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Abstract 

A motor imagery brain-computer interface system with practical application value should be able to show stable 
performance when facing new users. The distribution of electrodes on the cerebral cortex is the same for any user. 
Therefore, in order to solve the subject-independent problem, we propose a novel Graph Convolutional Convolution 
Transformer Net (GCCTN), which uses a graph convolutional neural network to calculate the relationship between an 
electrode and other electrodes, uses a convolutional neural network to extract temporal and spatial information and uses a 
Transformer Encoder for further extraction of time-domain information. Finally, the classification accuracy of our model 
is optimal. 
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1. Introduction 

Brain-computer interface (BCI) based on motor imagery (MI) which can acquire, pre-process and classify 
electroencephalogram (EEG) signals offers new approaches to neurorehabilitation for physically disabled (e.g. paralyzed 
and amputee) and brain-injured (e.g. stroke patients). When the MI task is executed, the relevant EEG signals are 
generated in the sensorimotor cortex of the brain, whose frequency spectrum produces the event-related 
desynchronization (ERD) phenomenon. When the MI task is over, the EEG signals exhibit event-related synchronization 
ERS phenomenon [1]. This is the basis on which we can do signal classification. 

Traditional EEG signal classification tasks usually select artificial features from the original signals and then classify 
them using machine learning algorithms. One of the most commonly used features is the power spectral density (PSD). 
Differential entropy (DE) is also a widely used feature in the classification of emotional EEG signals [2]. Commonly 
used machine learning algorithms include linear discriminant analysis (LDA) and support vector machines (SVM) [3]. 
The process of feature selection largely depends on the experience of the analyst, so it is difficult to avoid the loss of 
potential key information in the process of feature calculation. The development of deep learning technology has realized 
end-to-end data processing, training neural networks to automatically extract features related to the classification task in 
the original signal, and retain key information, thereby improving the classification accuracy. Many methods using deep 
learning have achieved outstanding results in EEG signal classification tasks. For example, a convolutional neural 
network (CNN) is used to treat the multi-channel EEG signal as a picture to extract its spatial domain features, and a 
recurrent neural network (RNN) or long short-term memory (LSTM) cells are used to extract the temporal domain 
features of the EEG signal. In addition, some hidden layers in deep neural networks can also be input into corresponding 
classifiers as features for classification.  

At present, most studies on motor imagery EEG classification are subject-dependent, using part of the data of one subject 
as the training set and another part as the test set. In this way, the classifier obtained by training can only be applied to 
the user who provides training data. Although the accuracy is relatively high, it is not universal. A brain-computer 
interface system with practical application value should still show sufficiently robust performance when facing new 
users. In order to solve the subject-independent problem while improving the robustness of brain-computer interface 



 
 
 
 
 
 
systems, this work proposes a novel Graph Convolutional Convolution Transformer Net (GCCTN). The main 
contributions of this work are as follows. 

 Using a graph neural network to automatically extract electrode position information features makes the brain-
computer interface system more robust when facing different subjects. As far as we know, the proposed 
network is state-of-the-art. 

 This work uses a Transformer to extract temporal domain features of EEG signals. Compared with recurrent 
neural networks and long short-term memory networks, the unique network structure of the Transformer can 
improve the calculation speed and can also better extract time-domain features. 

The remaining parts of this paper are organized as follows: In section 2, some classification algorithms of MI EEG 
signals are introduced. Section 3 describes the specific structure of the proposed network. Section 4 gives the 
organization of the experiments and the results. Meanwhile, future work is also described. Finally, in Section 5, the 
conclusion of the study is presented. 

2. Related works 

2.1 Classification methods 

Multi-channel EEG signals are naturally two-dimensional. Therefore, the channels can be convolved to extract the 
features in the spatial domain, and the sampling points in different time periods can also be convolved to extract the 
features in the time domain. Robin et al. first proposed that convolutional neural networks (ConvNets) trained end-to-end 
within subjects can achieve at least the same range of accuracy as filter bank common spatial patterns (FBCSP) in 
decoding task-relevant information from EEG [4]. At the same time, they found batch normalization and exponential 
linear units from the field of deep learning are crucial for reaching high decoding accuracies. Vernon J et al. used 
depthwise and separable convolutions to build an EEG classification model where spatial optimal filtering and filter 
bank construction were constructed and the number of trainable parameters was reduced [5]. Siavash et al. used a new 
temporal representation of the data and a CNN to build a system classifying EEG signals [6]. Different CNNs having 
different depths and kernel sizes were merged to form features. And these features were robust for MI EEG classification 
[7]. Xu et al. introduced a deep transfer CNN framework consisting of a pre-trained CNN based on VGG-16 and a target 
CNN model. In the training phase, they fixed the front layer’s parameters while fine-tuning the parameters in later layers 
[8]. Slightly different from previous studies, the data here used time-frequency spectrum images of EEG signals. Lun et 
al. proposed a simplified CNN classification architecture including five layers, where one layer is convoluted along the 
timeline and others are convoluted along the space axis [9]. In addition to being used alone, CNNs are often used in 
combination with other neural networks as part of feature extraction. Raghu et al. used different hidden layers of CNN as 
input of the SVM [10]. 

Similar to a piece of text, EEG signals are time-series signals, and there is a specific relationship between voltages at 
different times. Therefore, some methods of natural language processing, such as RNN, LSTM, and Transformer, also 
can be found in EEG signal classification tasks. Khademi et al. proposed a hybrid deep learning model employing pre-
trained CNNs in combination with the trainable LSTM and fully connected neural networks in MI BCI [11]. The 
Transformer was first proposed by Ashish et al. to solve machine translation problems bringing the attention mechanism 
and the self-attention mechanism to us [12]. Song et al. calculated the correlation between different channels through the 
attention mechanism. At the same time, the encoder in Transformer is used to extract temporal domain features and then 
classify them [13]. 

Although deep learning methods are very popular, traditional machine learning methods can also be found in many 
studies of EEG signal classification tasks. Venkatachalam et al. introduced a Hybrid Kernel Extreme Learning Machine 
(Hybrid-KELM) which is based on Principal Component Analysis (PCA) and Fisher's Linear Discriminant (FLD) for MI 
EEG signals classification [14]. Luo et al. proposed an Ensemble Support Vector Learning (ESVL) for motor imagery 
EEG classification [15]. 

2.2 Graph representation 

The distribution of electrodes across the brain was an obvious commonality for different subjects, and it did not change 
over time. Therefore, rational use of this point is conducive to the realization of a subject-independent brain-computer 



 
 
 
 
 
 
interface. Zhang et al. proposed three methods to build a two-dimensional matrix describing electrodes’ position. 
Multiplying this matrix with the original EEG signal will get the EEG signal containing the electrode position 
information. The resulting signals are then classified through deep learning methods [16].  

3. Dataset and method 

3.1 Dataset 

 
Figure 1. Distribution of electrodes 

BCIC IV dataset 2a is used in this work which recorded EEG signals from twenty-two positions on the cerebral cortex 
by Ag/AgCl electrodes. The montage is shown in figure 1. The dataset collects EEG signals from 9 subjects performing 
four motor imagery sessions, including the left hand, right hand, feet, and tongue. Every subject did two experiments on 
two different days. Each experiment consists of 6 runs including 48 trials (Each motor imagery was performed 12 times) 
[17]. The detailed process of one trial can be found in figure 2. There will be a beep at first, and a cross cursor will be 
displayed on the screen to remind the subject that the time is about to start. In the second, the subject is told what 
movement to imagine. The subject then began performing motor imagery for three seconds. Finally, there is rest. This 
process will be looped until the end of all trials. The Sampling frequency is 250Hz. 

 
Figure 2. Process of one trial 

 



 
 
 
 
 
 
3.2 Method 

 
Figure 3. Graphical representation of electrodes 

 
Figure 4. Graph Neural Network 

The location of the electrodes on the brain is the same for each subject, which can be used as an important common 
feature for the classification of EEG signals from different subjects and can be seen as an undirected graph. Taking 
electrodes 4, 9, 16, 11, and 10 in figure 1 as an example, a graph can be obtained as shown in figure 3 [18]. Each 
electrode is represented by a vertex. If two electrodes are adjacent, the two vertices are connected by a straight line. An 
adjacency matrix is a simple and  

 
Figure 5. Network structure 



 
 
 
 
 
 

 
Figure 6. Brief structure of Transformer Encoder 

efficient representation of a graph where the blue color block indicates that the two vertices are connected. Each vertex 
has an embedding, which we define as the sequence of EEG signals collected by the corresponding electrode. As we all 
know, the EEG signal itself is a signal with high temporal resolution but low spatial resolution. For the signal collected 
by a certain electrode, a simple weighted summation with the signal collected by the surrounding electrodes can reduce 
the influence of the noise signal on the signal. Therefore, exploring the relationship between different electrodes is very 
important to improve the robustness of the final classification result.  

The principle of the graph neural network is shown in figure 4. The value of the vertex of each layer is related to the 
value of the vertex of the previous layer. In an iterative calculation, the value of a vertex in Layer2 is defined as 

newnode , the value of this vertex in Layer1 is defined as oldnode  and the values of the adjacent nodes of this node are 

defined as a set adjnodes . The calculation process is shown as in equation (1). 

 ( , )new old adjnode f node nodes  (1) 

()f is a learnable function with parameters. After several layers of calculations, the value of a vertex in the last layer 

may be affected by the values of all vertices in the first layer. Therefore, potential relationships between different 
electrodes can be sought through such calculations. 

In order to illustrate the above calculation process more vividly, the following definitions are made. 𝑋 ∈ ℝ is the input 
EEG signal having N  nodes and F  samples in every node. 𝐴 ∈ ℝ is an adjacency matrix of the graph. Θ ∈ ℝ is 
a matrix of filter parameters. 𝑍 ∈ ℝ is the output having N nodes and F samples in every node. The detailed 
calculation process of equation (1) is shown as in equation (2) (3) (4) [19].  
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Based on the above ideas, we propose the model shown in figure 5 to classify EEG signals. Apart from the input and 
output, the model consists of 4 parts marked with different colors. The first part mainly consists of a graph convolutional 
network to obtain the relationship between different electrodes. The second part consists of two layers of convolutional 
neural networks to extract features in the temporal and spatial domains, respectively. The third part uses the Encoder part 



 
 
 
 
 
 
of the Transformer to further extract the time domain features of the input signal, and its brief structure is shown in 
figure 6 [12]. The Transformer Encoder firstly performs position encoding on the input time series to ensure that the 
calculated results retain time information. Then, the self-attention mechanism is used to calculate the relationship 
between the current moment and the rest of the time to extract the features of the time domain. Compared with RNN, the 
calculation process of the Transformer Encoder is parallel, so its calculation process is relatively fast. The last part is the 
fully connected layer, which is used for the final classification. 

4. Experiments and results 

Table 1. Comparison of experimental results 

  

Methods Accuracy 

EEGNet [20] 0.5130 0.0518 

CTCNN [21] 0.4767 0.1506 

EEG Image [22] 0.3270 0.0430 

Cascade Model [23] 

Parallel Model [23] 

FBCSP [24] 

PSD-SVM [25] 

NG-CRAM [16] 

Ours 

0.3183 0.0399 

0.3267 0.4499 

0.3569 0.0853 

0.3611 0.0817 

0.6011 0.0996 

0.6570 0.0182 

 

Table 2. Classification accuracy of different subjects 

  

Subject Accuracy 

Sub1 0.6388 

Sub2 0.6614 

Sub3 0.6649 

Sub4 

Sub5 

Sub6 

Sub7 

Sub8 

Sub9 

0.6631 

0.6579 

0.6597 

0.6701 

0.6631 

0.6753 

 



 
 
 
 
 
 

 
Figure 7. Confusion matrix of classification results for 9 subjects 

The dataset consisted of 9 subjects in total, with the data of one subject as the test set and the remaining 8 subjects as the 
training set. In this way, 9 experiments were carried out. The loss function is CrossEntropyLoss function and optimizer is 
Adam optimizer. The experiment environment is Ubuntu 18 which having two 2080Ti graphics cards. 

The comparison results of the classification accuracy of the proposed method and some previous methods are shown in 
table 1. And in different methods, the way of data partitioning is consistent. Our method achieves the highest accuracy. 
The classification accuracy of different subject data as the test set is shown in table 2. The confusion matrix of the 
classification results for each subject is shown in figure 7. From figure 7, we can see that the classification accuracy for 
different categories of EEG signals is roughly the same, but there are large differences for some subjects. For example, 
Sub5, the classification accuracy of the right hand and the foot is 0.77 and 0.78, but the classification accuracy of the left 
hand and the tongue is only 0.52 and 0.56. Therefore, in the future work, we can pay more attention to the classes with 
large differences to improve the classification accuracy. Furthermore, an actual BCI system is usually calibrated first 
when it is in use. Therefore, taking a small fraction of the data from the test set as data for calibrating the system will 
also be considered in future work. 

5. Conclusion 

A brain-computer interface system with practical value should be subject-independent. It can still have stable 
performance when facing new subjects. In this paper, we propose a model to solve the subject-independent four-class 
motor imagery EEG classification problem. The location distribution of electrodes on the brain is an obvious 
commonality between different subjects. Considering the distribution of electrodes can be represented using a graph, a 



 
 
 
 
 
 
graph convolutional neural network was used in this work to extract the relationship between different electrodes. 
Compared with other methods, our method achieves the highest accuracy.  
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