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Abstract: Novel view synthesis has attracted tremendous research attention recently for its applications in virtual reality and immers-
ive telepresence. Rendering a locally immersive light field (LF) based on arbitrary large baseline RGB references is a challenging prob-
lem that lacks efficient solutions with existing novel view synthesis techniques. In this work, we aim at truthfully rendering local immers-
ive novel views/LF images based on large baseline LF captures and a single RGB image in the target view. To fully explore the precious
information from source LF captures, we propose a novel occlusion-aware source sampler (OSS) module which efficiently transfers the
pixels of source views to the target view’s frustum in an occlusion-aware manner. An attention-based deep visual fusion module is pro-
posed to fuse the revealed occluded background content with a preliminary LF into a final refined LF. The proposed source sampling and
fusion mechanism not only helps to provide information for occluded regions from varying observation angles, but also proves to be able
to effectively enhance the visual rendering quality. Experimental results show that our proposed method is able to render high-quality
LF images/novel views with sparse RGB references and outperforms state-of-the-art LF rendering and novel view synthesis methods.
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1 Introduction

One critical assumption for a successful novel view
synthesis is accurate depth/disparity estimation, which is
also a fundamental application of local light field (LF)
imaging. In this paper, we propose a novel LF synthesis
algorithm in a global multi-view stereo framework that
can take large baseline input reference LFs to estimate
accurate depth in the novel/target view. The estimated
accurate depth in the novel/target view is used for warp-
ing the target view image into a novel LF.

In order to predict an accurate disparity in the target
view, we fully exploit the advantages of LF on an accur-
ate disparity estimation. We first calculate disparity
probability volume (DPV) from the slope of lines in Epi-
polar-plane images (EPI)[l in each source LF. Then, we
fuse these source DPVs from source LFs into the target
view's camera frustum. But the source DPVs are in differ-
ent scales and cannot be fused directly. So, we use the
DPV rescaling and fusion methods in [2] to align these
DPVs before fusion. After the fusion process, a novel
DPYV in the target view is generated. An accurate dispar-
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ity map can be estimated from the novel DPV. The ra-
tionality of fusing DPVs rather than directly using depth
projections is that DPVs contain the probability of a spa-
tial point being occupied, which is much more indicative
than single-plane depth when fused from multi-views.
Then, a preliminary LF is first synthesized by back-
ward warping pixels of the target view image according to
the estimated disparity map. To fully exploit the known
valuable color information from multiple input views, oc-
clusion-aware source sampler (OSS) and deep visual fu-
sion (DVF) modules are proposed. The OSS module takes
plane sweep volumes (PSV)Bl as input and locates depth
planes with maximum confidence for the image patches in
a PSV. A global background image is composed by the
inverse-over composition of pixels from further depth lay-
ers of the PSV. Then the global background image is
warped into a background LF, which is fused with the
preliminary LF to enhance visual quality by eliminating
image noises and recovering the occluded contents. Then
the fused LF is fed into a spatial-angular regularisation
module for improving spatial-angular consistency and
visual quality. As shown in the evaluation results, our
method outperforms other state-of-the-art novel view syn-
thesis methods in the Stanford Lytro multi-view light
field dataset (MVLF)M that contains challenging large
baseline and discrete views in each scene. The proposed
OSS and DVF modules can greatly improve the visual
quality by suppressing noise and revealing occluded con-
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tents.

Our contributions are summarised as follows:

1) The OSS module is proposed to sample visual clues
from source LFs in the depth planes of a PSV with min-
imum pixel-matching errors.

2) The DVF module is proposed to fuse the deep visu-
al features of a background LF and a preliminary LF.

2 Related work

Novel view synthesis techniques usually use depth-
based warping operations®9 that warp image pixels to
produce novel views. Therefore, accurate depth estima-
tion is crucial for accurate warping, and occlusions fur-
ther complicate the rendering. Learning-based LF /novel
view synthesis methods can be classified into three cat-
egories according to their input images’ sampling pat-
terns: sparse angular inputs, single RGB input, and small
baseline multi-view inputs.

2.1 LF synthesis based on sparse angular
references

Sparse-input LF synthesis takes a sparse set of sub-
aperture images (SAIs) captured within a target LF's
aperture to synthesize novel neighboring SAIs by inter-
polation or extrapolation. Kalantari et al.’] introduced
the first learning-based LF synthesis solution. Their
method takes SAIs in four corners as input to synthesize
a 4D LF using two sequential convolution neural net-
works to estimate disparity and color. But explicit scene
geometry is not a necessary condition for LF synthesis,
Zhang et al.ll proposed a phase-based LF synthesis
method from a micro-baseline stereo pair. Yeung et al.l%]
reconstructed dense-sampled SAIs from sparse-sampled
SAIs using spatial-angular alternative convolutions to ex-
ploit dense spatial and angular clues. The sparse inputs
within the LF's aperture usually require fixed input sub-
aperture positions, e.g., four corner views in [5]. So,
FlexLF!] was proposed for LF synthesis with sparse in-
put SAIs in varying aperture positions. The angular cor-
relations among SAIs are revealed by building a cost
volume to calculate pixel intensity matching errors. After
predicting depth by pixel intensity matching errors,
depth discontinuity can help locate edges. Liu et al.l2]
proposed an edge-aware painting network to complement
the preliminary LF for LF angular super-resolution task.

2.2 Novel view synthesis based on single
image as input

Single-input novel view synthesis takes a single RGB
image as input to synthesize novel views. In the context
of LF, Srinivasan et al.l’l made the first attempt to syn-
thesize an LF from a single image by utilizing the image-
based rendering (IBR) technique. However, the IBR
methods are constrained to Lambertian surfaces and are

unable to handle occlusions effectively. Given the high
similarity between sub-aperture views, Ruan et al.['3] used
a Wasserstein generative adversarial networks (GAN)
with a gradient penalty to synthesize complete LF im-
ages. Couillaud and Zioul'l synthesized LF from a single
RGB image and depth map using optical geometry and
light ray radiometry. Outside the context of LF, single
image view synthesis (SynSin)% represents a scene by
forming feature point clouds that are rotated and
rendered at a novel angle. Shih et al.[l6] separated a scene
into different floating islands (objects with depth discon-
tinuities around the edges), and the occluded regions
around the edges of the floating island are painted to
avoid showing blankness when rendered to novel angles.

2.3 Novel view synthesis based on multi-
view references

Learning is an attractive tool for learning representa-
tions of scenes. Volume representation is highly differenti-
able and can learn complex shapes. Multi-plane images
(MPI) is a volume-based approach but with discrete
depth planes that help improve efficiency. A recent
strand of learning-based research generates MPI for view
synthesis in forward-facing scenes, either with single im-
age inputll” or a set of images as input[!8-2l. Each input
view is expanded into a layered representation that can
render high-quality local LF. Mildenhall et al.l'8] pro-
posed local light field fusion (LLFF), which can synthes-
ize dense paths of novel views by blending adjacent
layered representations together. In addition to the
layered scene representation, the neural radiance fields
(NeRF) proposed by Mildenhall et al.?2 learns a continu-
ous volumetric scene function and encodes the inward-fa-
cing scene into a fully connected deep network. Moreover,
Dai et al.23] transforms point clouds into voxels, and the
relative positions among voxelized points can be encoded
as descriptors, which are learned and updated by gradi-
ents back-propagated from multi-plane rendering.

We summarise the existing view synthesis methods in
terms of their input sampling requirements and render-
ing capability in Table 1. Compared with other methods,
ours is flexible in dealing with large baseline sparse in-
puts with various capturing angles rather than requiring
fixed or optimal sampling patterns in conventional novel
view synthesis methods.

3 Proposed method

Synthesizing novel views over a wide baseline is chal-
lenging and is important for virtual reality systems[28-30].
Accurate depth estimation is one of the most critical as-
sumptions for image warping in novel view synthesis. In
order to generate accurate depth in a target view, depth
from multiple reference views can be transferred by pro-
jections/warping according to camera extrinsic and in-
trinsic parameters. In our framework shown in Fig.1, we
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Table 1 Comparison with other view synthesis methods. * denotes monocular method.

Input images Baseline View rendering
Method
Local Global Sparse Dense Small Large Interpolation Extrapolation Arbitrary
Synsin[9] v X X X v X X v v
LBVSE v X v X v X v X X
NPtsRI[23 X v X v v X v v v
DeepVoxels(24 X v X v v X v v v
ExtViewSyn[25] X v v X v X v v X
FlexLF 11 v X v X v x v X X
LLFF[8] X v X v v X v v v
NeRF[22 X v X v v X v X v
Stereo radiance fields (SRF)[26] X v v X X v v v v
MVSNeRFI[27] X v v X X v v v X
Ours X v v X X v v v v
=
Disparity probability volume fusion Spatial-angular’
regularization
source features Synthesized Source features Ly,
disparity field N
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Fig. 1

The overall pipeline of our proposed method. The disparity probability volumes from source LF's are transferred and fused in a

target camera. Then, a raw disparity map is generated by the 3D cost volume regularisation and the RGB-D fusion process proposed by
[2]. A preliminary LF is synthesized by backward warping pixels of the target view image. The OSS module is proposed to sample and
fetch RGB colors from varying source viewpoints to recover the background. Then the preliminary LF is fused with the recovered
background weighted by fusion attentions A produced by the DVF module. The fused LF is further refined by a final spatial-angular

regularization module that will render the final outputs.

take LF images as input and estimate the DPV in these
source LFs. Then, the DPVs are warped to the target
view for an accurate disparity/depth estimation. A pre-
liminary LF is first synthesized by backward warping
pixels of the target view image according to the estim-
ated disparity map. The OSS and deep visual fusion
(DVF) modules are proposed to fetch known valuable col-
or information from multiple input views to complement
the final rendering. Then, the spatial-angular regularisa-
tion module is adopted to improve spatial-angular con-
sistency and visual quality.

Following [2, 31-33], we employ a 3D convolutional U-
Net to improve the completeness and semantic correct-
ness of the fused DPV V,,. The fused DPV in the target
view is converted to a disparity map by the probability
weighted compositing methods used in [2, 31-33]. We ad-
opt the multi-scale residual fusion module in [2] that com-
bines visual features from a target view image I, to re-
store the fine details and surface smoothness of the tar-
get view's disparity map. The refined disparity map in
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the target view is denoted as D.

3.1 DPYV estimation

The DPV of LF can be estimated by comparing the
pixel intensities around a given point O along different
EPI lines, e.g., l1, l2, and [3 in Fig.2. The calculation of
pixel intensity variance along the slopes of EPI lines for a
candidate depth d’ in a query point O is given as (1) in

[34]:
> [L (o+u’ ( —%) ,u’> —Ld/(O)} ’

1
N1
(1)

where u is the index in angular domain, N, is the total

gq’ (0)2 =

number of angular views, and fy is the focal length. As
shown in Fig.2, the candidate line l2 that produces the
least variance of pixel intensity is taken as the best
response, and its slope is proportional to the query point’s
depth3.
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Fig. 2 Candidate EPI lines in point O
3.2 Depth estimation

We leverage the observation from [2] that multi-view
disparity probability values V are very informative for
accurate disparity estimation when fused together in a
target viewpoint. The advantage of warping the DPV
over directly warping the depth values is that the fusion
of multi-view depth probabilities can generate more ac-
curate and cross-view consistent depth estimations. This
is a general approach as other cost volume based depth
estimation methods in [32, 36]. In order to warp these
DPVs, the scale consistency of DPV for multi-view pro-
jections are important. Thus, we adopt the DPV estima-
tion method in [34] and the DPV rescaling and fusion
pipeline proposed by [2] that involves rescaling the DPV
V' to a multi-view scale consistent V, projecting V to a
target camera's viewing frustum as V;_,, and fusing as V;,:

Nere

‘/to = Z ‘Aftﬁto X Wpos X Wdir (2)

t=1

where Ngc is the number of source LF captures, Wpos
and Wy;, are separately calculated based on the
Euclidean distance between all source and target cameras’
positions and directions. The weights W05 and Wy;, are
converted to [0, 1] by softmax operation.

3.3 Preliminary light field synthesis

Our local immersive novel view/LF synthesis starts
from synthesizing a preliminary LF by backward warp-
ing pixels from the target view image I;, to novel sub-
aperture positions. Then the preliminary LF Ly is im-
proved and refined by the proposed OSS and DVF mod-
ules to reveal occlusions and eliminate noise.

3.3.1 Generating disparity field

Based on the accurate disparity map D € RM>H*XW 4
cross-view consistent disparity field D € REXWX2XMxN
is estimated. By using angular up-sampling layers fol-
lowed by a pseudo-4D spatial-angular separable convolu-
tion network (spatial-angular regularization)[” % 37 to pro-
cess the disparity map, the spatial and angular consist-
ency among local rendering instances are implicitly regu-
larised:

D = faisp(D) 3)

where fgisp () represents the spatial-angular regularization
that has the following two advantages37: 1) It is
memory-efficient compared with 4D convolutions; 2) It
alleviates separable filtering in digital signal processing by
performing separable 2D spatial and angular convolu-
tions.

Especially, the disparity map D is first processed by
an angular up-sampling convolution layer Convup ang
that increases the channel number of D from 1 to the
number of angular dimensions M x N, then followed by a
ReLU activation function:

Dup ang = ReLU(Convup ang(D)) (4)

then, Dup ang € RM>XNVXIXHXW ig hrocessed by a channel
up-sampling layer Conv,p, chan that increases the number
of the channel from 1 to C, then followed by a ReLU
activation function:

Dupichan - ReLU(Convupichan(Dupfang)) (5)

c RMXNXCXHXW

then Dyp chan is reshaped to Dang €

RIXWXCOXMN for 91 angular convolutions Convang:

Dang = ReLU(Convang(Dang)) (6)

then, the angular filtered disparity ﬁang is reshaped to

Dypa € RMXNXCXHW 5 9T)  gpatial convolutions

Convspa:
Dspa = ReLU(Convspa(Dspa))- (7)

The above 2D spatial and angular convolutions are re-
peated six times, and each layer’s network parameters are
separately learned. The final spatial and angular regular-
ized output is processed by a residual convolutional layer
Convres that decreases the number of channels from C to
2 (disparity along x and y dimensions respectively):

D = Convres (Dspa)- (8)

3.3.2 Disparity based pixel warping

A preliminary LF Lpre € RWXHX3XMXN

is synthes-
ized by backward warping pixels from the input target

view image I;, according to the disparity field D:

I(z) = Io(z + D) (9)

where I, represents the synthesized v-th sub-aperture
view image, and D, denotes the disparity map in the v-th
sub-aperture view of the target preliminary LF Lpre.

Although the disparity field D preserves geometry and
intensity consistencies among angular views, it is still im-
possible to predict occluded contents based on target
view image I;,. The image quality based on a single cap-
ture is also limited without reference to other source cap-
tures.
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3.4 Occlusion-aware source sampler and
deep visual fusion modules

In addition to the scene geometry D, visual features
from source LFs L;, are important for improving the ren-
dering quality of a target LF L, for two reasons: first,
occluded regions are impossible to be correctly rendered
only based on the target central view I;,. With references
from different observation angles of L: , these occluded
visual contents can be located and transferred to the off-
center views in the target LF L, by the proposed OSS
module, as illustrated in Fig. 3; Second, single image cap-
ture can be visually noisy. With aligned references from
the source captures L:_, the visual quality of the target
LF L;, can be greatly improved via the DVF module.
3.4.1 Plane-sweep volume generation

The PSV is first introduced by [3] to determine pixel
correspondences and 3D locations across multiple images.
To build a PSV, we first transfer the central views {I,}
of the source LF's to the target view’s camera frustum. In
theory, the source image I;, is swept through the volume
of the space along the principal axis of the source camera.
In practice, the source image I;, is warped to the target
view camera’s frustum via homography warping H(d) ac-
cording to (10):

T
T — Te,) X Ny,

H(d) = Kuy % Rig ¥ (I— ( ; ) xREx KT (10)
where {K, R} represent camera intrinsic and extrinsic
parameters, respectively; d represents the depth plane,
ntTS denotes the principle axis of the camera frustum; and
the subscripts to and ts denote the index of target and
source cameras.

For a better illustration, we separately draw the
warped image planes from the source view and the target
view in Fig.3(a) and 3(b), respectively. Due to the differ-
ent angles of the source and target cameras’ principle
axes, the aligning direction of warped sweeping image
planes from the source view is different from that of the
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target view. So the image planes warped from the source
view to the target view's frustum are oblique in Fig.3(a).
The image planes in the target view are sweeping along
the target view camera’s principle axis, so the target
view's image planes are vertical in Fig. 3(b).
3.4.2 The cost volume estimation

We decompose the PSV into two parts, PSVy,
warped from the source view ts and PSVy, warped from
the target view to. For the purpose of transferring pixels
from the source view to the target view, finding the pixel’s
corresponding relationship between PSV,, and PSSV, is
important. So, a pixel matching cost volume Vit is cal-
culated by the difference of pixel intensity between
PSV,, and PSV¢, in their sweeping planes d € [1, P] :

Veost = {PSV 1, (d) — PSV s, (d) }ie (11)

where d is the index and P is the total number of the
sweeping depth planes in PSV. The best matching depth
layer for each pixel (z,y) in the PSV,, and PSVy, is
found by calculating the minimum pixel intensity errors
in Veost:

S(z,y) = argdmin{Vcost(:r,y,d)} (12)

where S(z,y) = d stores the index of depth plane d for
pixel (z,y) that is with minimum matching errors
between PSV, and PSVy,.

3.4.3 Occlusion-aware source sampling module

We propose an OSS module to extract and transfer
the occluded pixels (denoted green in Fig.3) from PSV,
to PSVy,. After the transfer, our objective is to compose
a global background image from PSV,. The global back-
ground image can help improve the visual quality of the
final rendered LF.

Because pixels around edges are the most likely to be
occluded, an edge attention mask Mp,,q is first gener-
ated by calculating discontinuities in the target view's
disparity map D. The edge attention mask works as an
indicator to help select pixels only around edges for trans-

Depth segments

Far plane

Over
compositing

\
: 7 Near plane

7 g V////// ‘7& Object in the

target view

(b) Layered depth planes at target view

Fig.3 The OSS module transfers occluded background pixel clues to the target view from the source view'’s best matched depth plane.
The target object is homography warped from the source view’s depth plane to the target view. The occluded contents around the
object’s boundary (depth discontinuities) in the target view are to be replaced by pixels from the source view’s best matched depth

plane. The final novel view is synthesized via inverse-over compositing.
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ferring. The calculation of the attention mask is given in
(13):
1, if Grad(D) > T
Mmask = (13)
0, if Grad(D) < T.

Here Grad(-) is a gradient function to calculate the
gradient of the disparity map D. 7 is a threshold of the
gradients. If the gradient is larger than the given
threshold (0.05 in our experiments), the pixel is taken as
being around the edges.

To transfer edge pixels indicated by Mpy.sk from
PSV,, to PSV,, we find the corresponding pixels in
each depth layer of PSV,, and PSV, by S(z,y). Hence,
the PSV,(z,y,d) can be updated. The updating process
can be represented as

PSVto (a:,y,d) = PSVts (.’Z',y,d) X Mmask (14)

S(z,y) = d. (15)

Using the updated PSV,, a global background Iy,
can be composed by inverse-over operation38 of pixels on
all depth planes in PSV, that contains transferred pixels
from the source view. The inverse-over operation can help
generate a global background rather than a local back-
ground. Because the pixels from nearer layers d — 1 of
PSV,, can be overwritten by revealed occluded contents
from layers further away d.

To implement the inverse-over operation, the compos-
iting algorithm starts from the furthest plane d = P to
the nearest depth plane d = 1, and the composed output
in the nearest/first depth plane is the final composed
background image I,;. More specifically, when composit-
ing pixels in a nearer depth plane d — 1 of PSV,, a new-
er intermediate background image Ipg, , is composed by
fusing the selected pixels from the older background im-
age Iy, and PSVy,(d—1). The selection process and
conditions are shown in (16),

Ibgd_l (‘T7 y) =

Tvg, (z,y), if Ing, (z,y) #0 & S(z,y) =d
PSSV, (d—1)(z,y), elif (z,y) € Mmask & S(z,y) = d—1

0, else

(16)

where the Ty, . (z,y) will be the pixel from Iyg,(z,y) or
PSVy(z,y,d — 1) if the (z,y) is with minimum matching
errors in depth plane d and also meets other constraints.
The finally composed I,; contains the furthest edge
pixels, also with minimum matching errors in PSV,. The
OSS module aims at preserving as many occluded visual
features as possible to enable perspective rendering of the

target view.
3.4.4 Deep visual fusion module

Subsequently, we have the sampled global back-
ground I, from the source LF captures L;,, which will
be first warped into a background LF Ly using the same
method as in Section 3.3. The background LF Ly, is first
spatial and angular regularized, then fused with a prelim-
inary LF Lpye that is also spatial-angular regularized. The
DVF module learns fusion attention .4 between the con-
tents of Lpre and Lyg:

Liyse = A X fur(Lpre) + (1 — A) X fLp (L) (17)

The attention mechanismB%4l is also proven to be
able to extract representative features from ambiguous re-
gions. Finally, the fused light field features Lygyg will go
through another spatial-angular regularisation module to
implicitly regularise the structure of LF contents:

L= fLF(quse) (18)

where fLp(-) represents the spatial angular regulariz-
ations, which has the same network structure as fqisp(-)-

4 Implementation details

4.1 Training setup

The proposed framework has been implemented with
PyTorch. The disparity estimation model and the LF
synthesis model were separately trained in two stages. In
the first stage, the disparity probability volumes are pre-
calculated and fused in a target camera’s frustum for effi-
cient training. The training of the disparity estimation
model initiates the learning rate as 1E-2 and decays by
0.1 since the second epoch. The training of the disparity
estimation model needs 128 epochs that take 50 hours to
finish on two NVIDIA Tesla V100S GPUs. In the second
stage, the OSS and DVF modules are trained, and the
learning rate is initialized to 1E-5 and decays by 0.5 since
the second epoch. The patch size is set to 128, and num-
ber of depth planes P is set to 128 across the disparity
range of [-4, 4]. All network parameters are initialized as
normal, and the momentum term of the Adam
optimizerl4? is set to 0.5. The training needs 148 epochs
that take 20 hours on one NVIDIA Tesla V100S GPU.

4.2 The dataset

The Stanford Lytro multi-view light field dataset
(MVLF)" was used for training and evaluating models.
In each scene, there are 3 to 5 LF captures, but without
camera parameters and good ground truth disparity
maps. Hence, we estimated the camera parameters K, R,
and 7 by COLMAP3], The ground truth of the disparity
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maps was estimated by the state-of-the-art LF disparity
estimation method introduced in [34]. The proposed
pipeline relies on the accuracy of the large-baseline dis-
parity estimation method from [2] that involves volume
rescaling, homography warping, and fusion. Due to the
limitations of computing memory and the resolution of
the disparity estimated from the slope of the EPI line,
the number of planes of the DPV is limited. As intro-
duced in LLFFI8 the number of planes in MPI determ-
ines the extrapolation boundary. This also applies to ho-
mography warped DPV. So, the outdoor scenes with
large-baseline views require more planes in DPV than in-
door scenes, thus pixels of source views can be accurately
allocated into equal-disparity-distant planes of DPV.
Therefore, both the disparity estimation algorithm in [2]
and our source sampler fail in outdoor scenes that extend
out to infinity. After filtering out the outdoor scenes by a
threshold of disparity estimation error, 133 scenes are fi-
nally reserved, and most are indoor scenes, as expected.
We randomly selected 123 scenes for training and ten
scenes for model evaluation and comparison. For each
rendering instance, we selected two LF captures from
each scene and selected the central view of the target LF
as Iy,

4.3 Loss function

Mean square errors (MSE) between the predicted dis-
parity maps D and the ground truth of disparity maps
Dy, were used to supervise the training of the disparity es-
timation model given by (19). Mean absolute errors
(MAE) between the ground truth LF L, and the final
rendered output LF L, the preliminary rendering out-
put based on central view warping Lpre, and the features
of DVF module Lyg,s, were calculated to supervise the
learning of network parameters according to (20). A1 and
A2 are weight coefficients for the losses of the direct ren-
dering, OSS, and DVF modules, respectively. In our ex-
periments, these two weights are set as 0.2 and 0.1.

Lap =D = Dy|l2 (19)

[:view = HLtO - Lg”l + AlH-Lpre - Lg||1+

)\ZHquse - Lng' (20)
5 Experimental results

5.1 Evaluation of view synthesis quality

The proposed method is evaluated against the state-
of-the-art novel view synthesis methods, including local
light field fusion (LLFF)I8l learning based view synthes-
is (LBVS)[, and single image view synthesis (SynSin)[3.
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Qualitative comparisons are shown in Fig.4. The LBVS
are trained using the MVLF dataset, and the evaluations
of SynSin and LLFF use pre-trained models from their of-
ficial repository. Forty nine novel virtual viewpoints are
arranged in parallel planes to a target camera'’s focal
plane, so a set of novel view positions are arranged in a
7 X 7 array neighbouring the target view. The number of
Planes P in PSV is 128. Metrics of peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) are calcu-
lated to evaluate the quantitative quality of view synthes-
is. As can be seen from Table 2, our method produces
higher PSNR results than others and shows competing
SSIM results. Note that LBVS uses four corner SAls of
target LF as input, which is a much less challenging scen-
ario for LF view synthesis in terms of angular variations.
Our experiments demonstrated that, even when LBVS is
doing a much simpler task than ours, our method still
produces similar, and most of the time, better results
than LBVS, which further validates the efficiency of our
model. LLFF generates and fuses neighbouring multi-
plane images (MPIs) to render novel views, which can ad-
apt to large-baseline parallax inputs. But, it cannot
handle the camera rotations well that largely exist in the
MVLEF dataset, which will directly affect the MPI fusion
process. Thus, the LLFF's image rendering quality de-
graded. One of the approaches most closely related to
ours is SRFI26] which is designed for large-baseline spher-
ical-surrounding views. Because our inputs are con-
figured as two source LFs that have tens of SAIs in the
micro-baseline, which are too close to each other, thus
making it almost uninformative for the multi-view corres-
pondence searching method used in SRF. The correspond-
ences among SAls can only be effectively established by
searching for the minimal pixel intensity variance along
the slope of EPI lines, as shown in Fig.2. Thus, the SRF
will have consequently degraded performance on the LF
dataset. So, we did not make comparisons with SRF due
to unfair inputs.

5.2 Ablation study

We carry out experiments to validate the contribu-
tions of the OSS and DVF modules. Table 3 shows
quantitative ablations of LF synthesis without the OSS
and DVF modules. Full model ours in Table 3 has the
best novel view synthesis quality.

In the experiments w/o OSS module, the source pixels
sampling is disabled. So was the synthesis of the back-
ground LF Ly, This proves that our source pixels
sampling approach is important for completing the final
rendering results with revealed occluded contents. Fig.5
shows that occluded contents around depth discontinuit-
ies have been successfully recovered. Fig.6 shows qualit-
ative ablations of the OSS module.

In the experiments w/o DVF module, the fusion at-
tention A is removed. We can find that the performance
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Fig.4 Visual quality comparison. From column (a) to (f) are input views (two source views in the left column and target view in the
top right), ground truth LF SAI (the most top left, 1st.), results from LLFF, SynSin, LBVS and ours. From the visual results in LLFF
(c), the ghost effect is obvious, and the object boundary is unclear; the color output of SynSin (d) has artifacts in the dark region, and its
output is blurred; the scene boundary of LBVS (e) is incorrect, many scenes around boundaries are lost.

Table 2 Quantitative evaluation on novel view synthesis quality measured by PSNR and SSIM.
Best performance is highlighted in bold; the second best results are underlined

LLFF LBVS SynSin Ours
Method scene

PSNR?T SSIM?t PSNRT SSIM?T PSNR?T SSIM?t PSNRT SSIM?T

Batteries 23.50 0.44 38.31 0.95 30.89 0.89 39.10 0.99

Bottles 23.24 0.47 39.23 0.96 31.03 0.87 40.13 0.99

Boxes 23.59 0.37 38.23 0.96 29.96 0.83 39.20 0.99

Cables 23.14 0.39 35.37 0.93 32.50 0.91 39.81 0.98

Cups 23.50 0.43 38.65 0.96 37.89 0.98 39.02 0.99

Flowers 28.48 0.77 37.09 0.97 28.47 0.77 38.95 0.99

Leaves 22.93 0.12 34.84 0.96 27.60 0.78 35.10 0.97

Pens 23.70 0.48 38.89 0.96 32.10 0.91 39.71 0.99

Signs 23.00 0.36 38.14 0.97 30.80 0.90 39.52 0.99

Tools 23.06 0.50 38.29 0.96 31.63 0.90 40.53 0.99

Average 23.81 0.47 37.70 0.96 30.61 0.86 39.10 0.99
drops without the DVF module. The degraded perform- module is important for accurately fusing background LF
ance proves that the attention mechanism in the DVF Ly, and preliminary LF Lpre. We visually compare the
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Table 3 Ablation study. The best performance is highlighted in bold; the second best results are underlined.
Method PSNRT SSIM?T

w/o OSS 0.96

w/o DVF 0.98

Full model ours 0.99
(a)
(b)

Fig. 5 Examples of revealed background content. The images in row (a) are ground truth images, the images in row (b) are with
occlusion removed. We can observe that occlusions around depth discontinuities are successfully replaced by background contents.

(a) (b) ©

Fig. 6 Images from (a) to (c) are ground truth, output images
from the model without OSS module, and with the OSS module.

output from direct rendering based on the backward
warping of central views in Fig.7(b) and the final output
LF image in Fig.7(c). Fig.7(c) has much less noise than
Fig.7(b). Therefore, the visualization in Fig.7 proves that
the DVF module can further suppress noise in output im-
ages, the effectiveness of attention-guided CNN for image
denoising was also validated in a previous studyl44. Fig.8
further proves that the DVF module is important in com-
plementing the background LF.

6 Limitation

Our method is configured as a multi-view LF frame-
work that adopts methodologies from multi-view stereo
techniques, such as homography warping and pixel-in-
tensity-based cost volume estimation. Therefore, our
method has inherited limitations just like other multi-
view stereo algorithms[32: 33, 45,

First, our method suffers from low-texture regions.
Compared to other cost volume estimation methods
in [32, 33, 45] that use convolution neural networks to ex-
tract high-level features, our pixel-consistency based cost
volume estimation method in the OSS module could be
less robust in low-texture regions.

Second, our method cannot handle large-baseline im-
ages of outdoor scenes well; our method uses DPV, which
has a limited number of planes to transfer disparity from
source views to the target view. The limited number of

@ Springer
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Fig. 7 Visualizations of outputs in different stages. This figure
visualizes a close-up of the (0, 0)-th SAI in the target view. (a)
shows ground truth LF image; (b) shows a warped initial LF
image; (c) shows the output LF image refined by DVF.

disparity planes in DPV is inefficient in resolution for
large-baseline outdoor scenes with a large depth range.
Additionally, the performance of the OSS module is also
affected by the inefficient number of planes limited by
computing memory. Therefore, our method does not per-
form well on the scene flowers and leaves.

Additionally, the noise suppression brought by the
DVF module may further result in the loss of high-fre-
quency details in output images.

7 Conclusions

Rendering a local immersive LF based on arbitrary
large baseline references is a challenging task. Our meth-
od takes large baseline LF captures as input and can syn-
thesize immersive novel views in a novel target viewpoint.
Conventional view synthesis methods require a small
baseline or hundreds of dense input views, while ours only
requires two LF captures, which are convenient with ex-
isting commercial LF cameras. Furthermore, the OSS and
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Fig.8 Ablation study of DVF module. The images in rows (¢) and (f) are ground truth images, and the images in row (a) and (d) are
without the DVF module. The images in rows (b) and (e) are outputs with the DVF module.

DVF modules are proposed to fuse sampled occluded
source features into a final refined LF. Such source
sampling and fusion mechanisms not only help provide
occlusion information from varying observation angles,
but also prove to be able to effectively enhance the visu-
al quality by suppressing sensor noise. Experimental res-
ults show that our proposed method is able to render
high-quality LF images with sparse LF references and sig-
nificantly outperforms the other state-of-the-art LF ren-
dering and novel view synthesis methods.
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