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Abstract—Adaptive dynamic programming (ADP) is an effective 
method for learning while fuzzy controller has been put into use 
in many applications because of its simplicity and no need of 
accurate mathematic modeling. The combination of ADP and 
fuzzy control has been studied a lot. Before this paper, we have 
studied using ADP to learn the fuzzy rules of a Monotonic 
controller, which shows good performance. In this paper, a 
hyperbolic fuzzy model is adopted to make an improvement. In 
this way, both membership function and fuzzy rules are learned. 
With ADP algorithm, fuzzy controller has the capacity of 
learning and adapting. Simulations on a single cart-pole plant 
and a rotational inverted pendulum are implemented to observe 
the performance, even with uncertainties and disturbances. 
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I.  INTRODUCTION 
Dynamic programming is deemed as an effective method to 

solve nonlinear stochastic dynamic problems [1~4] in all kinds 
of application fields. The optimization foundation is the 
Bellman equation, developed by Bellman in 1953 [5]. But it 
suffers “the curse of dimensionality” of computation when the 
states increase. An alternative way to solve this problem is to 
approximate the Bellman J function (the “value function”), 
which coins the idea of adaptive dynamic programming (ADP). 
By developing a parameterized model which is trained to 
approximate J, the controller is trained to minimize the 
function J [6]. In general, the ADP algorithm is divided into 
two parts, the “Critic” and the “Actor”, separately served as an 
approximator to J and a system controller. 

Fuzzy controller is proposed as a method to convert “a 
linguistic control strategy based on expert knowledge into an 
automatic control strategy” [7][8]. Fuzzy control has two 
important parts, membership functions and fuzzy rules. In most 
cases, parameters of fuzzy IF-THEN rules and membership 
functions are provided according to the experience and 
knowledge of human experts. If the provided fuzzy rules have 
bad control performance, then an adaptive law is added to 
update the parameters, which is also called “adaptive fuzzy 
control” [9]. Fuzzy control can be successfully integrated with 
adaptive dynamic programming [10~13], to embody prior 
knowledge about the control objective, and improve its 

learning efficiency. In our paper [14], a Monotonic fuzzy 
controller is developed, in which only the fuzzy rules are 
trained by ADP. The results confirm that the combination of 
ADP and fuzzy controller is efficient.  

Here, some further research is studied in this paper. A 
complex hyperbolic fuzzy model is adopted. In this way, both 
membership functions and fuzzy rules are to be trained by ADP. 
In Section II, we present a general description of the ADP with 
fuzzy controller. In Section III, the new proposed method is 
applied to a cart-pole system, and is compared to the previous 
results. In Section IV, a more complex system-rotational 
inverted pendulum is adopted to verify the method. Section  
presents some discussions about the proposed method and its 
simulation results. In the end, we give some conclusions. 

II. ADAPTIVE DYNAMIC PROGRAMMING WITH FUZZY 
CONTROLLER 

A. The Mechanism of ADP 
The adopted approach proposed by Si and Wang in [15], is 

closely related to ADHDP. Fig. 1 is a schematic diagram of the 
ADP algorithm. 

 
Figure 1.  A schematic diagram of ADP. Signal flow is transmitted along the 

solid lines while parameters are trained along the dashed lines. 
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In this paper, the Actor is a fuzzy controller, and the Critic 
is a network. The reinforcement signal r(t) is either a “0” or a 
“-1” corresponding to “success” or “failure”, respectively. The 
output of the Critic is expected to estimate the cost-to-go J(t). 
For the Critic element, the prediction error and the objective 
function are defined as 

 [ ]( ) ( ) ( 1) ( )ce t J t J t r tα= − − −  (1) 

 21( ) ( ).
2c cE t e t=  (2) 

where α is a discount factor for the infinite-horizon problem 
 which is set 0.95 in this paper. 

 

The objective of training the Critic network is to lower Ec(t) 
close to zero. During the training process, gradient descent 
method (GD) is used to train parameters. 

Similar to the Critic network, the Actor is expected to 
provide optimal action signal u(t) which is to minimize the 
error between the desired ultimate objective, denoted by Uc , 
and the function J. According to our above definition, Uc is set 
“0” for “success”. So the error ea(t) and the performance error 
Ea(t) are defined as 

 ( ) ( )ae t J t=  (3) 

 21( ) ( )
2a aE t e t=  (4) 

The whole process of the ADP algorithm is summarized as 
follows. Firstly, the Actor and Critic are both initialized 
randomly. Then the Actor generates an action signal u(t) based 
on states X(t) and the function J(t) is calculated by the Critic 
element, with the input of u(t) and X(t). Combined with the 
previous J(t-1) and the reinforcement signal r(t), ec(t) and Ec(t) 
are derived. Then the Critic is adapted according to Ec(t) with 
the gradient descent method or PSO, or some other methods, 
until meeting some criterion. Afterwards, the Actor is modified 
with Ea(t) in the same way. The next states X(t+1) are 
calculated from the system with the action signal u(t) generated 
by the modified Actor element. Then, the iteration process 
continues for the next cycle [16~20]. For more details, readers 
can refer to our previous papers. 

B. The Hyperbolic fuzzyModel 

 
Figure 2.  Hyperbolic fuzzyfunctions 

In our previous research [14], the fuzzy controller is 
adopted with the simplest and most common one, which is 
composed of Monotonic membership functions and several 
fuzzy rules. In this paper, the membership functions are 
replaced by a hyperbolic fuzzy model, which is shown in Fig. 
2. 

The formulations are summarized as 
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where i =1 n, Xi is the input variables,  is the parameter of 
the membership function. Then, for each fuzzy control rules, 
the weights are calculated as 
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where ji =N or P, r=1 2n. With fuzzy control rules R, the 
output of fuzzy controller u(t) is generated by 
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C. The Critic Network 
The critic network used in this paper is a simple 

feed-forward neural network with one hidden layer, with the 
same structure as that in the previous studies [14]. For clear 
comparison, only GD method is adopted in this paper. For 
more detailed description, refer to [14].  

D. Training Actor with Gradient Descent (GD) Method 
Compared to [14], the fuzzy membership parameters are 

updated to get better control performance with the GD method 
as 
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where 
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The fuzzy rules are updated with the GD method as 
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III. ADP WITH HYPERBOLIC FUZZY MODEL FOR A 
CART-POLE PLANT 

The new proposed method is now simulated on a single 
cart-pole plant. The plant is a single pole mounted on a cart and 
the objective of the ADP algorithm is to train the membership 
functions and fuzzy rules from initially random values to the 
capability of balancing the pole. 

A. The Cart-Pole Balancing Problem 
The cart-pole plant used here which is shown in Fig. 4 can 

also be found in [15] and [21], and the model formulas are 
summarized in the following. 

( )x t

( )x t

( )tθ

( )tθ

F

 
Figure 3.  Schematic diagram of a single cart-pole plant 
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where 
  9.8 m/s2, acceleration due to gravity; 

 1.0 kg, mass of cart; 
 0.1 kg, mass of pole; 

  0.5 m, half-pole length; 
 0.0005, coefficient of friction of cart on track; 
 0.000 002, coefficient of friction of pole on cart; 

 1,  if 0
sgn( )  0,  if 0

1,  if 0.

x
x x

x
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The system states X(t) are constituted of four variables: 1) 
x(t), position of the cart with the reference to the center of the 
track; 2) , the angle of the pole with the reference to the 
vertical position; 3) , the velocity of the cart; 4) , the 
angular velocity of the pole. 

During the trials, the controller is considered a failure when 
 or x(t) are outside their predefined ranges. At that 

moment, the learning process stops and restarts a new trial. So 
the reinforcement signal is defined as 

 
0 If -12 < <12  and -1< <1,
1 Otherwise.

x
r

θ° °
=

−
 (13) 

B. Simulation Results 
Some parameters are defined before the simulations. In 

ADP algorithm, the learning rate of both the Critic  and 
the Actor  is 0.005; the maximum adapting cycles for the 
Critic Nc and the Actor Na are 50 and 100, respectively; the 
training error threshold Tc and Ta are 0.05 and 0.005, 
respectively. The hidden nodes  of the critic network is 6; 
time step dt is 0.02s. Besides, boundaries B of four 
membership functions are [1m, 12°, 1.5m/s, 120°/s]. 

During simulations, there are at most 1000 consecutive 
trials in a run. If any of the 1000 trials has lasted 6000 steps, it 
is considered successful and the run stops. Otherwise, if the 
fuzzy controller still fails after 1000 trials, the run is 
unsuccessful. 

Both bang-bang and continuous control strategies are 
implemented for 100 runs to calculate their success rate and 
average trials to success. In bang-bang control strategy, the 
constant force is , while in continuous control strategy, 
the conversion gain Ks is 40 multiplied to u. 

To be more realistic, sensor noise is added to the state 
measurements. Two kinds of noise, uniform and Gaussian 
noise are added to the angle measurements . The 
simulation results are shown in Table I. Besides, for 
comparison, the results of new fuzzy controller with hyperbolic 
model, old fuzzy controller with Monotonic, and neural 
network controller [15] are listed in Table II. All controllers 
implement bang-bang control strategy. 

TABLE I.  COMPARISON OF TWO CONTROL STRATEGIES FOR 
CART-POLE PLANT WITH DIFFERENT KINDS OF NOISE USING FUZZY 

HYPERBOLIC MODEL 

 

Noise type Bang-bang Continuous 
Success rate # of trials Success rate # of trials

Noise free 100% 21.67 100% 38.71 
Uniform 5% 100% 21.65 100% 37.18 

Uniform 10% 100% 17.46 100% 36.99 
Gaussian 100% 25.23 100% 43.35 
Gaussian 100% 29.87 100% 34.46 
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From the results, the bang-bang control is still more 
suitable for cart-pole plant than continuous control. It is 
obvious that the new method provides better performance on 
cart-pole system than the old one, and much better than neural 
network controller. With the hyperbolic fuzzy model, the added 
noise has a much less impact on training, mostly because of the 
superiority of fuzzy control and both membership functions 
and fuzzy rules being learned. The training trials are also less 
than the other two controllers when the measurement is 
polluted by noise. This simulation verifies that by training both 
membership functions and fuzzy rules, the controller is capable 
to provide a more efficient performance. 

TABLE II.  COMPARISON THE RESULTS OF THREE CONTROLLERS AT 
SAME SIMULATION CONDITIONS WITH BANG-BANG CONTROL STRATEGY 

 

IV. ADP WITH HYPERBOLIC FUZZY MODEL FOR A 
ROTATIONAL INVERTED PENDULUM 

As the simple cart-pole plant is simulated, now a complex 
system-rotational inverted pendulum (RIP) is adopted to test 
the new method. 

A. The Rotational Inverted Pendulum Problem 
A schematic diagram of RIP is shown in Fig. 5, and the 

system can be formulated as [22~23]: 

 
Figure 4.  The schematic diagram of the rotational inverted pendulum 
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where  is the external torque,  is the pendulum angle,  
is the arm angle, and 

  9.8 m/s2, acceleration due to gravity; 
m 0.05kg, the mass of the pendulum; 

l  48cm, the half length of the pendulum; 

R  57cm, the length of the arm; 

J  0.03264 , the moment of inertia of the 
rotating arm; 

b  0.00351 , the pivot’s viscous friction 
coefficient. 

Similarly, the objective of this simulation is to balance both 
pendulum angle and arm angle within some ranges. So the 
reinforcement signal is defined here as: 

 
0 If -12 < <12  and -40 < <40 ,
1 Otherwise.

r
θ β° ° ° °

=
−

 (15) 

The states consist of the two angles and their angular 
velocities, namely . Here, only continuous 
control strategy is applied to the system, and the conversion 
gain Ks is 10 from u to . 

B. Simulation Results 
The parameters and simulation process adopted here are 

defined and denoted the same as the above simulation, except 
that only continuous control strategy is implemented here. 
Besides, an extra Gaussian noise is added to the measurement 
of pendulum angle . The simulation results for two control 
strategies are listed in Table III. For comparison, the third 
column presents the simulation results using a monotonic fuzzy 
model. 

TABLE III.  COMPARISON OF TOW FUZZY CONTROLLERS AT SAME 
SIMULATION CONDITIONS WITH CONTINUOUS CONTROL STRATEGY 

 
According to the results, training both membership 

functions and fuzzy rules makes a great improvement on 
increasing success rate and reducing training trials compared to 
our old method which only training fuzzy rules. The new 
proposed method ensures the training success rate to 100%, 
even disturbed by noise. It indicates that the new method is 
insusceptible of noise disturbance and has a perfect robustness. 
Fig. 6 is a typical trajectory of angles, torque and function J of 
the last trials during training process. From this figure, it is 
obvious that the fuzzy controller is gradually trained from 
instability to the stability of balancing the system. Fig. 7 shows 
the shape of membership functions after training. They all 
present satisfying results. 

V. DISCUSSIONS 
From the simulations, the new proposed method improves 

efficiently for the combination of fuzzy control and ADP. It is 
verified that training both membership functions and fuzzy 
rules ensures a higher success rate and less training trials by 
both cart-pole plant and RIP. Besides, the hyperbolic fuzzy 
model shows a better robustness than the Monotonic model and 
the neural network with the fact that it is more insusceptible by 

Noise type 
Hyperbolic Fuzzy 

Model 
Monotonic Fuzzy 

Model[14] 
Success rate # of trials Success rate # of trials 

Noise free 100% 35.72 50% 404.30 
Gaussian 100% 72.56 # # 

 

Noise type 

Hyperbolic 
Fuzzy Model 

Monotonic Fuzzy 
Model [14] 

NN[15] 

Success 
rate 

# of 
trials 

Success 
rate 

# of 
trials 

Success 
rate 

# of 
trials

Noise free 100% 21.67 100% 30.42 100% 6 
Uniform 
5% 100% 21.65 100% 37.42 100% 32 

Uniform 
10% 100% 17.46 100% 41.79 100% 54 

Gaussian 
 100% 25.23 100% 45.65 100% 164 

Gaussian 
 100% 29.87 100% 53.28 100% 193 
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noise disturbance. With the ADP algorithm implemented, the 
parameters of fuzzy controller are trained from random to 
appropriate values, rather than being provided according to the 
experience of experts beforehand. 

Besides, some further simulations are implemented. For 
fuzzy controller in cart-pole system using continuous control 
strategy, after training successfully, even with a 20°initial angel, 
the controller can still balance the pole within about 200 steps. 
While for the neural network controller in [16] after training, 
the pole is out of control if the initial angel is above 5°. 

VI. CONCLUSIONS 
Adaptive dynamic programming combined with fuzzy 

control has been brought to the forefront for many years. Both 
in theoretical analysis and actual practice, the method has 
caused a lot interest for researchers. In this paper, it is 
simulated that under-actuated systems are able to be balanced 
by the fuzzy controller after the membership functions and 
fuzzy rules being learned with the ADP algorithm. With the 
simplicity and easy structure of fuzzy control, the controller 
shows an excellent robustness and a wide applicability 
compared to other control methods with better control 
performance. Based on the ADP algorithm, the parameters of 
fuzzy controller are derived without the expert knowledge. But 
some other flaws still need further research, for example the 
stability and convergence of this method are not studied. We 
look forward to more theoretical research. 

 
Figure 5.  A typical trajectory of angles, torque and function J of the last 

trials during training process. 

 
Figure 6.  The shape of membership functions after training. 
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