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ABSTRACT

Language prompting induces the model to produce a textual
output during the training phase, which achieves remarkable
performance in few-shot learning scenarios. However, cur-
rent prompt-based methods either use the same task-specific
prompts for each instance, losing the particularity of instance-
dependent information, or generate an instance-dependent
prompt for each instance, lacking shared information about
the task. In this paper, we propose an efficient few-shot
learning method to dynamically decide the degree to which
task-specific and instance-dependent information are incor-
porated according to different task and instance character-
istics, enriching the prompt with task-specific and instance-
dependent information. Extensive experiments on a wide
range of natural language understanding tasks demonstrate
that our approach obtains significant improvements compared
to prompt-based fine-tuning baselines in a few-shot setting
with about 0.1% parameters tuned. Moreover, our approach
outperforms existing state-of-the-art efficient few-shot learn-
ing methods on several natural language understanding tasks.

Index Terms— Unified prompt learning, parameter-
efficient, fine-tuning, prompt tuning

1. INTRODUCTION

Recently, prompt-based methods for few-shot language
model tuning achieve remarkable performance by utilizing
a task-specific prompt and a few labeled samples [1] or care-
fully engineering of prompts and verbalizers to convert inputs
to cloze-format [2, 3]. For example, a textual entailment task
can be designed by converting the input text x to a prompt
pattern ”x The answer is [MASK]” where the [MASK] token
can be replaced by the verbalizers (e.g., ’entailment’ and ’not
entailment’). However, designing the appropriate prompts
is labor-intensive and requires relevant domain knowledge,
several efforts attempt to search for discrete prompt tokens
automatically [4, 5]. Recent studies [6, 7] have demonstrated
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that discrete prompt tokens can be sub-optimal, which would
make model performance vary from random guessing to
state-of-the-art. Therefore, a lot of studies begin to focus on
continuous prompts, which mainly includes Prefix Tuning [8]
and Prompt tuning [9].

Prefix tuning and Prompt tuning prepend task-specific
prompt vectors to the input layer and optimize these vectors
during the training stage. The learnable task-specific prompts
learn the general information of the task and provide the same
task-specific information for each instance. However, these
approaches do not take into account the particularity of each
instance and focus more on task-specific information. There-
fore, task-specific prompts may not be the best option for
model predictions. More recently, several works propose the
instance-dependent prompt tuning approaches [10, 11, 12].
These learnable instance-dependent prompts are generated
based on each input sentence, aiming at finding a proper
prompt for each instance. However, these approaches go to
an extreme, ignoring the importance of task-specific informa-
tion for model predictions. In light of these limitations, we
believe that a good prompt should reflect both task-specific
and instance-dependent information.

In this paper, we propose a Unified Prompt Learning
method, named UPL, which incorporates different prompt
tuning methods as submodules and learns prompts with both
task-specific and instance-dependent information. The ap-
proach can efficiently tune large-scale PLMs with as few as
16 end-task examples of each class. First, following the route
of prefix tuning [8] for task-specific prompts, we retain the
general prompt information of each task. Second, we design
a lightweight and low-rank bottleneck architecture to gen-
erate instance-dependent prompts for each instance. Then
the activation of each submodule in UPL is controlled by
gating mechanism, which dynamically decides the degree to
which task-specific and instance-dependent information are
incorporated according to different task characteristics.

We conduct extensive experiments on 13 natural language
understanding tasks with RoBERTa-large [13]. Experimental
results on a wide variety of NLP tasks demonstrate that our
approach can obtain better performance with only a few train-
ing instances across all the tasks and only 0.1% parameters of
PLMs tuned.
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Fig. 1: Illustration of our method. The blue blocks refer to the train-
able module, while the gray blocks refer to the frozen module.

2. BACKGROUND

2.1. Task-specific Prompt Tuning

Prefix tuning [8] and P-tuning v2 [14] prepend learnable
task-specific vectors Pk,Pv to Key(K) and Value(V ) of the
multi-head attention at each layer of the Transformer:

Attn(Q, concat(Pk,K), concat(Pv, V )) (1)

Prompt tuning [9] and P-tuning [15] insert learnable task-
specific vectors into the input sequence at the embedding
layer, which can be formulated as follows:

Ein = concat(Wp,E( [SEP] X [EOS] )) (2)

where Ein is the input embeddings, Wp is the embeddings
of the inserted prompts, X is the input sentence, and E is the
embedding table of the input sentence.

2.2. Instance-dependent Prompt Tuning

Different from the task-specific prompt tuning approaches,
the instance-dependent prompt tuning methods aim to gen-
erate an instance-dependent prompt for each input sequence
[10, 11, 12]. Specifically, given Dtrain = {(xi, yi)}Ki=1 of
the task T , they suppose that the generation of prompt should
correspond to the input sequence xi. Let M be the masked
language model, and the instance-dependent prompt can be
generated as follows:

Wp(xi, T ) = G(M(xi), T ) (3)

where G is a generator with a lightweight bottleneck archi-
tecture, M(xi) is the representation of the input sequence,
and the Wp(xi, T ) is the instance-dependent prompt based
on each instance of the task T .

3. OUR APPROACH

We propose UPL, a unified and efficient prompt learning
method that enriches the prompt with instance-dependent and
task-specific information. As shown in Figure 1, the success
of UPL consists of three main components: a) the prompts
with task-specific information tell the model about the given
task; b) a low-rank generator helps the model obtain instance-
dependent information; c) a dynamical gating mechanism
that can incorporate the task-specific and instance-dependent
information according to different task characteristics. We
detail the components of our UPL model below.

Let xin = {x1, x2, · · ·, xn} be the input sentence of the
model M, and let h = {h1,h2, · · ·,hn} ∈ Rn×d be the hid-
den states in each layer of the model M, where n is the length
of input h and d is the the dimension of the hidden states. We
suppose that a good prompt should reflect both task-specific
and instance-dependent information. Following the previous
works [8, 14], we firstly define two task-specific prompt vec-
tors at each layer of the Transformer: Pk = {pk1,pk2, · ·
·,pkt} ∈ Rt×d and Pv = {pv1,pv2, · · ·,pvt} ∈ Rt×d,
where t is the number of tokens in prompt representation and
d is the hidden dimension. Different from the previous meth-
ods, to reduce the number of trainable parameters, we do not
use a reparameterization encoder such as an MLP to generate
learnable prompt vectors P .

Secondly, we take inspiration from the recent works
[19, 20, 18], which show that the learned large-scale models
reside on a low intrinsic dimension. Therefore, we design
a lightweight and low-rank generator to generate instance-
dependent prompt vectors for each input sequence. Specif-
ically, as illustrated in Figure 1, we first project the original
d-dimensional sentence representation h into r dimensions
through the low-rank matrix W1, then we project the hidden
representation back to a d dimensions representation ĥ with
the low-rank matrix W2, where W1 ∈ Rd×r, W2 ∈ Rr×d,
and the rank r ≪ d (i.e., r in Figure 1 (d) can be two or four).

ĥ = hW1W2, ĥ ∈ Rn×d (4)

Subsequently, the instance-dependent prompt vectors P ′
k =

{p′
k1,p

′
k2, · · ·,pkt′} ∈ Rt×d and P ′

v = {p′
v1,p

′
v2, · ·

·,p′
vt} ∈ Rt×d can be generated through the linear mapping

matrix G ∈ Rt×n:
P ′

k = Gĥ

P ′
v = Gĥ

(5)

where t is the number of instance-dependent prompt vectors,
n is the length of the input, and d is the hidden dimension.

Finally, considering that a good prompt should vary ap-
propriately according to different task characteristics and in-
stance characteristics, we design a dynamical gating mecha-
nism to control the proportion of task-specific and instance-
dependent information. As shown in Figure 1, GK ∈ Rt×t

and GV ∈ Rt×t are two gating matrices that estimate the im-
portance of task-specific and instance-dependent information,



Method #Params
SST-2

Acc.

SST-5

Acc.

MR

Acc.

CR

Acc.

MPQA

Acc.

Subj

Acc.

TREC

Acc.
Avg

Single-Sentence

Prompt-based zero shot [4] † 0% 83.6 35 80.8 79.5 67.6 51.4 32.0 61.4

”GPT-3” in-context learning [4] † 0% 84.8(1.3) 30.6(0.9) 80.5(1.7) 87.4(0.8) 63.8(2.1) 53.6(1.0) 26.2(2.4) 70.0(1.5)

Fine-tuning [13] † 100% 81.4(3.8) 43.9(2.0) 76.9(5.9) 75.8(3.2) 72.0(3.8) 90.8(1.8) 88.8(2.1) 75.7(3.2)

LM-BFF [4] † 100% 92.3(1.0) 49.2(1.6) 85.5(2.8) 89.0(1.4) 85.8(1.9) 91.2(1.1) 88.2(2.0) 83.0(1.7)

Adapter tuning [16] 3% 92.2(1.8) 50.4(3.2) 87.7(2.6) 90.4(3.9) 73.8(5.8) 90.8(1.6) 88.6(6.4) 82.0(3.6)

Bitfit [17] 0.09% 92.8(1.6) 48.6(3.4) 87.7(3.7) 90.5(1.2) 64.3(9.4) 88.8(3.8) 85.7(10.3) 79.8(4.8)

LoRA [18] 0.1% 93.0(2.4) 49.2(2.3) 87.2(2.0) 90.5(2.7) 68.7(7.8) 90.1(2.4) 88.8(5.8) 81.1(3.6)

Prefix tuning [8] 0.2%-1% 91.9(1.5) 49.6(2.0) 87.4(2.3) 90.6(2.2) 74.2(3.1) 88.4(2.3) 88.5(3.7) 81.5(2.4)

IDPT [12] 0.08% 91.5(1.6) 49.0(2.5) 86.4(3.2) 90.9(2.0) 67.3(7.4) 89.7(1.2) 86.4(3.4) 80.2(3.0)

Fixed-UPL 0.1% 92.5(1.2) 50.8(1.9) 87.9(2.2) 91.6(1.8) 76.4(4.0) 89.3(1.7) 89.6(3.0) 82.6(2.3)

Dynamic-UPL 0.12% 92.6(1.4) 50.6(1.3) 88.3(1.6) 91.6(1.4) 78.1(2.3) 90.5(1.4) 90.4(3.6) 83.2(1.9)

Method #Params
MNLI

Acc.

MNLI-mm

Acc.

SNLI

Acc.

QNLI

Acc.

RTE

Acc.

MRPC

F1.

QQP

F1.
Avg

Sentence-Pair

Prompt-based zero shot [4] † 0% 50.8 51.7 49.5 50.8 51.3 61.9 49.7 52.2

”GPT-3” in-context learning [4]† 0% 52.0(0.7) 53.4(0.6) 47.1(0.6) 53.8(0.4) 60.4(1.4) 45.7(6.0) 36.1(5.2) 49.8(2.1)

Fine-tuning [13]† 100% 45.8(6.4) 47.8(6.8) 48.4(4.8) 60.2(6.5) 54.4(3.9) 76.6(2.5) 60.7(4.3) 56.3(5.0)

LM-BFF [4] † 100% 68.3(2.5) 70.1(2.6) 77.1(2.1) 68.3(7.4) 73.9(2.2) 76.2(2.3) 67.0(3.0) 71.6(3.2)

Adapter tuning [16] 3% 67.6(4.3) 67.5(4.1) 74.0(4.6) 64.3(4.9) 68.8(7.4) 81.8(2.9) 67.5(4.6) 70.2(4.7)

Bitfit [17] 0.09% 67.2(5.7) 67.6(4.6) 74.4(3.7) 64.7(3.7) 66.6(10.7) 76.6(10.4) 66.8(3.7) 69.1(6.1)

LoRA [18] 0.1% 68.3(4.2) 67.4(2.7) 75.9(2.1) 68.6(3.9) 69.6(6.7) 81.0(4.8) 68.1(2.6) 71.3(3.3)

Prefix tuning [8] 0.2%-1% 68.1(3.5) 68.3(2.4) 75.4(1.8) 67.5(3.5) 70.2(5.1) 81.4(2.8) 66.8(6.5) 71.1(3.7)

IDPT [12] 0.08% 66.3(3.6) 66.0(2.1) 73.5(2.3) 66.6(3.7) 70.3(4.3) 80.6(3.4) 66.4(4.6) 70.0(3.4)

Fixed-UPL 0.1% 68.9(1.5) 68.7(1.9) 76.2(1.1) 68.2(1.4) 71.2(5.3) 81.8(1.3) 66.1(2.8) 71.6(2.2)

Dynamic-UPL 0.12% 69.3(2.4) 68.8(2.2) 75.9(2.1) 68.3(2.4) 72.8(3.9) 82.1(2.1) 66.6(3.2) 72.0(2.6)

Table 1: Performance of all methods on RoBERTa-large. † indicates the results in [4]. We report average(and standard deviation) performance
over 5 different splits. Bold fonts indicate the best results.

where t is the length of prompt vectors. We apply a sigmoid
function σ to obtain the contribution scores for task-specific
and instance-dependent prompts.

P ⋆
k = σ(GKPk) · Pk + σ(GKP ′

k) · P ′
k

P ⋆
v = σ(GV Pv) · Pv + σ(GV P ′

v) · P ′
v

(6)

We then concatenate the prompt vectors P ⋆
k and P ⋆

v that con-
tain task-specific and instance-dependent information with
the original key K and value V :

Attn(Q, concat(P ⋆
k ,K), concat(P ⋆

v , V )) (7)

4. EXPERIMENTAL RESULTS

4.1. Experimental Settings

We conduct our experiments with the same setting follow-
ing LM-BFF [4] and DART [21], which measure the aver-
age performance of models trained on 5 different randomly
sampled Dtrain and Ddev splits. We train the model for 100

epochs for each split and take the best checkpoint as mea-
sured on Ddev . We report the accuracy and F1-score for
13 NLU tasks and use a default setting training for a batch
size of 8, a learning rate of 4e-4, and a prompt length of 16.
We set the rank r of the low-rank matrix to 4. We train our
proposed UPL on one NVIDIA A100 with 80G of memory.
We explore two versions of unified prompt learning methods:
Fixed-UPL, and Dynamic-UPL. The first version uses a fixed
hyperparameter α = 0.3 (e.g.,α ∈ (0, 1)) to control the pro-
portion of task-specific and instance-dependent information.
The second one uses learnable gating matrices that can incor-
porate task-specific and instance-dependent information dy-
namically.

4.2. Main Results

Table 1 shows the results of all methods on RoBERTa-large
[13] with 5 different randomly sampled splits (e.g., each split
contains 16 examples of each class ) across 13 NLU tasks.
UPL outperforms all other methods and achieves new state-
of-the-art results for few-shot learning on several NLU tasks.



First, our proposed method Dynamic-UPL improves the per-
formance compared to Prefix tuning [8] by 1.7 and 0.9 points
for single-sentence and sentence-pair datasets respectively
with fewer model parameters tuned. Compared to IDPT
[10, 12], Dynamic-UPL improves the performance by 3.0
and 2.0 points for single-sentence and sentence-pair datasets
respectively. Dynamic-UPL performs better than Prefix tun-
ing and IDPT across 12 and 13 datasets respectively (e.g.,
especially on RTE, TREC, and SST-5), demonstrating that
incorporating task-specific and instance-dependent prompt
tuning methods as submodules is advantageous.

Second, compared with the currently prevailing parameter-
efficient tuning methods, Dynamic-UPL obtains state-of-the-
art results. Our method Dynamic-UPL performs better than
Adapter [16], LoRA [18], and BitFit [17] across 11 tasks,
10 tasks, and 12 tasks respectively. Moreover, we report
the percentage of trained parameters for parameter-efficient
tuning methods in Table 1. Dynamic-UPL requires fewer
parameters and achieves a better performance than Adapter
tuning. For LoRA, BitFit, and Dynamic-UPL, only about
0.1% parameters are tuned, while Dynamic-UPL learns the
task-specific and instance-dependent information and yields
better performance.

Third, compared with LM-BFF [4], a prompt-based fine-
tuning method with all parameters tuned, Dynamic-UPL
achieves comparable results with LM-BFF on average and
even outperforms LM-BFF across 7 datasets with only about
0.1% parameters tuned.

Finally, these promising results illustrate that Dynamic-
UPL has better generalization in few-shot settings and makes
the pre-trained language model a better efficient few-shot
learner. As an ablation, when learning prompts with a hy-
perparameter α to control the proportion of task-specific and
instance-dependent information in Fixed-UPL, we observe
that the performance consistently lags behind the Dynamic-
UPL but performs better than other methods (except on LM-
BFF), showing that learn prompts with both task-specific
and instance-dependent information is a good alternative for
few-shot learning.

5. ANALYSIS AND DISCUSSION

5.1. Dynamic-UPL or Fixed-UPL?

As shown in Figure 2(a), we calculate the cosine similar-
ity scores of task-specific prompts and instance-dependent
prompts under both Dynamic-UPL and Fixed-UPL. The
Dynamic-UPL obtains high scores than Fixed-UPL on both
SST-2 and CR, showing that incorporating task-specific and
instance-dependent information dynamically can further en-
hance the degree of information integration and yield better
performance. To further analyze how Fixed-UPL influences
the fusion of task-specific and instance-dependent informa-
tion, we control the degree of incorporating task-specific
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Fig. 2: (a) The cosine similarity scores of task-specific prompts and
instance-dependent prompts under both Dynamic-UPL and Fixed-
UPL. (b) We utilize the hyperparameter α to control the degree of
incorporating task-specific and instance-dependent information.

Dataset r=2 r=4 r=8 r=16 r=64

SST-5 49.8 50.3 50.5 49.9 50.0

CR 90.8 91.2 91.4 91.2 91.1

Table 2: Validation accuracy on SST-5 and CR with different rank
r. We conduct the experiments with the hyperparameter α = 0.3.

and instance-dependent information through the proportion
of hyperparameter α. As shown in Figure 2(b), for the two
datasets SST-2 and CR, Fixed-UPL performs better than
task-specific prompt tuning and instance-dependent prompt
tuning when the hyperparameter α is between 0.1 and 0.4,
showing that Fixed-UPL does need both the task-specific and
instance-dependent information.

5.2. Impact of the Rank r

We utilize a low-rank matrix to generate the instance-dependent
prompt vectors. To explore the impact of low rank r on the
instance-dependent prompt generation, in Table 2, we show
the accuracy of SST-5 and CR with different rank r. Sur-
prisingly, Dynamic-UPL performs competitively with a very
small rank r, which suggests that a low-rank generation ma-
trix is sufficient.

6. CONCLUSION AND FUTURE WORK

This paper presents UPL, a simple and efficient method that
improves few-shot learning with pre-trained language mod-
els. Our approach enriches the prompt with task-specific and
instance-dependent information by dynamically controlling
the proportion of the two types of prompts. Through extensive
experiments over 13 NLP tasks, we demonstrate that UPL
generalizes better than the existing state-of-the-art efficient
methods in few-shot learning scenarios. Intuitively, the sim-
plicity and effectiveness of UPL proposed in this study makes
it a promising method and can stimulate future research di-
rections in the few shot with PLMs.
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