noises and reduce running
time, we utilize a range suppression mechanism in both
static and dynamic perspectives.

3) To evaluate the effectiveness of our method, we build
a single object tracker that outperforms other recent
models in tracking both single and multiple objects.

II. RELATED WORKS

Our tracker takes insights from 3D object detection, 3D
object tracking and data association in 3D object tracking.
Methods about data association offer some ideas for spatial-
temporal data fusion, and 3D object detection methods help
better achieve spatial verification at current frame.

A. 3D object detection in Point clouds

Most recent 3D object tracking methods follow a tracking-
by-detection framework. 3D object detection provides plenty
of ideas to promote the development of 3D objecting track-
ing. And the detector affects the accuracy and robustness of
tracking greatly. In general, 3D detectors are categorized into
two types: 1) single-stage detectors, including [7], [8], [9],
[10], regress bounding boxes directly from features learned
from point clouds. Voxel layers in VoteNet [11] extract fea-
tures from point clouds. The triple attention module in TANet
[12] considers feature-wise relation in the feature extraction.
PointPillar [13] divides a point cloud into pillars for efficient
feature learning. 2) two-stage detectors, including [14], [15],
[16], [17], use region-proposal-aligned features to refine the
previous predictions. PointRCNN [18] proposes a region
proposals network in 3D point clouds to refine the results
of PointNet [19]. PV-RCNN [20] combines both point-based
and voxel-based networks to extract features from the voxels
and raw points.

To properly utilize the 3D object detector in tracking,
especially to exploit data association and object matching,
we fuse a novel confidence evaluation system and a new
search strategy to a 3D object detector.

B. Object Tracking in Point Clouds

In general, the 3D object tracking process is that the object
in the first scene of point clouds is built as a template, and we
tracking the one in subsequent consecutive frames. Different
from 2D bounding boxes in images, 3D object tracking
methods localize objects with three-dimensional bounding
boxes. Some early methods generate object proposals by
2D experience on projected point clouds, such as the bird’s-
eye views [21], or foreground images [22], [23], [24], [25].
But these works lose the height information on planes and
introduce errors into the final boxes. Since the above issues
limit some real world applications, SC3D [4] and P2B [2]
addressed such concerns from a pure geometric perspective.
SC3D is the first work that applies a 3D Siamese tracker
to point clouds rather than images and mainly executes
3D template matching randomly to generate bunches of
3D object proposals. P2B is a novel point-to-box network
for 3D object tracking. And it localizes potential object
centers in 3D search area embedded with target information,
which can also be end-to-end trained. However, they only
utilize the spatial features to locate the object and ignored
the temporal features(e.g., velocity and acceleration) in the
continuous three-dimensional space. So they will fail when
spatial features disappear.

C. Data Association in 3D Object Tracking

As a crucial component in 3D multiple object tracking,
data association matches objects in consecutive frames. The
distance or overlap between detected bounding boxes in
adjacent frames can be cues for association [1], [26]. Ge-
ometric affinity, appearance offset, and motion cost form a
data association matrix, which can help associate the same



object by the greedy algorithm [27], [28]. Beyond data asso-
ciation rules in consecutive frames, our system associates the
temporal motion state and spatial detection boxes in the same
frame. Meanwhile, we introduce a directed representation
that contains the orientation offset and detection score for
comprehensive data association.

III. METHOD
The single object tracking system tracks current objects in

point clouds based on previous motion states and currently
detected boxes, as shown in Fig. 2. Given the previous
motion state, an estimator outputs the current motion state.
And a static range suppression strategy provides RoI for
the detector that outputs bounding boxes of objects in point
clouds. Instead of the whole scene, searching for an RoI
significantly reduces the tracking time. Then we select the
detected box with the most similar features to the current
motion state using directed data association representations.
Eventually, a dynamic range suppression method refines
this chosen box based on the previous trajectory of object
positions.

A. Motion State Estimation
Based on the tracking-by-detection framework, we inte-

grate a motion state estimator to predict the pose of an object
in every frame. Before that, we define the motion state X:

X = [x, y, z, θ, vx, vy, vz, vθ, ax, ay, az, aθ, l, w, h]T (1)

where {x, y, z} form center of a box. {l, w, h} are its size
including length, width, and height, respectively. {θ} is its
orientation (yaw angle). {v, a} denote its motion properties
including velocity and acceleration.

At frame t, we use X−
t and X+

t to separate the estimated
motion state and the final refined motion state. Therefore,
the input motion state is from the initial or tracked box
X+

0 , ..., X+
t−1, and the estimator outputs motion state X−

t .
Motion state estimators provide current motion state given

past motion state. Here, we selected two typical models
capable of dealing with sequence problems: LSTM [29] and
GRU [28].

B. Static Range Suppression
To accelerate the object detection in tracking, we shrink

the detection area from the whole scene to an RoI. Once the
motion estimator outputs the state X−

t , a two-menter range
centered on the estimated center determines the RoI.

Fixed-size RoI may miss fast-moving objects in consecu-
tive frames. In this case, the detected area becomes bigger
progressively, according to the number of missed frames,
as shown in Fig. 3. And we formulate such mechanism as
follows:

rt =

{
r0 + s · nmiss, missed detection at t− 1.
r0, otherwise.

(2)
where r0 is the initial radius of RoI in a horizontal plane, s
is a scaling factor, and nmiss is the number of consecutive
under-detection frames.
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Fig. 3. RoI. The static range suppression provides a search range for the
3D object detector at each frame. The detector, the directed data association,
and the dynamic range suppression outputs tracked boxes.

In the adjusted RoI, an object detector PV-RCNN [20]
detects 3D objects, and it outputs m detected boxes {Bi

t}mi=1

and classification scores {pi|ct }mi=1. Each detected box can be
described as follows:

Bt = [xt, yt, zt, lt, wt, ht, θt]
T (3)

C. Directed Data Association

The IoU and classification score can measure the static
position and category confidence of an object in previous
3D object trackers, but the data association method merely
relying on detection metrics is incomplete to judge the
moving trend of an object. At least, objects in the opposite
direction are impossible to be distinguished.

To handle the above problem, we design a directed data
association method to pick the detected box most likely to be
tracked from {Bi

t}mi=1. Given the estimated motion state X−
t

and one of the detected boxes {Bi
t}mi=1, our data association

method outputs directed confidences {pit}mi=1:

pit = p
i|c
t · pi|bt (4)

where p
i|b
t is box confidence score:

p
i|b
t = λpos ·N(||pBi

t
− pXi

t
||)

+ λort · (1− cos(θBi
t
− θXi

t
))

+ λiou ·N(1− IoU(Bi
t, X

−
t ))

(5)

where λpos, λort and λiou are weights that balance the
interactions among central positions, orientations, and IoU.
N(·) is a Gaussian function. p is 3D position {x, y, z}, θ is
orientation, and IoU(Bi

t, X
−
t ) is IoU between Bi

t and X−
t .

The directed data association method provides the detected
box with the highest directed confidence. But if the detector
predicts no objects, the current detected box is from the
estimated motion state.



D. Dynamic Range Suppression

Given the position in the detected box with the highest di-
rected confidence, dynamic range suppression reduces noises
by considering the previous trajectory.

From frame t − n to frame t, positions in each frame
are recorded so that they form a tracked trajectory in single
object tracking. If these positions are within a set range (a
ball with radius r), we think that the tracked object remains
static in the last n frames. For the static object, Parzen-
window Density Estimate [30] refines the point set {p}ti=t−n.

f(p) =
1

nV

n∑
j=t−n

φ

(
|p− pj |

h

)
(6)

where n is the number of points. h and V are the side length
and volume of a small cube, respectively. φ (·) is a Gaussian
window function that judges whether the position p locates
inside the cube.

The position with the highest function value f(p) is our
refined position pt. According to pt, we update the current
refined motion state X+

t .

IV. EXPERIMENTS

On KITTI and nuScenes datasets, we evaluate our system
and other state-of-the-art ones in both single and multiple
object tracking. To fairly compare these methods, we set the
same sample generation processes and evaluation metrics.

A. Datasets

The KITTI dataset contains 21 outdoor scenes and eight
classes of objects. And the nuScenes dataset has 1000 scenes
in which a 32-beam LiDAR captures point clouds.

B. Implementation Details

As for static range suppression, the initial radius of RoI
r0 is two meters, and the scaling factor c is 1.5 meters.
As for directed data association, the weights λpos, λort and
λiou are 1.5, one, and two, respectively. As for dynamic
range suppression, To find static objects, the radius r is
0.5 meters, and the side length h is 0.1 meters. The mean
µ and standard variance σ in the Gaussian function are
zero and one, respectively. As for the input of our system,
we transform all the point clouds and labels into a world
coordinate system with the IMU or GPS data.

C. Evaluation Metrics

Success and Precision are two metrics in One Pass Evalu-
ation (OPE). Success is an IoU between the final tracked box
and the ground truth. Precision is AUC about 3D distances
between centers of the above two boxes from zero to two
meters.

TABLE I
ANALYSIS OF MOTION STATE ESTIMATORS ON KITTI.

Motion State Estimator Success Precision FPS

LSTM 64.9 73.9 147
GRU 65.2 74.3 196

D. Ablation Studies

1) Analysis in Motion State Estimation: Our single object
tracker combined with GRU has relatively better performance
on the test set from KITTI dataset, as listed in Table I. Motion
state estimators based on recurrent neural networks need a
lot of training time and fine-tuning efforts. And they also
reduce the efficiency of our system.

To evaluate how motion state estimation affects our
tracker, we remove it for further analysis. After removing
GRU, Success and Precision drop about 7.8% and 3.0%,
respectively. We analyze that the motion state estimator can
track undetected objects.

TABLE II
ABLATION STUDIES FOR OUR TRACKER ON KITTI.

System Success Precision

Ours with Default Settings 65.2 74.3
Ours without GRU 57.4 71.3
Ours without DDA 62.9 73.1
Ours without DRS 64.1 73.0

2) Analysis in Directed Data Association: To validate the
importance of directed data association (DDA), we only leave
the distance to associate the detected box. Success and Preci-
sion of our data association method improve about 2.3% and
1.2%, respectively. Therefore, the positions and orientations
of 3D objects are also effective cues in representations for
data association.

3) Analysis in Dynamic Region Supperssion: To analyze
the dynamic range suppression strategy (DRS), we remove
it from the default setting. This strategy helps our system
obtain 1.1% and 1.3% on Success and Precision in nuScenes
dataset. Such a result shows that past positions of the tracked
objects are also necessary for our task.

4) Analysis in Initial Object Points: To analyze how the
number of points (# Points) in an object affects the 3D object
tracker, we sample these points at the first frame. And we
select numbers of points in an object as # Points ≥ 10, #
Points ≥ 20, # Points ≥ 50, and # Points ≥ 100. It is worth
noting that we only select the object at the first frame in our
task, but objects with more points are also feasible in real-
world applications. Therefore, we compare our system with
SC3D and P2B, as listed in Table III. Our system consistently
outperforms other methods in sampling the different numbers
of points for an object.

E. Comparisons with Other Methods

1) Comparisons in Single Object Tracking: Similar to
SC3D [4] and P2B [2], our system only uses raw point
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Fig. 4. Results of single object tracking in point clouds. Our system continuously tracks an object in point clouds, even if the 3D object detector fails to
provide boxes. The purple bounding box is the final refined box of a tracked object. The orange curve denotes the trajectory of object positions, and the
red points on that curve are central positions in previous frames.

TABLE III
ANALYSIS OF INITAL # POINTS IN CAR ON SCENES 19 AND 20 OF KITTI.

Metric Method
# Frames

# Points ≥ 0
6424

# Points ≥ 10
4873

# Points ≥ 20
3206

# Points ≥ 50
1789

# Points ≥ 100
1511

Success

SC3D-EX
SC3D-KF

P2B
Ours

21.2
41.3
56.2
65.2

21.4
42.2
58.4
66.8

23.1
45.8
69.3
79.4

23.6
46.5
70.7
83.7

24.3
47.1
71.1
84.9

Precision

SC3D-EX
SC3D-KF

P2B
Ours

24.8
57.9
72.8
74.3

25.2
58.4
73.5
75.9

28.4
62.1
85.6
89.3

29.1
62.6
86.4
91.7

29.9
63.3
87.2
93.1

TABLE IV
COMPARISONS ON KITTI AND NUSCENES DATASET. NOTE THAT METHODS WITH * ARE FROM MULTIPLE OBJECT TRACKING.

Method Car Pedestrian Cyclist Mean Car Pedestrian Bicycle Overall

Precision

SC3D-EX
SC3D-KF

P2B
PC3T∗

PC-TCNN∗

Ours

24.8
57.9
72.8
73.5
74.1
74.3

14.2
37.8
49.6
57.1
56.3
60.2

14.8
70.4
44.7
65.8
67.4
71.4

20.4
48.5
60.0
68.1
68.4
70.2

12.3
21.9
43.2

-
-

45.5

7.9
12.7
52.2

-
-

54.3

15.3
34.7
32.5

-
-

35.4

14.1
20.2
45.1

-
-

47.9

Success

SC3D-EX
SC3D-KF

P2B
PC3T∗

PC-TCNN∗

Ours

21.2
41.3
56.2
62.4
64.7
65.2

8.1
18.2
28.7
40.2
41.8
44.3

11.1
41.5
32.1
54.5
57.1
57.9

15.7
31.2
42.4
52.3
53.5
56.4

14.5
22.3
38.8

-
-

44.1

7.4
11.3
28.4

-
-

35.8

13.6
35.4
32.8

-
-

40.2

16.4
20,7
36.5

-
-

45.6

clouds. We evaluate these methods on 19 - 20 scenes in
KITTI and 150 scenes in nuScenes, as listed in Table IV.
Our system outperforms state-of-the-art methods by a large
margin (about 10% increases on Success and Precision) in
all the classes.

The approximate exhaustive search and poor feature ex-
traction in SC3D limit both speed and accuracy. And VoteNet
addresses the above weaknesses in P2B, thus both Success
and Precision increase. However, both lack motion estimation
and more suitable data association for object tracking in point

clouds, while our system alleviates both issues.

2) Comparisons in Multiple Object Tracking: PC3T [27]
and PC-TCNN [28] are two state-of-the-art trackers for
multiple object tracking on KITTI and nuScenes datasets.
Therefore, we test them and compare them with our system
on single object tracking, as listed in Table IV. Precision and
Success of our system have about 2% and 4% improvements.

3) Comparisons in Runtime Speed: To evaluate the run-
ning speeds of these methods, we average speeds on the test
set. On a single NVIDIA 1080Ti GPU, our system achieves



280 FPS, compared to 40 FPS in P2B and 1.8 FPS in SC3D.
The main reason why our system is faster is that we adopt
a static range suppression scheme. Compared to PC3T and
PC-TCNN, our system also runs faster.

TABLE V
COMPARISONS IN RUNTIME SPEED.

Method SC3D P2B PC3T PC-TCNN Ours

FPS 1.4 40 240 190 196

V. CONCLUSION
This paper proposes a simple system to track 3D objects

more stably, accurately, and faster, even if they are not
detected. The primary work is to extend the data association
method for object detection to our directed counterpart that
may be more suitable for object tracking in point clouds.
To increase the running speed of our tracker, we introduce a
static range suppression strategy that relies on a motion state
estimator. Moreover, short-term trajectories of the tracked
positions in dynamic range suppression also speed up our
system and enhance its robustness. Experiments on tracking
datasets in KITTI and nuScenes demonstrate that our system
significantly outperforms other recent methods.
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