
UNIFIED PROMPT LEARNING MAKES PRE-TRAINED LANGUAGE MODELS BETTER
FEW-SHOT LEARNERS

Feihu Jin1,2, Jinliang Lu1,2, Jiajun Zhang1,2 ∗

1Institute of Automation, Chinese Academy of Sciences, Beijing, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

ABSTRACT

Language prompting induces the model to produce a textual
output during the training phase, which achieves remarkable
performance in few-shot learning scenarios. However, cur-
rent prompt-based methods either use the same task-specific
prompts for each instance, losing the particularity of instance-
dependent information, or generate an instance-dependent
prompt for each instance, lacking shared information about
the task. In this paper, we propose an efficient few-shot
learning method to dynamically decide the degree to which
task-specific and instance-dependent information are incor-
porated according to different task and instance character-
istics, enriching the prompt with task-specific and instance-
dependent information. Extensive experiments on a wide
range of natural language understanding tasks demonstrate
that our approach obtains significant improvements compared
to prompt-based fine-tuning baselines in a few-shot setting
with about 0.1% parameters tuned. Moreover, our approach
outperforms existing state-of-the-art efficient few-shot learn-
ing methods on several natural language understanding tasks.

Index Terms— Unified prompt learning, parameter-
efficient, fine-tuning, prompt tuning

1. INTRODUCTION

Recently, prompt-based methods for few-shot language
model tuning achieve remarkable performance by utilizing
a task-specific prompt and a few labeled samples [1] or care-
fully engineering of prompts and verbalizers to convert inputs
to cloze-format [2, 3]. For example, a textual entailment task
can be designed by converting the input text x to a prompt
pattern ”x The answer is [MASK]” where the [MASK] token
can be replaced by the verbalizers (e.g., ’entailment’ and ’not
entailment’). However, designing the appropriate prompts
is labor-intensive and requires relevant domain knowledge,
several efforts attempt to search for discrete prompt tokens
automatically [4, 5]. Recent studies [6, 7] have demonstrated

*Corresponding Author
This work is supported by the National Key R&D Program of China

under Grants 2022ZD0160602 and the Natural Science Foundation of China
under Grants 62122088.

that discrete prompt tokens can be sub-optimal, which would
make model performance vary from random guessing to
state-of-the-art. Therefore, a lot of studies begin to focus on
continuous prompts, which mainly includes Prefix Tuning [8]
and Prompt tuning [9].

Prefix tuning and Prompt tuning prepend task-specific
prompt vectors to the input layer and optimize these vectors
during the training stage. The learnable task-specific prompts
learn the general information of the task and provide the same
task-specific information for each instance. However, these
approaches do not take into account the particularity of each
instance and focus more on task-specific information. There-
fore, task-specific prompts may not be the best option for
model predictions. More recently, several works propose the
instance-dependent prompt tuning approaches [10, 11, 12].
These learnable instance-dependent prompts are generated
based on each input sentence, aiming at finding a proper
prompt for each instance. However, these approaches go to
an extreme, ignoring the importance of task-specific informa-
tion for model predictions. In light of these limitations, we
believe that a good prompt should reflect both task-specific
and instance-dependent information.

In this paper, we propose a Unified Prompt Learning
method, named UPL, which incorporates different prompt
tuning methods as submodules and learns prompts with both
task-specific and instance-dependent information. The ap-
proach can efficiently tune large-scale PLMs with as few as
16 end-task examples of each class. First, following the route
of prefix tuning [8] for task-specific prompts, we retain the
general prompt information of each task. Second, we design
a lightweight and low-rank bottleneck architecture to gen-
erate instance-dependent prompts for each instance. Then
the activation of each submodule in UPL is controlled by
gating mechanism, which dynamically decides the degree to
which task-specific and instance-dependent information are
incorporated according to different task characteristics.

We conduct extensive experiments on 13 natural language
understanding tasks with RoBERTa-large [13]. Experimental
results on a wide variety of NLP tasks demonstrate that our
approach can obtain better performance with only a few train-
ing instances across all the tasks and only 0.1% parameters of
PLMs tuned.

𝑾𝑾𝒒𝒒𝑾𝑾𝒗𝒗𝑾𝑾𝒌𝒌

Attention

…𝒉𝒉𝟏𝟏 𝒉𝒉𝒏𝒏𝒉𝒉𝟐𝟐

𝑸𝑸𝑽𝑽𝐊𝐊

Add & Layer Norm

FFN

Add & Layer Norm

Multi-Head

× L

𝑾𝑾𝟐𝟐

𝑷𝑷𝒌𝒌 𝑷𝑷𝒗𝒗𝑷𝑷𝒌𝒌′ 𝑷𝑷𝒗𝒗′

𝑷𝑷𝒌𝒌∗ 𝑷𝑷𝒗𝒗∗

𝒓𝒓

Tuned

Frozen

Unified prompt tuning

𝑾𝑾𝟏𝟏

𝓖𝓖𝑲𝑲 𝓖𝓖𝑽𝑽

𝑮𝑮

Fig. 1: Illustration of our method. The blue blocks refer to the train-
able module, while the gray blocks refer to the frozen module.

2. BACKGROUND

2.1. Task-specific Prompt Tuning

Prefix tuning [8] and P-tuning v2 [14] prepend learnable
task-specific vectors Pk,Pv to Key(K) and Value(V) of the
multi-head attention at each layer of the Transformer:

Attn(Q, concat(Pk,K), concat(Pv, V)) (1)

Prompt tuning [9] and P-tuning [15] insert learnable task-
specific vectors into the input sequence at the embedding
layer, which can be formulated as follows:

Ein = concat(Wp,E([SEP] X [EOS])) (2)

where Ein is the input embeddings, Wp is the embeddings
of the inserted prompts, X is the input sentence, and E is the
embedding table of the input sentence.

2.2. Instance-dependent Prompt Tuning

Different from the task-specific prompt tuning approaches,
the instance-dependent prompt tuning methods aim to gen-
erate an instance-dependent prompt for each input sequence
[10, 11, 12]. Specifically, given Dtrain = {(xi, yi)}Ki=1 of
the task T , they suppose that the generation of prompt should
correspond to the input sequence xi. Let M be the masked
language model, and the instance-dependent prompt can be
generated as follows:

Wp(xi, T) = G(M(xi), T) (3)

where G is a generator with a lightweight bottleneck archi-
tecture, M(xi) is the representation of the input sequence,
and the Wp(xi, T) is the instance-dependent prompt based
on each instance of the task T .

3. OUR APPROACH

We propose UPL, a unified and efficient prompt learning
method that enriches the prompt with instance-dependent and
task-specific information. As shown in Figure 1, the success
of UPL consists of three main components: a) the prompts
with task-specific information tell the model about the given
task; b) a low-rank generator helps the model obtain instance-
dependent information; c) a dynamical gating mechanism
that can incorporate the task-specific and instance-dependent
information according to different task characteristics. We
detail the components of our UPL model below.

Let xin = {x1, x2, · · ·, xn} be the input sentence of the
model M, and let h = {h1,h2, · · ·,hn} ∈ Rn×d be the hid-
den states in each layer of the model M, where n is the length
of input h and d is the the dimension of the hidden states. We
suppose that a good prompt should reflect both task-specific
and instance-dependent information. Following the previous
works [8, 14], we firstly define two task-specific prompt vec-
tors at each layer of the Transformer: Pk = {pk1,pk2, · ·
·,pkt} ∈ Rt×d and Pv = {pv1,pv2, · · ·,pvt} ∈ Rt×d,
where t is the number of tokens in prompt representation and
d is the hidden dimension. Different from the previous meth-
ods, to reduce the number of trainable parameters, we do not
use a reparameterization encoder such as an MLP to generate
learnable prompt vectors P .

Secondly, we take inspiration from the recent works
[19, 20, 18], which show that the learned large-scale models
reside on a low intrinsic dimension. Therefore, we design
a lightweight and low-rank generator to generate instance-
dependent prompt vectors for each input sequence. Specif-
ically, as illustrated in Figure 1, we first project the original
d-dimensional sentence representation h into r dimensions
through the low-rank matrix W1, then we project the hidden
representation back to a d dimensions representation ĥ with
the low-rank matrix W2, where W1 ∈ Rd×r, W2 ∈ Rr×d,
and the rank r ≪ d (i.e., r in Figure 1 (d) can be two or four).

ĥ = hW1W2, ĥ ∈ Rn×d (4)

Subsequently, the instance-dependent prompt vectors P ′
k =

{p′
k1,p

′
k2, · · ·,pkt′} ∈ Rt×d and P ′

v = {p′
v1,p

′
v2, · ·

·,p′
vt} ∈ Rt×d can be generated through the linear mapping

matrix G ∈ Rt×n:
P ′

k = Gĥ

P ′
v = Gĥ

(5)

where t is the number of instance-dependent prompt vectors,
n is the length of the input, and d is the hidden dimension.

Finally, considering that a good prompt should vary ap-
propriately according to different task characteristics and in-
stance characteristics, we design a dynamical gating mecha-
nism to control the proportion of task-specific and instance-
dependent information. As shown in Figure 1, GK ∈ Rt×t

and GV ∈ Rt×t are two gating matrices that estimate the im-
portance of task-specific and instance-dependent information,

Method #Params
SST-2

Acc.

SST-5

Acc.

MR

Acc.

CR

Acc.

MPQA

Acc.

Subj

Acc.

TREC

Acc.
Avg

Single-Sentence

Prompt-based zero shot [4] † 0% 83.6 35 80.8 79.5 67.6 51.4 32.0 61.4

”GPT-3” in-context learning [4] † 0% 84.8(1.3) 30.6(0.9) 80.5(1.7) 87.4(0.8) 63.8(2.1) 53.6(1.0) 26.2(2.4) 70.0(1.5)

Fine-tuning [13] † 100% 81.4(3.8) 43.9(2.0) 76.9(5.9) 75.8(3.2) 72.0(3.8) 90.8(1.8) 88.8(2.1) 75.7(3.2)

LM-BFF [4] † 100% 92.3(1.0) 49.2(1.6) 85.5(2.8) 89.0(1.4) 85.8(1.9) 91.2(1.1) 88.2(2.0) 83.0(1.7)

Adapter tuning [16] 3% 92.2(1.8) 50.4(3.2) 87.7(2.6) 90.4(3.9) 73.8(5.8) 90.8(1.6) 88.6(6.4) 82.0(3.6)

Bitfit [17] 0.09% 92.8(1.6) 48.6(3.4) 87.7(3.7) 90.5(1.2) 64.3(9.4) 88.8(3.8) 85.7(10.3) 79.8(4.8)

LoRA [18] 0.1% 93.0(2.4) 49.2(2.3) 87.2(2.0) 90.5(2.7) 68.7(7.8) 90.1(2.4) 88.8(5.8) 81.1(3.6)

Prefix tuning [8] 0.2%-1% 91.9(1.5) 49.6(2.0) 87.4(2.3) 90.6(2.2) 74.2(3.1) 88.4(2.3) 88.5(3.7) 81.5(2.4)

IDPT [12] 0.08% 91.5(1.6) 49.0(2.5) 86.4(3.2) 90.9(2.0) 67.3(7.4) 89.7(1.2) 86.4(3.4) 80.2(3.0)

Fixed-UPL 0.1% 92.5(1.2) 50.8(1.9) 87.9(2.2) 91.6(1.8) 76.4(4.0) 89.3(1.7) 89.6(3.0) 82.6(2.3)

Dynamic-UPL 0.12% 92.6(1.4) 50.6(1.3) 88.3(1.6) 91.6(1.4) 78.1(2.3) 90.5(1.4) 90.4(3.6) 83.2(1.9)

Method #Params
MNLI

Acc.

MNLI-mm

Acc.

SNLI

Acc.

QNLI

Acc.

RTE

Acc.

MRPC

F1.

QQP

F1.
Avg

Sentence-Pair

Prompt-based zero shot [4] † 0% 50.8 51.7 49.5 50.8 51.3 61.9 49.7 52.2

”GPT-3” in-context learning [4]† 0% 52.0(0.7) 53.4(0.6) 47.1(0.6) 53.8(0.4) 60.4(1.4) 45.7(6.0) 36.1(5.2) 49.8(2.1)

Fine-tuning [13]† 100% 45.8(6.4) 47.8(6.8) 48.4(4.8) 60.2(6.5) 54.4(3.9) 76.6(2.5) 60.7(4.3) 56.3(5.0)

LM-BFF [4] † 100% 68.3(2.5) 70.1(2.6) 77.1(2.1) 68.3(7.4) 73.9(2.2) 76.2(2.3) 67.0(3.0) 71.6(3.2)

Adapter tuning [16] 3% 67.6(4.3) 67.5(4.1) 74.0(4.6) 64.3(4.9) 68.8(7.4) 81.8(2.9) 67.5(4.6) 70.2(4.7)

Bitfit [17] 0.09% 67.2(5.7) 67.6(4.6) 74.4(3.7) 64.7(3.7) 66.6(10.7) 76.6(10.4) 66.8(3.7) 69.1(6.1)

LoRA [18] 0.1% 68.3(4.2) 67.4(2.7) 75.9(2.1) 68.6(3.9) 69.6(6.7) 81.0(4.8) 68.1(2.6) 71.3(3.3)

Prefix tuning [8] 0.2%-1% 68.1(3.5) 68.3(2.4) 75.4(1.8) 67.5(3.5) 70.2(5.1) 81.4(2.8) 66.8(6.5) 71.1(3.7)

IDPT [12] 0.08% 66.3(3.6) 66.0(2.1) 73.5(2.3) 66.6(3.7) 70.3(4.3) 80.6(3.4) 66.4(4.6) 70.0(3.4)

Fixed-UPL 0.1% 68.9(1.5) 68.7(1.9) 76.2(1.1) 68.2(1.4) 71.2(5.3) 81.8(1.3) 66.1(2.8) 71.6(2.2)

Dynamic-UPL 0.12% 69.3(2.4) 68.8(2.2) 75.9(2.1) 68.3(2.4) 72.8(3.9) 82.1(2.1) 66.6(3.2) 72.0(2.6)

Table 1: Performance of all methods on RoBERTa-large. † indicates the results in [4]. We report average(and standard deviation) performance
over 5 different splits. Bold fonts indicate the best results.

where t is the length of prompt vectors. We apply a sigmoid
function σ to obtain the contribution scores for task-specific
and instance-dependent prompts.

P ⋆
k = σ(GKPk) · Pk + σ(GKP ′

k) · P ′
k

P ⋆
v = σ(GV Pv) · Pv + σ(GV P ′

v) · P ′
v

(6)

We then concatenate the prompt vectors P ⋆
k and P ⋆

v that con-
tain task-specific and instance-dependent information with
the original key K and value V :

Attn(Q, concat(P ⋆
k ,K), concat(P ⋆

v , V)) (7)

4. EXPERIMENTAL RESULTS

4.1. Experimental Settings

We conduct our experiments with the same setting follow-
ing LM-BFF [4] and DART [21], which measure the aver-
age performance of models trained on 5 different randomly
sampled Dtrain and Ddev splits. We train the model for 100

epochs for each split and take the best checkpoint as mea-
sured on Ddev . We report the accuracy and F1-score for
13 NLU tasks and use a default setting training for a batch
size of 8, a learning rate of 4e-4, and a prompt length of 16.
We set the rank r of the low-rank matrix to 4. We train our
proposed UPL on one NVIDIA A100 with 80G of memory.
We explore two versions of unified prompt learning methods:
Fixed-UPL, and Dynamic-UPL. The first version uses a fixed
hyperparameter α = 0.3 (e.g.,α ∈ (0, 1)) to control the pro-
portion of task-specific and instance-dependent information.
The second one uses learnable gating matrices that can incor-
porate task-specific and instance-dependent information dy-
namically.

4.2. Main Results

Table 1 shows the results of all methods on RoBERTa-large
[13] with 5 different randomly sampled splits (e.g., each split
contains 16 examples of each class) across 13 NLU tasks.
UPL outperforms all other methods and achieves new state-
of-the-art results for few-shot learning on several NLU tasks.

First, our proposed method Dynamic-UPL improves the per-
formance compared to Prefix tuning [8] by 1.7 and 0.9 points
for single-sentence and sentence-pair datasets respectively
with fewer model parameters tuned. Compared to IDPT
[10, 12], Dynamic-UPL improves the performance by 3.0
and 2.0 points for single-sentence and sentence-pair datasets
respectively. Dynamic-UPL performs better than Prefix tun-
ing and IDPT across 12 and 13 datasets respectively (e.g.,
especially on RTE, TREC, and SST-5), demonstrating that
incorporating task-specific and instance-dependent prompt
tuning methods as submodules is advantageous.

Second, compared with the currently prevailing parameter-
efficient tuning methods, Dynamic-UPL obtains state-of-the-
art results. Our method Dynamic-UPL performs better than
Adapter [16], LoRA [18], and BitFit [17] across 11 tasks,
10 tasks, and 12 tasks respectively. Moreover, we report
the percentage of trained parameters for parameter-efficient
tuning methods in Table 1. Dynamic-UPL requires fewer
parameters and achieves a better performance than Adapter
tuning. For LoRA, BitFit, and Dynamic-UPL, only about
0.1% parameters are tuned, while Dynamic-UPL learns the
task-specific and instance-dependent information and yields
better performance.

Third, compared with LM-BFF [4], a prompt-based fine-
tuning method with all parameters tuned, Dynamic-UPL
achieves comparable results with LM-BFF on average and
even outperforms LM-BFF across 7 datasets with only about
0.1% parameters tuned.

Finally, these promising results illustrate that Dynamic-
UPL has better generalization in few-shot settings and makes
the pre-trained language model a better efficient few-shot
learner. As an ablation, when learning prompts with a hy-
perparameter α to control the proportion of task-specific and
instance-dependent information in Fixed-UPL, we observe
that the performance consistently lags behind the Dynamic-
UPL but performs better than other methods (except on LM-
BFF), showing that learn prompts with both task-specific
and instance-dependent information is a good alternative for
few-shot learning.

5. ANALYSIS AND DISCUSSION

5.1. Dynamic-UPL or Fixed-UPL?

As shown in Figure 2(a), we calculate the cosine similar-
ity scores of task-specific prompts and instance-dependent
prompts under both Dynamic-UPL and Fixed-UPL. The
Dynamic-UPL obtains high scores than Fixed-UPL on both
SST-2 and CR, showing that incorporating task-specific and
instance-dependent information dynamically can further en-
hance the degree of information integration and yield better
performance. To further analyze how Fixed-UPL influences
the fusion of task-specific and instance-dependent informa-
tion, we control the degree of incorporating task-specific

SST-2 CR
0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y
sc

or
e

Dynamic-UPL
Fixed-UPL

(a)

0 0.1 0.3 0.5 0.7 1.0
90.5

91.0

91.5

92.0

92.5

Av
er

ag
e

Sc
or

e

SST-2
CR

(b)

Fig. 2: (a) The cosine similarity scores of task-specific prompts and
instance-dependent prompts under both Dynamic-UPL and Fixed-
UPL. (b) We utilize the hyperparameter α to control the degree of
incorporating task-specific and instance-dependent information.

Dataset r=2 r=4 r=8 r=16 r=64

SST-5 49.8 50.3 50.5 49.9 50.0

CR 90.8 91.2 91.4 91.2 91.1

Table 2: Validation accuracy on SST-5 and CR with different rank
r. We conduct the experiments with the hyperparameter α = 0.3.

and instance-dependent information through the proportion
of hyperparameter α. As shown in Figure 2(b), for the two
datasets SST-2 and CR, Fixed-UPL performs better than
task-specific prompt tuning and instance-dependent prompt
tuning when the hyperparameter α is between 0.1 and 0.4,
showing that Fixed-UPL does need both the task-specific and
instance-dependent information.

5.2. Impact of the Rank r

We utilize a low-rank matrix to generate the instance-dependent
prompt vectors. To explore the impact of low rank r on the
instance-dependent prompt generation, in Table 2, we show
the accuracy of SST-5 and CR with different rank r. Sur-
prisingly, Dynamic-UPL performs competitively with a very
small rank r, which suggests that a low-rank generation ma-
trix is sufficient.

6. CONCLUSION AND FUTURE WORK

This paper presents UPL, a simple and efficient method that
improves few-shot learning with pre-trained language mod-
els. Our approach enriches the prompt with task-specific and
instance-dependent information by dynamically controlling
the proportion of the two types of prompts. Through extensive
experiments over 13 NLP tasks, we demonstrate that UPL
generalizes better than the existing state-of-the-art efficient
methods in few-shot learning scenarios. Intuitively, the sim-
plicity and effectiveness of UPL proposed in this study makes
it a promising method and can stimulate future research di-
rections in the few shot with PLMs.

7. REFERENCES

[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei, “Language models are few-shot learn-
ers,” in NeurIPS, 2020.

[2] Timo Schick and Hinrich Schütze, “Exploiting cloze-
questions for few-shot text classification and natural lan-
guage inference,” in EACL, 2021.

[3] Timo Schick and Hinrich Schütze, “It’s not just size
that matters: Small language models are also few-shot
learners,” in NAACL-HLT, 2021.

[4] Tianyu Gao, Adam Fisch, and Danqi Chen, “Making
pre-trained language models better few-shot learners,”
in ACL, 2021.

[5] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh, “AutoPrompt: Elic-
iting Knowledge from Language Models with Automat-
ically Generated Prompts,” in EMNLP, 2020.

[6] Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh, “Calibrate before use: Improving few-
shot performance of language models,” in ICML, 2021.

[7] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp, “Fantastically ordered prompts
and where to find them: Overcoming few-shot prompt
order sensitivity,” in ACL, 2022.

[8] Xiang Lisa Li and Percy Liang, “Prefix-tuning: Op-
timizing continuous prompts for generation,” in ACL,
2021.

[9] Brian Lester, Rami Al-Rfou, and Noah Constant, “The
power of scale for parameter-efficient prompt tuning,”
in EMNLP, 2021.

[10] Feihu Jin, Jinliang Lu, Jiajun Zhang, and Chengqing
Zong, “Instance-aware prompt learning for lan-
guage understanding and generation,” CoRR, vol.
abs/2201.07126, 2022.

[11] Xiaodong Gu, Kang Min Yoo, and Sang-Woo Lee, “Re-
sponse generation with context-aware prompt learning,”
CoRR, vol. abs/2111.02643, 2021.

[12] Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou,
Yuxiao Dong, V. G. Vinod Vydiswaran, and Hao
Ma, “IDPG: an instance-dependent prompt generation
method,” CoRR, vol. abs/2204.04497, 2022.

[13] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov, “Roberta: A ro-
bustly optimized bert pretraining approach,” ArXiv, vol.
abs/1907.11692, 2019.

[14] Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang, “P-tuning v2: Prompt tuning can be
comparable to fine-tuning universally across scales and
tasks,” CoRR, vol. abs/2110.07602, 2021.

[15] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yu-
jie Qian, Zhilin Yang, and Jie Tang, “Gpt understands,
too,” ArXiv, vol. abs/2103.10385, 2021.

[16] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly, “Parameter-
efficient transfer learning for nlp,” in ICML, 2019.

[17] Elad Ben-Zaken, Shauli Ravfogel, and Yoav Gold-
berg, “Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models,” in ACL,
2022.

[18] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen,
“Lora: Low-rank adaptation of large language models,”
ArXiv, vol. abs/2106.09685, 2021.

[19] Armen Aghajanyan, Luke Zettlemoyer, and Sonal
Gupta, “Intrinsic dimensionality explains the effective-
ness of language model fine-tuning,” in ACL, 2021.

[20] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski, “Measuring the intrinsic dimension of objec-
tive landscapes,” ArXiv, vol. abs/1804.08838, 2018.

[21] Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin
Deng, Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun
Chen, “Differentiable prompt makes pre-trained lan-
guage models better few-shot learners,” ArXiv, vol.
abs/2108.13161, 2021.

	 Introduction
	 Background
	 Task-specific Prompt Tuning
	 Instance-dependent Prompt Tuning

	 Our Approach
	 Experimental Results
	 Experimental Settings
	 Main Results

	 Analysis and Discussion
	 Dynamic-UPL or Fixed-UPL?
	 Impact of the Rank r

	 Conclusion and Future Work
	 References

