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Abstract: The artificial neural network-spiking neural network (ANN-SNN) conversion, as an efficient algorithm for deep SNNs train-
ing, promotes the performance of shallow SNNs, and expands the application in various tasks. However, the existing conversion meth-
ods still face the problem of large conversion error within low conversion time steps. In this paper, a heuristic symmetric-threshold recti-
fied linear unit (stReLU) activation function for ANNs is proposed, based on the intrinsically different responses between the integrate-
and-fire (IF) neurons in SNNs and the activation functions in ANNs. The negative threshold in stReLU can guarantee the conversion of
negative activations, and the symmetric thresholds enable positive error to offset negative error between activation value and spike fir-
ing rate, thus reducing the conversion error from ANNs to SNNs. The lossless conversion from ANNs with stReLU to SNNs is demon-
strated by theoretical formulation. By contrasting stReLLU with asymmetric-threshold LeakyReLLU and threshold ReLU, the effective-
ness of symmetric thresholds is further explored. The results show that ANNs with stReLU can decrease the conversion error and
achieve nearly lossless conversion based on the MNIST, Fashion-MNIST, and CIFAR10 datasets, with 6X to 250 speedup compared
with other methods. Moreover, the comparison of energy consumption between ANNs and SNNs indicates that this novel conversion al-
gorithm can also significantly reduce energy consumption.
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1 Introduction

Artificial neural networks (ANNs)[ll such as convolu-
tional neural networks(?l and recurrent neural networksl3,
have achieved remarkable progress in various large-scale
tasks(+6l. However, powerful efficiency comes at the ex-
pense of high energy consumption. Compared with ANNs,
spiking neural networks (SNNs)I”: 8 employ the spike to
transmit information, resembling the information pro-
cessing mechanism of human brain, which overcomes the
problem of high power consumption in ANNs. SNNs can
save several orders of magnitude of energy when de-
ployed on specialized neuromorphic hardwares compared
to ANNs[% 10, Existing training methods of SNNs gener-
ally include direct training and indirect training. In terms
of direct training, both unsupervised learning algorithms,
e.g., spike-timing-dependent plasticity (STDP)[!!, and su-
pervised learning algorithms such as spatio-temporal
(STCA), back-

credit assignment spatio-temporal

Research Article

Manuscript received on July 24, 2022; accepted on October 28,
2022; published online on March 31, 2023

Recommended by Associate Editor Cheng-Lin Liu

Colored figures are available in the online version at https://link.
springer.com/journal/11633

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag GmbH Germany, part of Springer Nature 2023

propagation (STBP)!3l for SNNs which are constrained to
relatively shallow structures and limited performance on
large-scale datasets. The indirect training methods ex-
ploit the knowledge from ANNs to improve the efficiency
of SNNs, and thus have advantages in the feature extrac-
tion and structure scalability.

Indirect training methods for SNNs mainly refer to the
conversion methods from ANNs to SNNs. This approach
trains an ANN utilizing standard backpropagation meth-
ods, and then transfers the parameters to SNNs with an
equivalent architecture as shown in Fig.1. The conver-
sion algorithm is not limited by the depth of networks
and can be scaled up to deep structures to implement
complex tasks. Cao et al.'4 found that the firing rate of
neurons in SNNs can approximate the activations of
neurons in ANNs within enough time steps, which is the
foundation of ANN-SNN conversion. However, the per-
formance loss during ANN-SNN conversion has been the
bottleneck problem to be solved. Diehl et al.l'®l thought
that the two main sources of conversion error are under
activation (Fig.1(b)) caused by postsynaptic neurons that
do not accumulate enough membrane potential for spike
firing, and over activation (Fig.1(b)) caused by postsyn-
aptic neurons that integrate too many presynaptic spikes
at a given time, leading their membrane potential to be-
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Train an equivalent ANN, and then transfer the parameters to the SNN. (a) In the standard ANN-SNN conversion process,

batch normalization layers should be absorbed into convolution layers, followed by weight normalization. ReLU and LeakyReLU are
commonly used activation functions. (b) Spike patterns (left) and detailed membrane potential curves (right) of two main sources of

conversion error(16],

come much higher than the threshold, and eventually
leaving the residual membrane potential. After that, re-
searchers have been focusing on improving the conver-
sion efficiency, i.e., decreasing the conversion error.

Different methods have been introduced to decrease
the conversion error. Many methods for weight normaliz-
ation have been presented by researchers to address the
problem of over activation. Diehl et al.[1l proposed mod-
el-based normalization and data-based normalization to
scale the weights, which either utilizes the maximum pos-
itive activations or the maximum weights. However, max
value normalization is prone to be influenced by singular
outlier samples. Rueckauer et al.ll7l proposed a robust
percentile algorithm that selects the p-th maximum activ-
ation as the scale factor. Sengupta et al.'8] adopted the
maximum SNN activations rather than ANN activations
to realize Spike-norm. Instead of layer-wise weight nor-
malization, Kim et al.!9 introduced channel-wise weight
normalization based on the significantly different firing
rate distribution of each channel. Nevertheless, the range
of ANN activations is constrained to [0, 1] with weight
normalization, which dramatically minimizes the conver-
sion error while significantly increasing latency to achieve
lossless conversion.

As a result, researchers have set their sights on redu-
cing the number of time steps. Some works attempt to fit
the transformed SNNs to ANNs. Li et al.29 adjusted the
parameters of SNNs, such as weights, bias, and initial
membrane potential, to decrease the conversion error lay-
er by layer while reducing the time steps required to
achieve lossless conversion. The original ANNs are also
directly altered to be fundamentally closer to the SNNs.
By modifying the rectified linear unit (ReLU) function,
clamped and quantized (CQ)RY training of ANNs is per-
formed to constrain the input and activation values,
thereby reducing the gap between the integrate-and-fire
(IF) neurons of SNNs and the activation functions of
ANNSs. Ding et al.?2 replaced the ReL.U activation func-
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tion with rate norm layer. The quantization clip-floor-
shift activation function was introduced to replace ReLU
by Bu et al.?3 to achieve ultra-low latency SNNs. Other
researchers consider the loss of temporal dimension in-
formation during conversion and apply temporal coding
in the converted SNNs, such as time-to-first-spiking cod-
ing?4, phase coding(?® and burst spikesl26l. These meth-
ods, however, are limited to the ReLU activation func-
tion in ANNs and are unable to transform negative activ-
ations into spikes, hindering the properties of ANNs to
promote the development of SNNs. Therefore, Yu et al.l27]
transferred ANNs with leaky rectified linear unit (Leak-
yReLU) to SNNs based on theoretical formulas. TerMap-
ping, a double-threshold conversion model, was proposed
to convert negative activations.
latency, they also proposed AugMapping, which uses ex-
tra spike coefficients to carry additional information in-
cluding both polarity and the number of spikes fired at a
time step. However, AugMapping requires additional
memory to store the spike coefficients, as it replaces the
energy cost with memory consumption. Hence, the fast
and inherently low-power conversion method from ANNs
to SNNs needs to be explored to improve the conversion
efficiency.

In this paper, we propose a brand new symmetric-
threshold ReLU activation function for fast and nearly
lossless ANN-SNN conversion. The proposed activation
function, whose thresholds corresponding to the positive
and negative thresholds of converted SNNs, is employed
during the training process of ANNs. The contributions of
this paper are as follows:

1) A heuristic symmetric-threshold ReLU (stReLU)
activation function is presented to perform the conver-
sion from ANNs to SNNs based on the intrinsic differ-
ence between the activations of ANNs and the spiking

To reduce transfer

rate of IF neurons in SNNs. Detailed theoretical formulas
are provided to demonstrate its efficiency in reducing
conversion error.
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2) Based on the stReLU, the asymmetric-threshold
LeakyReLU (atLeakyReLU) and threshold ReLU (tReLU)
are compared to suggest the effectiveness of symmetric
thresholds.

3) We evaluate the conversion method on various net-
works and datasets. The experimental results show that
the proposed method can reduce the conversion error
within a few time steps and achieve nearly lossless con-
version at lower energy costs.

2 Preliminaries

2.1 Activation function in ANNs

ReLU assigns excellent nonlinear properties and is one
of the most widely utilized activation functions in ANNs.
Assuming the output of layer [ is 2!, the activations can
be formulated by (1).

zl _ f(lel—l _|_bl) (1)

ra={" T2 (2)

ar, <0

where W' denotes the connection weights from the
neurons in layer [ — 1 to the neurons in layer [, and ' is
the corresonding bias. However, the negative inputs to
ReLU have no gradient as « is set to zero, leading
neurons to fail to learn. Yu et al.2l introduced the
LeakyReL U2, 29 activation function instead of the ReLU
activation function in ANNs. LeakyReLU is a variant of
ReLU that can solve the dying ReLU problem, because
LeakyReLU sets the slope to nonzero when the input is
negative.

2.2 Neuron model in SNNs

IF[30, 31] neuron models are used in converted SNNs.
The membrane potential update of the IF neuron con-
tains two phases. The first phase is membrane potential
accumulation, where postsynaptic neurons accumulate spi-
ke inputs from presynaptic neurons, as represented in (3).

Viemp() = VIt = 1) + W' )V +0 (3

where V'(t) and V., (t) represent the membrane
potential and instantaneous membrane potential of
neurons in layer ! at time t, respectively. o'(t) indicates
whether neurons in layer [ fire spikes at time t. If
Vihmp(t) exceeds the threshold, o'(t) equals 1, otherwise
it equals O.

The second stage is spike firing. When the membrane
potential themp(t) exceeds the threshold Vi, there are
two common ways to adjust the membrane potential, in-
cluding reset by zero and reset by subtraction. We use

the latter to subtract the threshold V;;, from the current
membrane potential at the time it exceeds V. The for-
mula is as follows:
Vlem (t) - Vlh? if Vlem (t) Z Vlh
Vi) = { tl ? ! tl ? tl (4)
‘/temp(t)7 lf ‘/temp(t) < ‘/th'

Equating (3) and (4) yields (5), which represents the
membrane potential of postsynaptic neurons at time t.

Vi) =vVit—1)+ Wl )V + b — o' 1)V (5)

3 Method

In this section, we first introduce the proposed
stReLU activation function used in ANN training. Then,
the conversion method from ANNs to SNNs is described
in detail. Next, the conversion error is analysed by formu-
lating the network behavior with the proposed stReLU.
Finally, to verify the effectiveness of stReLU, other exten-
ded activation functions based on stReLU are introduced.

3.1 Symmetric-threshold ReLU

The main purpose of TerMapping and AugMapping/27]
is to retain the negative input of the activation function.
However, since the slope for negative input of Leaky-
ReLU in ANNs often takes a value of 0.01 or less, the
positive and negative thresholds for spike firing of the
converted SNNs are not equal. The asymmetric
thresholds will result in a series of issues. The intrinsic
reason is that when applying the subtracting mechanism
as the reset operation, asymmetric thresholds provide two
separate quantization factors, resulting in different up-
dates in membrane potential when positive and negative
spikes are firing. This makes the model unstable and even
uncontrollable, limiting the effectiveness of the conver-
sion from ANNs to SNNs.

Therefore, we focus on the distinction between the ac-
tivation function of ANNs and the spike operation of
SNNs. The spike mechanism in SNNs is essentially a
quantization and clip operation that involves membrane
potential accumulation and spike firing. Hence, this pa-
per employs a novel activation function for ANNs in con-
version named stReLU. stReLU has symmetric thresholds
that correspond to the positive and negative thresholds of
the IF neuron model, allowing the converted SNNs to re-
tain negative inputs while avoiding a series of issues
caused by asymmetric thresholds.

Forward propagation of stReLU. We define the
forward propagation of stReLU as (6) where V;, is a cus-
tom bound. When the input of the activation function ex-
ceeds the bound, it will be clipped to the bound.

2! = stReLUW'2' 7! 1+ 1) (6)
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‘/th7 if x Z ‘/th
stReLU(z) = | z, if —Vin << Vi (7)
~Vin, if 2 < Vi,

When ignoring bias, further derivation of (7) yields

(8).
2' = clipW'2'"", — Vi, Vi) (8)

clip(z, a, b) means setting the upper bound of z to a and
the lower bound to b.

Backward propagation of stReLU. The partial
derivative &' of the loss L with respect to z' can be for-
mulated by (9).

g_ 0L _ 0L 02 _
T 0zl 9zt ozt

. dstReLU (2')

0z!
S Vi < 2l < Vi )
0, otherwise.

3.2 Conversion from ANNs to SNNs

During the conversion process, convolution layers,
fully-connected layers, and average pooling layers in con-
verted SNNs are identical to ANNs when converting
ANNSs to SNNs. The conversion from the activation func-
tion to the IF neuron model, as shown in Fig.2, is the
most critical aspect and the main source of conversion er-
ror. The relationship between stReLU output and IF

Machine Intelligence Research 20(3), June 2023

spiking rate is deduced, indicating that stReLU can im-
plement lossless conversion.

When neurons fire spikes, we consider a soft-reset
mechanism to reduce membrane potential by V;, after
each spike, the membrane potential of neurons in layer [
at time T can be given as (10).

T

ViT) =VI(0)+) W' ')V =D o' (t)Vih. (10)

t=1

The meaning of V(t) is the same as Section 2. V(0)
is the initial membrane potential, and is set to be 0 in the
experiment. At each moment, each neuron has three
spike firing states including positive spike, negative spike,
and no spike fired. Since then, 31, o'(¢)V}, can be sim-
plified to NV} where N' indicates the number of spikes
of neurons in layer [ and equals the number of positive
spikes minus the number of negative spikes.

Then, we assume the residual membrane potential
VH(T) lies in [~ Yin, Yin),

2 2

Vih . 1 1-1 -1 I/l Vi
-5 S;WO OV =NV < o> (11)
further simplification,
l 1
SN cTwle v - N < B (1)

where 6' ' = (1/T) Y/_, 0o'~". We can further get

Fig.2 Conversion process from activations of activation functions to spike firing rates of IF neural models. (a) Standard ANN-SNN
conversion. (b) ANN-SNN conversion of ANNs with stReLU. Weight normalization is necessary for ANNs with ReLU conversion but
not for ANNs with stRelLU, and ANNs with stReLLU can convert negative activations to negative spikes. In the case of double thresholds,
IF neurons have three states at each time step: 0, 1 and —1, which represent no spike, positive spike, and negative spike, respectively.
Positive and negative spikes cancel out when calculating the spike firing rate of IF neural in 7 time steps. Taking the postsynaptic IF

neuron in (b) as an example, 6; = (4+ (-5))/10 = —0.1.
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TW VI 1 TW' ' (Vi L1

<N'<

Vi 2 Vi 2
(13)
that is
1=l-1 -1
N' = round (TWVW> (14)
th

round(-) means rounding z up to the nearest integer.

&' equals to the spike rate NZ/T of neurons in layer (.
Since at most T positive spikes or T' negative spikes can
be fired in T' time steps, we clip &' to [—1, 1].

5 = clip < round(TWl o ! thf: ' / thh)

7 ,1,1) . (15)

3.2.1 Conversion error

In this section, we formulate a mathematical deriva-
tion to demonstrate that the stReLU can minimize the
squared conversion error.

The conversion error between stReLU and IF is first
defined as

e =z -4 (16)

Then, the expectation of the squared conversion error
of layer I is E,:[2' — 6']%. By shifting 2 or &', the system-
atic bias between them can be further optimized32l. Next,
we demonstrate that stReLU can naturally reach the
minimal E_;[2" — 6']? without shifting.

We fix 6' and shift z' by Az. Taking (15) and (8) in-
to (16) and assuming Vip = 1, when the input of layer [
in ANN is equal to SNN, (17) can be obtained.

E.[(z' + Az)— o' =

round(7'z")
T

2
E. [(Z' 4+ Az) -

z

(17)

l

Then, we assume that z° is uniformly distributed

within each small interval [I¢, I+11] with the probability
density function p; (¢t =0,1,---,27 — 1), where I, = (t—
1)/T23. Let

g(z") = 2" — round(T2")/T. (18)
Substituting (18) into (17), E_i[(2' + Az) — 6']* can
be simplified to
B2+ Az) — 6] =
E.[Az +g(2") =
(Az +E.[g(z)])? + Da[g(z")] (19)

where D,:[g(z')] represents the variance of g(z'). When
Az = —E_i[g(z")], E,i[(2' + Az) — 6']? is minimal. Then,

we give the following derivations to demonstrate
E.i[g(z")] = 0.

z

round(T'z!
Balg(=))] = Bz - 22202 )]

(2t—2T+1)

T . @=T),
6om pe(z" — e )dz"+

(t— )

t§+1 (t—T+1) ldl*
(2t—2T+1) pt( T -z ) z =

2T
Ae” + Aet = 0. (20)

As shown in Fig.3, Ae™ represents the error when the
spike firing rate of the IF neuron is larger than the activ-
ation of stReLU, while Ae™ represents the error when the
spike firing rate is less than the activation. Ae™ can be
offset against nearby Ae~ when calculating E_i[g(2")].
Therefore, when Az =0, the expected squared conver-
sion error E,i[(2' + Az) — 6']? is minimal.

1.0
4

_ IF v
% -=-=-- stReLU
% 0.5 Ae* y
é Ae” s
Twe
s
o 0 7
S a
IS
g
g 05 7
E 4
154
<

-1.0

-1.0 -0.5 0 0.5 1.0

Average input voltage (W'z'™)

Fig.3 Conversion error between stReLU in ANNs and IF in
SNNs (Vz, = 1,7 = 2). Aet can be offset against nearby Ae™
when calculating the expectation of conversion error E ; [g(z!)].

Through the above derivation, we demonstrate that
stReLU naturally guarantees the minimal E_:[z' — 6']?
without an additional shift operation. Furthermore, ac-
cording to Lemma 1 in Li et al.29], the expected squared
conversion error of the last layer is minimal. Therefore,
the application of stReLU can achieve lossless conversion

from ANNs to SNNs.
3.3 Other threshold activation functions

The thresholds are added to the LeakyReLU and
ReLU activation functions to highlight the significance of
symmetric thresholds and negative activations, respect-
ively.

When the slope for the negative input of LeakyReLU
is set to a, its threshold equals —1/al27. As a result, the
proposed atLeakyReLU is obtained by setting the negat-
ive threshold of LeakyReLU to —1/a and the positive
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threshold to 1, which can be formulated by (21).

1, ifa>1
T, if 0<z<1
atLeakyReLU(x) = 21
Y @) ar, if—%<x<0 ( )
«
—l, if x< —%.
« «@

Threshold ReLU (tReLU)B2 has only a positive
threshold, and the activation value is clipped to the
threshold when it exceeds the threshold. tReLU is defined
as (22).

1, ifx>1
tReLU(z) =< =z, if 0<z<1 (22)
0, if z<0.

The three threshold activation functions are shown in
Fig.4.

Activation Activation Activation
1 1
1 Input Vg 1 Input -1 1 Input
(b) (©)

Fig. 4 Comparison of threshold activation functions. (a) Sym-
metric-threshold ReLU; (b) Asymmetrical-threshold Leaky-
ReLU; (c) Threshold ReLU.

4 Experiments

4.1 Experimental setup

We use the mainstream framework PyTorchB3 to im-
plement the whole conversion method. To verify the effi-
ciency of the conversion method for reducing the time
steps, we conduct experiments on MNISTI, Fashion-
MNISTB4 and CIFARI10B% with six different architec-
tures (Arc.) in Table 1, including fully connected net-
works, convolutional networks and more complex VGG
networks. Single digits indicate the numbers of neurons in
the fully connected layer, and ¢ and p represent the con-
volutional layer and the pooling layer, respectively. For
example, 32c5 indicates that the convolutional layer has
32 feature maps, and the kernel size of each feature map
is 5x5. p2 means that the kernel size of the pooling layer
is 2% 2.

Dataset. MNIST is a handwritten digital dataset la-
belled from 0 to 9, each of which is a 28 x 28 grayscale
image, with 60000 training samples and 10000 test
samples. FashionMNIST is a dataset of clothes with the
same sample numbers and image size as MNIST. Each
image in CIFARIO0 is a 32 x 32 RGB color image, and it

@ Springer
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Table 1 Experimental network configurations(27]

Dataset Network Arc. Topology
MNIST Netl 1200-1200-10
Net2 12¢5-p2-64c5-p2-10
Fashion-MNIST Net3 6400-10
Net4 32c5-p2-64c5-p2-1024-10
CIFARI10 Net5 128c¢3-128c¢3-p2-256¢3-256¢3

p2-512¢3-512¢3-p2-1024-10

Net6 VGG16036]

contains 50 000 training samples and 10 000 test samples
containing ten categories. MNIST and Fashion-MNIST
are not preprocessed. On CIFAR10, we employ autoaug-
mentB7 and cutoutBs for data augmentation. We fill four
zero-pixel padding around the original 32 x 32 pixel im-
age, then crop it to its original size at random, flip it ho-
rizontally with a probability of 0.5, followed by normaliz-
ation.

Training. In all networks in Table 1, we utilize the
stReLU activation function with bound of +1. Among
them, MNIST is trained using the simple fully connected
network Netl and the convolutional network Net2, Fash-
ion-MNIST is trained using Net3 and Net4, and
CIFARI10 is trained using the more complicated VGG
networks Net5 and Net6. During training, we use the
Adam optimizer with a dynamic learning rate for 300-400
epochs until the networks converge. We add a batch nor-
malization layer in front of each activation function layer
in the feature extraction section to improve the training
accuracy for VGG networks.

Inference. IF neurons are employed in SNNs during
inference, and the positive and negative thresholds are
the same as in ANNs. To reduce the conversion error, we
do not use the spiking mechanism in the input layer and
output layer. The image pixel values are directly fed into
the network without encoding the images in the first lay-
er, which avoids information loss during the encoding
process. For the last layer, the spiking neurons integrate
the spiking input of presynaptic neurons, and then fire
multiple spikes instead of a binary spike.

4.2 Results

4.2.1 Accuracy comparison with other methods

In this section, we compare our method with existing
methods using VGG16 architecture including data-based
normalization (DataNorm)[%, spike-based normalization
(SpikeNorm)[8l, CQ[21 residual membrane potential SNN
(RMP-SNN)B39 and rate norm layer (RNL)22 through
the classification task on CIFARI10, and the result of
DataNorm is from Yu et al.27 By comparing the time
steps required for the SNNs to converge and the conver-
sion error relative to ANN accuracy (Acc.) during the
ANN-SNN conversion, the performance of different meth-
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Table 2 Comparison of the conversion error on
CIFAR-10 dataset

Method ANN Acc. Error Latency
DataNorm!!5] 91.03% 5.08% -
SpikeNorm/[8] 91.70% 0.16% 2500

cQy 91.77% 0.00% 1 000
RMP-SNNI39] 93.63% 0.00% 1536
RNL[22 92.86% -0.04% -
This work 93.71% 0.00% 147

ods is evaluated. As shown in Table 2, ANNs with
stReLU can achieve lossless conversion within 147 time
steps.

In addition, we compare our algorithm with TerMap-
ping, which also considers the importance of negative ac-
tivations. Table 3 lists the ANN accuracy, SNN accuracy,
latency, and final conversion error obtained by different
conversion methods with the same network architectures
on the same datasets. All six networks achieve lossless
conversion in a few time steps, as shown in Table 3. The
simple fully connected architectures Netl and Net3 re-
quire only a few time steps to achieve the accuracy of
ANNSs, and SNNs even outperform ANNs. For convolu-
tion architectures Net2 and Net4, fewer than 100 time
steps are needed to achieve lossless conversion, which is a
significant improvement over TerMapping. For more
complex tasks on CIFARI10, Net5 and Net6 with stReLLU
achieve lossless conversion within acceptable time steps,
and even higher accuracy than ANNs.

Table 3 Comparison of our algorithm with TerMapping

Network Arc. ANN Acc. SNN Acc. Latency Error

MNIST
Netl (TerMapping) 98.77% 98.77% 750 0.00%
Netl (Ours) 98.29% 98.29% 3 0.00%
Net2 (TerMapping) 99.35% 99.35% 750 0.00%
Net2 (Ours) 99.29% 99.29% 11 0.00%

FashionMNIST

Net3 (TerMapping) ~ 90.18%  90.18% 1500  0.00%
Net3 (Ours) 89.90%  89.92% 11 -0.02%
Netd (TerMapping) ~ 92.11%  92.11% 2900  0.00%
Net4 (Ours) 90.83% 90.83% 79 0.00%
CIFARI10
Net5 (TerMapping) 94.13% 93.75% 2 800 0.40%
Net5 (Ours) 92.67% 92.69% 79 -0.02%
Net6 (TerMapping) 93.42% 92.30% 4400 1.20%
Net6 (Ours) 93.71% 93.71% 147 0.00%

We further visualize the images of the conversion er-
ror of Netl-Net4 as a function of time steps in Fig.5, and
the accuracy of Net5-Net6 as a function of time steps in
Fig.6. The conversion error of TerMapping begins to ex-
hibit a substantial downwards trend after approximately
8 time steps for Net1-Net3, whereas stReLLU has a low er-
ror at the first time step. For Net4, stReLU performs
worse than Net1-Net3 at the first time step, but still sur-
passes the TerMapping results. For more challenging CI-
FARI10 with deeper networks Net6, the stReLU has high
accuracy from the beginning, whereas the TerMapping
accuracy starts to improve after 128 time steps.

By comparison with other methods, the results show
that the converted SNNs converge faster with our al-
gorithm, which achieves higher accuracy within fewer
time steps, with 6x to 250x speedup. The experimental
results show that our algorithm has certain advantages in
the existing ANN-SNN conversion algorithms. The applic-
ation of stReLU restricts the activations of ANN to [-1,
1], thereby reducing the conversion loss caused by over
activation, making the expectation of squared conversion
error in each layer reach minimal, and achieving lossless
conversion within limited time steps.

Weight normalization is a common technique for redu-
cing conversion error in existing conversion algorithms,
but it is typically challenging to determine the scale
factor of normalization, and weight normalization re-
quires statistics on the weights of all network layers for
the entire dataset to calculate the scale factor, which will
significantly increase the computational cost. In contrast,
stReLU can modify the weights without normalization,
balance over activation and under activation, and there-
fore reduce conversion error caused by residual mem-
brane potential, as well as decrease the inference delay.
4.2.2 Ablation study

Inspired by the negative activations used in [27],
which has been experimentally demonstrated to be effi-
cient for improving the performance of the conversion
method, stReLU is introduced to retain negative activa-
tions in this paper. We count the numbers of positive and
negative activations in different layers of Net6 based on
1024 samples. As shown in Fig.7, the relative distribu-
tion of zero activations and positive activations for
tReLU is similar to the relative distribution of positive
and negative activations for stReLU. This indicates that
the proposal of the stReLU activation function has little
effect on the relative distribution of activations. Instead,
it is the activation function itself that contributes most to
reducing conversion error.

Afterwards, we evaluate the accuracy of the conver-
ted SNNs and the time steps required for conversion with
these three activation functions to analyse how different
threshold activation functions actually impact ANN-SNN
conversion.

As illustrated in Table 4, compared with the activa-
tion function with asymmetric thresholds, the symmetric
thresholds can minimize the expectation of the squared
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Fig.7 Comparison of the numbers of positive and negative
activations between stReLU and tReLU in each convolutional
layer of Net6.

conversion error in each layer, thus reducing the infer-
ence delay. Therefore, while the network structure be-
comes deeper, the ANN with stReLU can still achieve
faster lossless conversion. Since the asymmetric thresholds
will result in an asymmetric update of the membrane po-
tential, the performance of atLeakyReLU is unpredict-

@ Springer

Table 4 Comparison of different activation functions

Network Arc. AcFunction ANN Acc. SNN Acc. Latency Error

Net5 stReLU 92.67%  92.69% 79  -0.02%
atLeakyReLU 92.78%  92.79% 373 -0.01%

tReLU 93.03%  93.05% 756  -0.02%

Net6 stReLU 93.71%  93.71% 147 0.00%
atLeakyReLU 93.28%  93.15% 808 0.14%

tReLU 93.31%  93.31% 603 0.00%

able in different models and may even degrade when the
network structure is much deeper. It can be observed
from Fig.8 that the stReLU enables the converted SNN
to obtain higher accuracy with fewer inference time steps
than the other two threshold activation functions. In con-
clusion, the experimental results are consistent with our
theoretical formulations.
4.2.3 Energy efficiency

According to previous studies042 combining SNNs
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converges faster than atLeakyReLU and tReLU.

with event-driven neuromorphic platforms can further ex-
ploit the benefits of SNNs in terms of low power con-
sumption. Only neurons that fire spikes are considered
during inference, drastically reducing the amount of com-
putation. Moreover, in ANNSs, an operation involves a
floating-point multiplication and a floating-point addi-
tion operation, known as the multiply accumulate (MAC)
operation, whereas in SNNs, it refers to a floating-point
addition operation. The power consumption of addition
operations in hardware is substantially lower than that of
multiplication operations, hence deploying SNNs on neur-
omorphic computing systems will greatly reduce power
consumption. As a result, we exclusively compute the
power consumption of ANNs and SNNs on Netl-Net6
(Table 5).

In Table 5, OPann denotes the number of MAC oper-
ations in ANNs“3l. OPsxy is the number of synaptic op-
erations (SOP)44 45 within 7 time steps, when the con-
version error is less than 1%. The energy cost for 32-bit
ANN MAC operation is 4.6pJ 46 while the energy cost for
SOP is 77fJ47. Energyann and Energysyn represent
the energy cost in ANNs and SNNs, respectively, which
can be formulated by (23) and (24).

Energyanny = 4.6 X OPann (23)

Energysnn = 0.077 x OPsnN. (24)

Table 5 shows that, SNNs with stReLLU only cost

43.43% of the energy of ANNs in tasks on CIFARI10, and
nearly 99% of the energy can be saved in shallow net-
works. Compared with most ANNs, SNNs with stReL.U
can decrease energy usage, even in deep neural networks.

5 Conclusions

Based on the intrinsically different responses of the ac-
tivation functions in ANNs and IF neuron models in
SNNs, this paper proposes a novel symmetric-threshold
ReLU activation function for ANN-SNN conversion,
which not only retains the negative activations but also
achieves lossless conversion within relatively few time
steps. The effect of stReLU on the conversion error is
demonstrated by detailed theoretical formulations. Based
on the above analysis, the asymmetric-threshold Leaky-
ReLU and threshold ReLU are explored to improve the
training performance of ANNs. Furthermore, we conduct
experiments on various network structures and datasets,
which shows that our algorithm can significantly reduce
the conversion error, accelerate the convergence of con-
verted SNNs, and achieve higher accuracy within fewer
time steps compared with other algorithms that use
ReLU or LeakyReLU. The efficiency of SNNs in reducing
energy consumption is further indicated by calculating
the energy consumption of ANNs and SNNs. We will con-
tinue to focus on finding activation functions that are
more suitable for conversion, and alleviate the restric-
tions on ANNs while achieving lossless conversion from
ANNSs to SNNs.

Table 5 Comparison between ANNs and SNNs in terms of operation number and energy consumption

Energys NN

Net Arc. OPann (x10%) OPsnn (x10%) Energyann (x10°pJ) Energysnn (x10°pJ) EnergyAN N
Netl 2.39 1.14 11.01 0.88 0.80%
Net2 1.41 1.02 6.49 0.78 1.20%
Net3 5.08 2.91 23.38 2.24 0.96%
Net4 4.80 23.51 22.06 18.10 8.20%
Netb 610.08 14 807.00 2 806.39 11 401.39 40.63%
Net6 313.48 8 132.60 1442.00 6 262.10 43.43%
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