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ABSTRACT
The development of autonomous driving has attracted extensive
attention in recent years, and it is essential to evaluate the per-
formance of autonomous driving. However, testing on the road
is expensive and inefficient. Virtual testing is the primary way to
validate and verify self-driving cars, and the basis of virtual test-
ing is to build simulation scenarios. In this paper, we propose a
training, testing, and evaluation pipeline for the lane-changing
task from the perspective of deep reinforcement learning. First,
we design lane change scenarios for training and testing, where
the test scenarios include stochastic and deterministic parts. Then,
we deploy a set of benchmarks consisting of learning and non-
learning approaches. We train several state-of-the-art deep rein-
forcement learning methods in the designed training scenarios and
provide the benchmark metrics evaluation results of the trained
models in the test scenarios. The designed lane-changing scenarios
and benchmarks are both opened to provide a consistent experi-
mental environment for the lane-changing task<fn id="fn1">1 The
code of our proposed experimental environment can be found at
https://github.com/powerfulwang/CarlaHighwayTest. </fn>.
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1 INTRODUCTION
In recent years, autonomous driving technology has been devel-
oping rapidly. It is expected that by 2050, the application of this
technology can reduce vehicle emissions by 50%, and the road traf-
fic casualty rate will be close to zero [1]. For industry players, the
main testing method is the real vehicle road test. However, Kalra et
al. [2] of RAND Corporation conclude that at the 95% confidence
level, road testing of more than 14.2 billion km is required to prove
that the fatality rate of autonomous vehicles is 20% lower than that
of human drivers. Therefore, virtual testing will be the primary
way of validation and verification of autonomous vehicles.

Reinforcement Learning (RL) agents learn by interacting with
the environment, adjust their policy by obtaining rewards, and
maximize the reward function by balancing exploration and ex-
ploitation, expecting to find the optimal policy corresponding to
the maximum cumulative reward [3]. Deep Reinforcement Learn-
ing (DRL), combining the perception capability of Deep Learning
(DL) and the decision-making capability of RL [4], is suitable for
solving the autonomous driving decision-making problem, which
is a typical application of time-series decisions in a complex en-
vironment. Many existing studies apply DRL to the intersection
[5], lane changing [6], [7] scenarios, etc. Still, to the best of our
knowledge, there is no standardized system for training and testing
scenarios, evaluation metrics, and baseline methods performance
comparisons.

In this paper, we propose a training, testing, and evaluation
pipeline (shown in Figure 1) for lane change scenarios from the
perspective of DRL with the help of a virtual autonomous driving
simulator. The contributions of our work are listed as follows: i) We
design training and testing scenarios for the lane-changing task,
where the test scenarios include stochastic and deterministic parts
(Section 2); ii) We provide evaluation metrics for the agents in the
stochastic and deterministic test scenarios, respectively (Section
5); iii) We formalize the lane-changing decision-making problem
as an image-state-based markov decision process with definitions
of actions and rewards (Section 3), and provide benchmark results
for several algorithms, including the non-learning method MOBIL
and state-of-the-art DRL methods D3QN, A2C, and PPO under our
design (Section 4 and 6).
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Figure 1: The proposed pipeline of training, testing, and evaluation.

2 LANE CHANGE SCENARIOS
The lane changing scenario is a typical class of driving scenarios
involving multiple traffic participants. This paper first introduces
the conducted training and testing scenarios of lane changing.

We use the CARLA [8] simulator, which consists of a scalable
client-server architecture. The server is responsible for the simu-
lation itself: sensor rendering, physics calculations, updates of the
world state and its participants, etc. The client consists of a series
of modules that control the logic and set the world conditions of
actors (an actor is any entity in the simulation world, such as a
vehicle, sensor, traffic light, etc.) in the scenario.

2.1 Training Scenario
The dynamic training scenario is constructed with random traffic
flows, which are realized with the help of the traffic manager tool in
CARLA simulator version 0.9.9. We first build a map of a three-lane
highway that can be imported into CARLA (also open-source with
our code) and select a part for training scenario generation. For
training, the vehicle controlled by the algorithm is called the ego
vehicle, and other vehicles are called the social vehicles.

The random training scenario generation method is as follows:
firstly, the ego vehicle is randomly generated at the lane center
of the road section (three lanes are random), and then 6 to 12
social vehicles are randomly generated at the lane center within
the range of 30 m behind and 180 m in front of the ego vehicle.
The target speed of the ego vehicle is 60 km/h, and the expected
speed of social vehicles is a random value from 20 to 40 km/h. The
following distance between one social vehicle and its front vehicle
is random from 0 to 15 m. Social vehicles will have unexpected
lane-changing behavior (controlled by the traffic manager). And
the lane width is 3.5 m. The screenshot of the training scenario
is illustrated in Figure 2. Since the number, position, and speed of
surrounding social vehicles in the training scenario are random,
and there will be unexpected lane change behaviors, a series of
challenging instances can be generalized. Note that the training

scenario does not contain low-speed (speed less than 20km/h) social
vehicles, and the processing of the low-speed scenario can reflect
the generalization of an agent to a certain extent.

2.2 Testing Scenarios
2.2.1 Stochastic Test. For the stochastic test scenario, its setting
is similar to the training scenario. For the test scenario, if the sur-
rounding vehicle density is high, the ego vehicle can hardly change
lanes. Such a test scenario is of little significance. Therefore, 4 to 9
social vehicles will be randomly generated around the ego vehicle.
At the same time, social vehicles are restricted from random lane
changes and will stay in their initial lane.

2.2.2 Deterministic Test. We refer to the group standard [9] for
our deterministic test scenarios design. We design five major logic
scenarios of lane-changing tests and obtain more than 400 specific
test scenarios through parameter instantiation. For deterministic
testing, the vehicle controlled by algorithms for lane changing
is called the test vehicle, and the other environmental vehicles
are called the target vehicles. The lane-changing model trained in
the training scenario is tested in the test scenarios with statistical
metrics.

The demonstration of the designed logical scenarios of lane
changing is shown in Figure 3. The Test Vehicle (TV) travels on a
straight road with target speed VT . Dashed lines indicate the lanes
that can be changed to, while solid lines indicate the lanes that
cannot be changed to, and the lane’s width is X0. d and D in Figure
3 denote the distance between TV and the target vehicle GV . Here
we take the subfigure (c) as an example to explain the parameters in
Figure 3. For (c), a target vehicleGV1 traveling at speedV1 along the
centerline of the lane is placed in front of TV, and the longitudinal
distance between TV and GV1 is D. The adjacent lane on the left
side of TV places a target vehicleGV2 traveling at speed V2 along
the centerline of the lane, and the longitudinal distance between
TV andGV2 is d . These test scenarios provide a range of different
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Figure 2: The training scenario.

(a) (b)

(c) (d)

(e)

Figure 3: The deterministic testing scenarios.

examples to test the intelligence of the agent of TV. For example,
scenario (a) requires TV to respond to different speeds of the vehicle
in front of it. For (b), the TV needs to react both to the stationary
vehicle in front and the moving vehicle on the left. (c) is a three-lane
scenario where there has a vehicle present in the left lane and no
vehicles in the right lane, and the TV needs to decide which way
to change lanes. In (d), the TV may need to change lanes multiple
times. (e) is a two-lane scenario where the TV needs to react in
time to the sudden appearance of a stationary vehicle.

3 REINFORCEMENT LEARNING
FORMULATION

A bird’s eye view image of the perceived range of the ego vehicle is
used as input to the algorithm, and the output of the algorithm is
a high-level lane change command. The task of image-based lane
change decision-making is modeled as a Markov Decision Process
(MDP). AnMDP is a tuple of the form: S,A, P ,R, where S is a finite
set of states,A a finite set of actions, P the dynamic transition model
P(st+1 = s ′ |st = s,at = a) for each action, R the reward function
R(st = s,at = a) = E(rt |st = s,at = a), and γ ∈ [0, 1] the discount
factor. The state transition model P and reward R are affected by
the specific behavior a. The goal of RL is to learn a policy π∗(a\s)
that maximizes the cumulative reward. Jπ = arg maxπE

∑
tγ

t−1rt

Figure 4: The state of scenarios.

Consider an environment E in which the agent interacts with it
through a set of states, actions, and rewards. In this paper, the state,
action space, and reward function are set as follows.

3.1 State
The state input is a three-channel RGB image of size 64×64, corre-
sponding to the overhead traffic flow within 50 m in front of the
ego vehicle and 25 m behind it. The ego vehicle is blue; the social
vehicles are green; the lane line is red; and there is a one-lane-wide
sidewalk on each side of the road, filled with gray. The position of
the ego vehicle in the image is relatively fixed.
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3.2 Action Space
The output of DRL algorithms is a lateral lane change command,
corresponding to a discrete action space set as {keep current lane,
change lanes to the left, and change lanes to the right}.

3.3 Reward Design
The reward function integrates the safety and efficiency of the
decision action. The efficiency is reflected in the speed of the ego
vehicle on the one hand. To be specific, a positive reward rv =
0.2 ·v/vT is defined, where v is the ego speed and vT = 60 km/h is
the desired speed of the ego vehicle. On the other hand, a negative
reward of rl = −1.0 is given to the agent when a lane change occurs,
at which time the speed reward will no longer be applied. Safety
is mainly reflected in the fact that no collision can occur, and if a
collision between the ego vehicle and other vehicles happens within
a decision-making period, a penalty of −1.0 will be applied on the
basis of the reward mentioned above, and the collision reward is
defined as rc . In summary, the total reward function is defined as

rc =

{
0 no collision
−1.0 a collision happens , (1)

r =

{
rv + rc lane keeping
rl + rc lane changing . (2)

After formalizing the problem as an MDP, we can utilize exist-
ing DRL methods to train the agent with the ability to make au-
tonomous lane change decisions.

4 BASELINE METHODS
We choose the non-learning method MOBIL (Minimizing Overall
Braking Induced by Lane Changes) [7] and several state-of-the-art
DRL algorithms D3QN (Dueling Double DQN) [14], [15], [16], PPO
(Proximal Policy Optimization) [11], and A2C (Advantage Actor-
Critic) [12] as our baselines.

4.1 MOBIL
MOBIL is a lane change model of vehicle following, which considers
the difference of vehicle acceleration (or deceleration) after lane
change as the benefit value, and applies braking deceleration to the
new follower in the target lane to avoid accidents. For the acceler-
ation ãe of the ego vehicle after lane change and the acceleration
ãn of the new following vehicle on the target lane after ego lane
changing, ãe > −bsaf e and ãn > −bsaf e should be satisfied, where
bsaf e is the maximum safe deceleration. The IDM model [13] is
used to predict the acceleration of the ego and surrounding vehicles.
If the safety criterion is met, MOBIL changes lanes if

ãe − ae + p ((ãn − an ) + (ão − ao )) > ath , (3)

where ae , an , and ao are the current accelerations of the target vehi-
cle, the vehicle following the target lane, and the vehicle following
the original lane, respectively. The wavy line symbol ·̃ indicates the
corresponding accelerations after the lane change is implemented.
ρ is the courtesy factor, and ath is the lane change benefit threshold.
We set the priority to left when both left and right lane changes are
allowed.

Note that, unlike RL algorithms, the non-learningmethodMOBIL
uses not image-based state inputs but the true values of the desired
states.

4.2 D3QN
D3QN is Deep Q-Network (DQN) [14] combined with dueling [15],
double [16] framework. DQN is a method that consolidates neural
networks and Q learning.

The weights in the neural network are denoted by θ , and the
action-value function fitted by the neural network is denoted by
Q(s,a;θ ) with the target network denoted by Q ′(s,a;θ ′). Dueling
DQN considers dividing the Q network into two parts. The first
part is only related to the state s and not to the specific action a
to be adopted. This part is called the value function part, which is
written as V (s,θ ,α). The second part is related to both the state s
and the action a and is called the advantage function part, denoted
as A(s,a,θ , β). Then finally the value function can be re-expressed
as Q(s,a,θ ,α , β) = V (s,θ ,α) + A(s,a,θ , β). Considering that the
actual Q function value is approximated by the neural network as
much as possible, the loss function of the neural network training
can be defined as

Li (θi ) = Es∼π

[
1
2
(yi −Q (s,a;θi ))2

]
, (4)

where yi = Es ′∼E [r + γQ ′(s ′, argmaxa′Q(s ′,a;θi );θ ′i )|s,a] is the
objective value of the i-th iteration in Double DQN. The above loss
function for the gradient of the weights yields

∇θi Li (θi ) = Es ′∼E

×

[
r + γQ ′

(
s ′, arg max

a′
Q (s ′,a;θi ) ;θ ′i

)
−Q (s,a;θi )

)
×∇θiQ (s,a;θi )]

(5)
For computational convenience, the stochastic gradient descent
method is usually used to optimize the loss function instead of
directly computing the full expectation value in the above equation.

4.3 A2C
In synchronous AC, all of the updates by the parallel agents are
collected to update the global network. To encourage exploration,
stochastic noise is added to the probability distribution of the ac-
tions predicted by each agent. Let A(s,a) = Q(s,a) − V (s) be the
advantage function (the advantage of actiona relative to the average
performance), the gradient of the A2C algorithm can be obtained
by

∇θ J (θ ) = Eπθ [∇θ logπθ (s,a)A (s,a)] . (6)

In practice, it is not necessary to maintain two sets of parameters to
interactively approximateQ(s,a) andV (s), respectively. Specifically,
we can use δA = r + λV (s ′) −V (s) instead of δ = r + λQ(s ′,a′) −
Q(s,a), since by definition E(δ ) = δA. And it happens that δA is
the unbiased estimate of A(s,a), because, by definition of the Q
function, there is E[r + λV (s ′)|s,a] = Q(s,a). Therefore, in fact,
when implementing A2C algorithm, only one set of parameters
need to be maintained for estimating V (s), and doing gradient
descent to update the parameters can be done using

∆θ = α∇θ logπθ (s,a)
(
r + λV

(
s ′
)
−V (s)

)
. (7)
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4.4 PPO
PPO is a Policy Gradient (PG) algorithm. The PG algorithms are
susceptible to the learning step size, and it is challenging to select
an appropriate one. The difference between the old and new policies
during training is not conducive to learning if it is too large. PPO
proposes a new objective function that can be updated in small
batches at multiple training steps, solving the problem of difficult to
determine the learning step size in PG algorithms. The clip variant
of PPO eliminates the incentive between the new policy and the
old policy by clipping the objective function specifically. It updates
policy πθ with

θk+1 = argmax
θ
Es,a∼πθk

[L (s,a,θk ,θ )] . (8)

And L(s,a,θk ,θ ) is given by

L (s,a,θk ,θ ) = min

×

(
πθ (a |s)
πθk (a |s)

Aπθk (s,a) , clip
(
πθ (a |s)
πθk (a |s)

, 1 − ϵ, 1 + ϵ
)
Aπθk (s,a)

)
,

(9)
where ϵ is a small hyperparameter that controls the distance
between the new policy and the old one, and also Aπ (s,a) =
Qπ (s,a) −V π (s) is the advantage of an action a.

5 PERFORMANCE EVALUATION METRICS
Many metrics can be used to measure the behavior of agents [17].
For an autonomous driving system, safety and efficiency are the
most concerned performance metrics.

For stochastic test scenarios, the defined metrics including
Saf etyRate , that is, the percentage of all episodes that do not collide,
andAvд_v ,Avд_lc ,Avд_maxacc ,Avд_t , andAvд_len, the average
speed, average lane change times, average maximum acceleration,
average episode time of success runs, and average passage distance
for all test episodes, respectively.

For deterministic test scenarios, we use lane change safety rate
Saf etyRate , lane change success rate SuccessRate , and average
maximum acceleration Avд_maxacc as metrics to evaluate the per-
formance of the test agents. Lane change safety rate is the percent-
age of safe lane change scenarios Saf eCount over test instances
for all scenarios TotalCount :

Saf etyRate =
Saf eCount

TotalCount
× 100%. (10)

Lane change success rate is the percentage of successful lane change
scenarios SuccessCount over the number of test instances for all
scenarios TotalCount :

SuccessRate =
SuccessCount

TotalCount
× 100%. (11)

And average maximum acceleration is the average of the vehicle’s
maximum acceleration under test for all scenarios. We define the
scenario in which the lane change behavior causes no collision
during the scenario test as the safe lane change scenario and the
scenario in which the main vehicle is in a lane other than its initial
lane at the end of the scenario as the success lane change scenario.

6 SIMULATION EXPERIMENTS
Training. We first train the DRL agents in the training scenario
described in Section 2.1, where the RL problem is formalized in

Figure 5: The learning curves of RL baselines in the task of
training scenario.

the formulation introduced in Section 3. The learning curves of RL
baselines in the task of training scenario are depicted in Figure 5.
The figure shows that A2C and PPO have faster learning efficiency
than D3QN, but all three have similar final learning performance
in the training scenario.

Testing. We further test the trained agents in the designed sto-
chastic and deterministic scenarios. Results are summarized in
Tables 1 to 3. Table 1 shows the test results of different agents in
the stochastic test scenario. Tables 2 and 3 give the test results of a
single class logic scenario under the deterministic test scenarios and
the statistical results under all scenarios, respectively. Some basic
rules are added during the test to constrain the agents’ behavior,
similar to the work done in [18]. Note that the MOBIL method uses
truth information instead of image state. It can be seen from Table 1
that in the stochastic test scenario, the A2C agent can hardly change
lanes, while D3QN and PPO agents have a certain lane-changing
ability. D3QN achieves the best safety among several methods, but
its efficiency is lower than MOBIL. It is worth noting that although
the PPO method has slightly more lane change times, it exceeds
MOBIL in terms of all other metrics, showing the capability of
DRL-based methods.

As can be seen from Table 2 and Table 3, the PPO agent still per-
forms relatively well in deterministic test scenarios, and it achieves
comparable performance to MOBIL. Taking all the test results to-
gether, the PPO method performs best under our setting, while the
non-learning method, MOBIL, provides a strong baseline. The A2C
method does not learn good lane change behavior, while D3QN
performs relatively mediocre.

7 CONCLUSION
In this paper, we propose a training, testing, and evaluation pipeline
for lane change scenarios. Under our formalization of the reinforce-
ment learning problem, we construct training scenarios to train sev-
eral state-of-the-art reinforcement learning agents, namely, D3QN,
A2C, and PPO. Also, we implement the non-learning lane-changing
method MOBIL as a comparison baseline. Furthermore, we con-
struct test scenarios to evaluate the learned models and provide
benchmark results under the evaluation metrics. The designed
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Table 1: The statistical results of stochastic test.

Agent MOBIL1 D3QN A2C PPO

96.0% 97.6% 94.4% 97.2%
41.96 38.13 28.52 42.18
1.45 2.07 0.02 2.15
2.37 2.46 2.60 2.36
35.34 41.54 62.37 34.71
388.72 388.36 381.29 390.24

Table 2: Test results of every deterministic logical scenario class.

Logical scenario class (a) (b) (c) (d) (e)

Total scenario count 10 30 231 126 25
Collision count MOBIL2 0 0 0 0 2

D3QN 4 30 0 2 4
A2C 5 30 0 0 25
PPO 0 0 0 1 2

Failure count MOBIL2 0 0 1 14 0
D3QN 0 0 0 10 8
A2C 6 0 231 126 0
PPO 0 0 2 4 6

Average maximum acceleration MOBIL2 0.40 0.41 0.40 1.33 0.79
D3QN 1.09 2.05 0.71 1.64 1.33
A2C 2.87 2.04 3.23 3.23 2.40
PPO 0.39 0.39 0.53 1.21 1.47

Table 3: The statistical results of deterministic test scenarios.

Agent MOBIL2 D3QN A2C PPO

99.5% 90.5% 85.8% 99.3%
96.4% 95.7% 14.0% 97.2%
0.70 1.13 3.09 0.77

experimental environment is opened to promote the research de-
velopment of the lane-changing task. Our future work includes
expanding the test scenarios and providing baseline results for
model-based RL methods.
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