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Abstract—Remaining useful life (RUL) prediction is critical
for predictive maintenance of machinery. Data-driven prognostics
methods centered on deep learning are attracting ever-increasing
attention. However, most existing methods mainly provide point
estimates about RUL without quantifying predictive uncertainty.
In contrast, Bayesian models can offer a reliable framework
for estimating predictive uncertainty, but these models require
expensive computation cost. In this paper, we present a Bayesian
framework based convolutional neural network (BCNN) that
is easy to implement and can provide high-quality predictive
uncertainty of RUL. The variational inference is adopted to
approximate the posterior distribution over the model param-
eters. Then the approximating probability distribution is used
for subsequent inference of newly observed data. The proposed
method is validated using vibration signals obtained from the
accelerated degradation of rolling element bearings. The time-
frequency domain features are extracted from raw vibration
signals using continuous wavelet transform. The results of the
experiments show the effectiveness of the RUL prediction of
machinery.

Index Terms—Remaining useful life, fault prognosis, Bayesian
convolutional neural network, degradation model

I. INTRODUCTION

THE requirements for safety and reliability make pre-

ventive maintenance still important in complex indus-

trial systems [1]. However, preventive maintenance, which

is carried out on a regular plan, is not cost-efficient due to

the unexpected failures. With the improved information and

automation technologies, massive industrial data from various

sensors are easily available, which leads to the increased

attention of Condition Based Maintenance (CBM). Unlike

preventive maintenance, CBM only implements the necessary

maintenance tasks when abnormal behavior is detected. Prog-

nostics, which models the degradation process and estimates

the Remaining Useful Life (RUL) of the equipment, is an

essential part of a CBM system [2].

Due to the uncertainty of the failure degradation and

complex characteristics of various faults, health prognostics

is still challenging and requires further development. Data-

driven health prognostics methods have become promising

tools for predicting RUL of the equipment by leveraging signal
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processing and machine learning. Among these methods, deep-

learning-based health prognostics has been verified to be

effective for handling high-dimensional degradation data. The

framework of deep-learning-based methods can be simplified

into three steps: degradation data acquisition, health indicator

(HI) construction, and RUL prediction [3]. First, the run-

to-failure degradation data and associated end-of-life times

are collected for model learning. Second, a dimensionless

HI is constructed as the target of the model. It detects the

health of equipment by monitoring degradation data such as

vibration signals. Traditionally, HI construction methods can

be divided into two categories [4], that is, physical HIs and

fusion HIs. Third, RUL prediction can be formulated as a

deep-learning-based regression problem with these degrada-

tion data, where the run-to-failure high-dimensional data and

corresponding HIs are used as inputs and outputs of neural

networks (NNs). For instance, RUL prediction methods based

on deep autoencoder [4, 5], convolutional neural networks

(CNNs) [6, 7], recurrent neural networks (RNNs) [8, 9], and

their combinations [10, 11] have been studied recently.

In real-world industrial applications, the degradation path

can be affected by various types of uncertainty, such as

environmental noise, operating conditions, the selected model.

However, plain feedforward neural networks neglect the un-

certainty nature of the degradation path. These deterministic

models allocate mainly point estimations of RUL and tend

to output overconfident predictions. Despite the impressive

performance of these methods, quantifying the predictive

uncertainty of RUL has not yet been studied thoroughly.

In comparison, the Bayesian framework is highly desirable

for modeling predictive uncertainty and further inference.

Recently, many works have been made to adapt the Bayesian

theory to model NNs [12, 13, 14, 15]. Blundell et al. [13]

used variational Bayesian learning to approximate the posterior

distribution over model parameters. To represent uncertainty,

all parameters are sampled from probability distributions to

have possible values, which requires more time and resources.

Gal and Ghahramani [12] proposed a theoretical framework

that uses Monte Carlo (MC) dropout in NNs training to

approximate Bayesian interpretation in deep Gaussian pro-

cesses. Then they use dropout at test time to estimate pre-

dictive uncertainty. Compared with other variational Bayesian

methods, this method is relatively simple to implement in

practice. Based on this method, Peng et al. [16] proposed a978-1-7281-2547-3/20/$31.00 ©2020 IEEE
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framework of the Bayesian deep-learning-based method for

health prognostics with uncertainty quantification. Similarly,

the predictive uncertainty is obtained by multiple sampling of

the trained model with dropout activated for prediction.

Motivated by variational Bayesian methods, we propose

a Bayesian CNN-based method for health prognostics to

quantify predictive uncertainty of RUL. This method uses vari-

ational inference to approximate the posterior distribution over

the parameters. Then the MC dropout is adopted to capture the

model uncertainty. Following [17], the proposed model outputs

two values from Gaussian distribution to capture the ambiguity

in targets, that is, the predicted mean and variance. It captures

the noise inherent in the observed data. The Bayesian CNN-

based method allows the model to captures the data uncertainty

while obtaining the model uncertainty.

The rest of the paper is organized as follows. Section II
introduces the theoretical background of the deep Bayesian

neural network. Section III provides the proposed Bayesian

convolutional neural network. Section IV demonstrates the

proposed method using a bearing dataset. Finally, conclusions

and future works are given in Section V.

II. THEORETICAL BACKGROUND

Let D = {xn, yn}Nn=1 denotes the training dataset D that

consists of N data points. Here, xn ∈ R
D represents the D-

dimensional features, and the label yn ∈ R is real-valued in a

regression problem. A neural network can be constructed as a

probabilistic model p(Y|X,w) [13]. Given an input xn, the

neural network assigns a possible value to the corresponding

target yn, using the set of model parameters w. The parame-

ters are generally learned by maximum likelihood estimation

(MLE), i.e., w = argmaxw log p(D|w). For a Bayesian

neural network (BNN), the model parameters are treated as

random variables over probability distributions, rather than

having fixed values. The prediction of an unseen sample x∗

is calculated by taking expectations over posterior distribution

on parameters p(w|D), i.e, p(y∗|x∗) = Ep(w|D)[p(y
∗|x∗,w)].

The posterior distribution over the parameters is obtained as

p(w|D) =
p(Y|X,w)p(w)

p(Y|X)

=
p(Y|X,w)p(w)∫
p(Y|X,w)p(w)dw

(1)

However, the integration in posterior distribution averages all

possible model over the space of parameters w, which is not

tractable in practical applications.

Instead of calculating the true posterior p(w|D), Blundell

et al. [13] utilized a variational distribution q(w|θ) to approx-

imate the posterior distribution over the parameters. To min-

imize the difference between the approximating distribution

q(w|θ) and the true posterior p(w|D), Kullback-Leibler (KL)

divergence [18] is used to measure the similarity between these

two distributions.

KL(q(w|θ)‖p(w|D)) =

∫
q(w|θ) log q(w|θ)

p(w|D)
dw

∝ KL(q(w|θ)‖p(w))− Eq(w|θ)(log p(D|w))

(2)

Then the parameters can be learned by minimizing the KL

divergence, and (2) is simplified as

L(D, θ) = KL(q(w|θ)‖p(w))− Eq(w|θ)(log p(D|w))

= KL(q(w|θ)‖p(w))

−
N∑
i=1

∫
q(w|θ) log p(yi|xi,w)dw

(3)

However, this objective calculates loss over the entire dataset,

which incurs huge computing costs. Therefore, Gal [19]

adopted minibatch-based optimization to solve this problem.

The dataset D is split into M equal-sized subsets Sj , j =
1, 2, . . . ,M , and the gradient is averaged over N/M samples

for each epoch of optimization.

L(Dj , θ) =
1

M
KL(q(w|θ)‖p(w))

−
∑
i∈Sj

∫
q(w|θ) log p(yi|xi,w)dw

(4)

Moreover, the integration
∫
q(w|θ) log p(yi|xi,w)dw in (3)

is intractable for deep BNNs. Gal [19] suggested utiliz-

ing a reparameterization trick [20] to obtain an unbiased

minibatch-based MC estimator, which is used to estimate the

expected log-likelihood. The reparameterization trick assumes

that q(w|θ) can be reparametrized as g(θ, ε), s.t. w = g(θ, ε),
and ε is a noise vector drawn from a parameter-free distri-

bution q(ε). Therefore, the integration can be rewritten as∫
q(ε) log p(yi|xi, g(θ, ε))dε. The gradient estimator for this

problem is ∇θEq(w|θ)(f(w)) = Eq(ε)(f
′(g(θ, ε)∇θg(θ, ε)),

resulting in a new function

LMC(Dj , θ) � 1

M
KL(q(w|θ)‖p(w))−

∑
i∈Sj

log p(yi|xi, g(θ, ε))

(5)

where ε ∼ p(ε). We then use a stochastic optimizer to learn a

local optimum θ∗ that would be optimum to (3) [21]. When

minimizing the KL divergence, the end-of-life time y∗ for

a new sample x∗ can be predicted by the approximating

predictive distribution

p (y∗|x∗,D) ≈
∫

p (y∗|x∗,w) q∗(w|θ)dw (6)

III. BAYESIAN CONVOLUTIONAL NEURAL NETWORK

The convolutional neural network (CNN) proposed by Le-

Cun et al. [22], has wide applications in the study of data-

driven condition-based maintenance. Traditional CNN gener-

ally consists of three parts: an input layer, multiple hidden

layers, and an output layer. The convolution operation in the

hidden layers pays attention to the local spatial correlations,

which is suitable for highly autocorrelated vibration signals.

Recently, automatic feature extraction’s ability makes CNN

received considerable attention of fault prognosis in rotation

machinery[6, 23, 24]. Zhu et al. [6] proposed a hybrid method

that combines signal processing and multi-scale CNN for RUL
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Fig. 1. A simple structure of BCNN.

prediction. In that work, time-frequency representations of

vibration signals are obtained by wavelet transform (WT).

Then these processed features are used as input to the multi-

scale CNN. Based on this method, we propose a Bayesian

CNN (BCNN) for RUL prediction that can capture prognos-

tics uncertainty. This model consists of three parts: feature

extraction, Bayesian approximation, and RUL prediction. A

simple structure of BCNN is shown in Fig 1.

The feature extraction is achieved by a series of convo-

lutional and pooling layers. The convolutional layers extract

features from the output of the previous layer with multiple

kernels, and then implement non-linear activation functions to

construct a feature map. The operation of convolutional layers

can be written as

xl
j = ϕ

(∑
i

xl−1
i ∗ klij + blj

)
(7)

where ∗ denotes a convolutional operator, xl−1
i and xl

j are

the ith feature map of l − 1th layer and the jth feature map

of lth layer. klij and bj denote the convolution kernel and

bias, respectively. ϕ is the non-linear activation function. To

improve computing efficiency, the Max-pooling layer is used

to reduce the spatial size of the feature map xl
j . The output

feature maps from the Max-pooling layer are then fed into the

next convolutional layer.

Among the layer connections, dropout is applied before

every weight layer, which proves to be an approximation of

a neural network to a deep Gaussian process [12]. Dropout

is generally adopted to avoid overfitting in neural networks

[25]. In addition to injecting noise, this technique involves

generating uncertainty over the parameters in Bayesian NNs.

Apart from the last output layer, binary variables diag(ε) are

sampled for input and every weight unit in each layer with

dropout, and ε ∼ Bernoulli (q). Therefore, the approximating

distribution can be learned by q(w|θ) =
∫
q(w|θ, ε)q(ε)dε

where q(w|θ, ε) = δ(w−g(θ, ε)). Peng et al. [16] showed that

when setting model prior to independent normal priors as well

as learning approximating distribution q(w|θ), we can satisfy

KL condition, i.e., KL(q(w|θ)‖p(w)) = Nλ‖θ‖2. Then we

scale the optimization objective (5) by the constant M/N and

get

Ldropout(Dj) =λ
L∑

i=1

(
‖Wi‖22 + ‖bi‖22

)

− M

N

∑
i∈Sj

log p (yi|xi, g(θ, ε))

(8)

Finally, the extracted global and local features processed by

multi-scale CNN and dropout are passed to the fully-connected

network for RUL prediction. For the task of regression to

{yn}Nn=1, CNNs usually learn a value ŷn and optimize the

parameters by the Euclidean loss on the training dataset D,

given by
∑N

n=1 ‖yn− ŷn‖22 [16]. Follow [17], we assume that

the predicted RUL is sampled from a Gaussian distribution.

Instead of outputting a single value ŷn, the proposed Bayesian

CNN outputs the predicted mean and variance, resulting in an

objective,

LGP (Dj) = λ
L∑

i=1

(
‖Wi‖22 + ‖bi‖22

)

+
M

N

∑
i∈Sj

log σ2
θ(xi)

2
+

(yi − μθ(xi))
2

2σ2
θ(xi)

+ constant

(9)

The training procedure is showed in Algorithm 1.

Algorithm 1 Training procedure for Bayesian CNN

Require: Given dataset D = {xn, yn}Nn=1

Output: {μ(xn)}Nn=1 and
{
σ2(xn)

}N

n=1
Require: Set learning rate η, dropout rate for q(ε), regular-

ization parameter λ, and initialize parameters θ
1: repeat
2: Sample a random subset S of size N

M from dataset D
3: Sample N

M random variables εi ∼ p(ε), i = 1, · · · , N
M

4: Calculate derivative with respect to θ:Δθ ←
λ
∑L

i=1
∂
∂θ

(
‖Wi‖22 + ‖bi‖22

)
+ M

N

∑
i∈Sj

∂
∂θ (

log σ2
θ(xi)
2 + (yi−μθ(xi))

2

2σ2
θ(xi)

)

5: Update θ:

θ ← θ + ηΔθ
6: until θ has converged
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Fig. 2. HI-based RUL prediction framework.
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Fig. 3. The PRONOSTIA experimental platform.

Recall that the approximating predictive distribution in (6),

we adopt the MC dropout [19] to obtain the unbiased estimator

of the predicted mean and variance, where the predictions

can be interpreted as the average of an ensemble of NNs.

Therefore, the test time is related to the number of forward

passes through the network. This may not affect practical

applications by parallel processing.

IV. EXPERIMENTAL VERIFICATION

The data-driven method proposed in this paper follows the

HI-based RUL prediction framework [26], as shown in Fig. 2.

This method consists of two modules, i.e., data processing and

RUL prediction. To apply this framework, there is a key point

that needs to be addressed: HI construction. The construction

of HI will affect not only the target of BCNN but also the

model mapping HI to RUL. For simplicity of implementation,

the degradation of HI is assumed to be linear. The definition

of HI is detailed in Subsection IV-B.

A. Data Description

The accelerated degradation data are collected from the

PRONOSTIA system [27] in the IEEE PHM 2012 data chal-

lenge. The PRONOSTIA experimental platform is shown in

Fig. 3. It consists of three major parts: a rotatory part, a

loading part, and a measurement part. The rotatory part mainly

includes an asynchronous motor that drives the bearings to

rotate. The loading part is the core of the global system,

which applies the radial force on the tested bearings. The

value of the radial force is set up to the maximum dynamic

load of bearings, which conducts bearings’ degradations within

a few hours. To record the degradation process of bearings,

two miniature accelerometers perpendicular to each other are

placed on the bearings’ external race. The degradation signals

are recorded at every 10s, and the sampling frequency is 25.6
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Fig. 4. Bearing1: (a) waveform for the normal sample; (b) TFR for the normal sample;
(c) waveform for the fault sample; (d) TFR for the fault sample.

kHz. Each sample lasted 0.1s, which means it has 2560 points.

The degradation signals collected in the operation condition

1 are selected to evaluate the performance of our proposed

method. In particular, the run-to-failure data of bearing1 and

bearing2 are used as the training set, while the data of bearing3

and bearing7 are used as the testing set.

B. Data Processing

Data augmentation is an effective method to improve model

performance. We use the window slicing (WS) [28] to increase

the size of the degradation signals. This method extracts slices

from a time series sample and assigns the same value to these

slices. The size of the slice is set to 90% of the original

samples with 50 points shift step in this paper. At test time, the

extracted slices from a test sample are used for regression. The

mean of outputs of the learned model is used as the predicted

value. Then these extracted samples are normalized as follows

to obtain a consistent scale,

x′
i =

xi − xmin

xmax − xmin
∀i (10)

where xi denotes the ith data point from the selected sample.

xmin and xmax represent the minimal and maximal values of

the sample before normalization.

Considering the non-stationary characteristic of the degrada-

tion signals, Zhu et al. [6] suggested using continuous wavelet

transform (CWT) to obtain time-frequency representations

(TFRs) of the signals. The CWT measures the similarity

between a signal with a wavelet ψ by comparing the signal to

scaled and shifted versions of the wavelet. Through CWT, a

one-dimensional signal x(t) is mapped to a two-dimensional
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TABLE I
THE CONSTRUCTED BCNN

Layer Name Size/Parameter

1 Input 32×128×2
2 Dropout 0.05
3 Convolutional-ReLU kernel: 5×5, channel: 16
4 Max-Pooling kernel: 2×2, stride: 2, channel: 16
5 Dropout 0.10
6 Convolutional-ReLU kernel: 3×3, channel: 32
7 Max-Pooling kernel: 2×2, stride: 2, channel: 32
8 Dropout 0.10
9 Convolutional-ReLU kernel: 3×3, channel: 32
10 Max-Pooling kernel: 2×2, stride: 2, channel: 32
11 Dropout 0.05
12 Convolutional-ReLU kernel: 3×3, channel: 32
13 Dropout 0.10
14 Convolutional-ReLU kernel: 3×3, channel: 32
15 Dropout 0.10
16 Multiscale-ReLU channel: 768
17 Fully-connected channel: 200
18 Output channel: 2

representation that contains both frequency and spatial infor-

mation. For a signal x(t), the CWT [29] is formalized as

C(a, b) =

∫ ∞

−∞
x(t)

1

|a|1/2ψ
∗
(
t− b

a

)
dt (11)

where a is a scale parameter, b is a position parameter, and

ψ∗ denotes the complex conjugate of the mother wavelet

ψ. In this work, we choose Morlet wavelet based CWT to

extract TFRs from the normalized signals, and the normalized

signals and TFRs of the first and last samples in bearing1 are

showed in Fig. 4. In the TFRs, the horizontal and vertical

axis represent time and frequency, respectively. Compared

with normal bearings, the bearing with defects shows periodic

impulses in the TFRs. To reduce the calculation burden,

bilinear interpolation is implemented to resize these TFRs to

32×128.

HI construction is critical for identifying the degradation

condition accurately. After processing the degradation signals,

the next step is to construct an appropriate HI. The HI at t
time is defined as

HIt =

(
1− t

tend

)
× s (12)

where tend denotes end-of-life time of the tested bearing, s
stands for scaling factor that is set to 1, and the degree of

degradation is calculated as t/tend. For instance, the degree

of degradation is 0.5 at 50s when the end-of-life time of a

bearing is 100s.

C. RUL Prediction

The proposed BCNN for the RUL prediction is constructed

by extending the multi-scale CNN [6, 16], which is shown

in Table I. With the dropout layer, we sample binary vari-

ables before every weight layer (except for the last one)

with a fixed probability. When the sampled binary variable

is value 0, BCNN drops the corresponding unit. Moreover,

the rectified linear unit (ReLU) is applied to perform the

Model Training:
- BCNN

Samples for Training:
- Multiple bearings

Corresponding HIs:
- Linear degradation

Training

Samples for Testing:
- Single Bearing

HI Smoothing:
- Linear Regression

RUL Prediction:
- HI to RUL

HI Prediction Model:
- Sample to HI
- Uncertainty
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Fig. 5. Implementation procedure of the HI-based model.
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Fig. 6. HI prediction of bearings.

non-linear transformation to the input, and it is defined as

ReLU(x) = max(0, x). To train the proposed BCNN, we

split the training data into training and validation (80/20) sets

and adopt the early stopping strategy to prevent overfitting.

Moreover, the weights of the model are initialized with stan-

dard Gaussian prior distribution, and then the Adam algorithm

[30] with minibatch stochastic gradient descent is used to

optimize the model parameters. The hyper-parameters, such

as learning rate, weight decay, and batch size, are determined

using grid-searching to minimize loss of the validation set.

The optimal parameters are reserved for model training. The

implementation procedure of the proposed model is shown

in Fig 5. Based on the constructed HIs, the extracted TFRs

are used to build BCNN for predicting HIs. Once the model

is trained, we then use it to predict HIs on the test set and

convert these predicted HIs to RUL.

The prediction results for the test set of bearing3 and

bearing7 are shown in Fig. 6. The solid red line represents

the actual HIs obtained from (12). The predicted HI of the

current time is indicated by a dot. These predicted values are

then smoothed by linear regression, which are represented by

the dotted line. The solid blue lines represent the predicted

mean with one standard deviation. The figure shows that the

tested bearings have different degradation patterns over time,

and the predicted values can effectively fit the actual HIs.

For comparison with related works, a widely used metric is
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TABLE II
RUL PREDICTION RESULTS AND COMPARISON

Tested
Bearing

Current
Time (s)

Actual
RUL (s)

Predicted
RUL (s)

Er (%)
[6] [32] [33] BCNN

Bearing3 18,010 5730 5395 17.43 1.05 2.27 5.85
Bearing7 15,010 7570 6129 19.55 29.19 22.93 19.04

employed to evaluate the model performance, which is defined

as

Er =
ActRULi −RÛLi

ActRULi
× 100 (13)

where ActRULi and RÛLi denote the actual RUL and the

estimated RUL of the ith tested bearing, respectively. By

definition of RUL [31], the estimated RUL of the ith tested

bearing is calculated by

RÛLi =
ĤIi

s− ĤIi
× t (14)

where t is the sampling time of the inspection sample of the

ith tested bearing. Then Er can be rewritten as

Er =
s× (HIi − ĤIi)

HIi × (s− ĤIi)
× 100 (15)

To evaluate the performance of the BCNN on point es-

timation of the RUL, three data-driven methods are used

to compare with our prediction results, which are shown

in Table II. In the first method [6], TFRs are obtained

form the non-stationary vibration signals using WT. Then the

proposed multi-scale CNN extracts global and local features

simultaneously for bearing RUL prediction. In the second

method [32], one-dimensional vibration signals are converted

to time-frequency image features using CWT. These extracted

two-dimensional features are fed into a CNN to predict the

HIs. Then the clustering-based threshold is used to predict

the RUL of the tested bearings. In the third method [33],

multiple statistical features extracted from the time, frequency

domains are selected by measuring the relationship between

the extracted feature and the time. These extracted features

are processed by the deep belief network and locally linear

embedding to obtain HIs. Then a diffusion process based

model utilizes the learned HIs to predict the RUL. Compared

with the above three methods, our proposed method shows

competitive results with a simple data processing method.

Moreover, the first two deterministic comparison methods

[6, 32] cannot provide the confidence of the predicted value.

They can only obtain a point estimation of the RUL, even if

the predicted value has a large error. With uncertainty quan-

tification, our proposed method can quantify the prognostics

uncertainty of RUL, which is conducive to the implementation

of uncertainty-based decision-making. The distributions of

predicted HIs over time are shown in Fig. 7. The distribution at

different time points represents the confidence of the predicted

value at that point. Compared with the distributions of bear-

ing3, the plot of bearing7 distributions has larger dispersion,

(a) Bearing 3

(b) Bearing 7

Fig. 7. Uncertainty quantification for bearings.

which indicates the proposed method has less confidence in

the prediction results. This situation is mainly caused by the

discrepancy in the fault patterns and the lifetimes of the tested

bearings under the same condition, resulting in different data

distributions. Therefore, more informative training data are

needed for better generalization ability. Compared with the

third method [33], BCNN is effective to captures uncertainty

information of the model and data. Uncertainty information is

formalized as probability distributions over the model param-

eters and outputs.

V. CONCLUSION

In this paper, we have proposed a Bayesian CNN-based

RUL prediction with uncertainty quantification. This method

has two sources of uncertainty. First, the probabilistic NN

assumes that the output follows a Gaussian distribution to

capture ambiguity in targets. Second, the predictions of MC

dropout can be interpreted as the average over an ensemble of

NNs, which captures the model uncertainty. The experiments

for rotating machinery prognostics have demonstrated the
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effectiveness of the proposed method. In future work, there are

some points that need improvement. 1) The degradation fea-

tures captured by the extracted TFRs using CWT are limited.

More advanced signal processing methods can improve model

performance. 2) To reduce the calculation burden, bilinear

interpolation is implemented to reduce the feature dimension.

Some information in the original features may be lost in

the interpolation process. 3) The assumption that the output

follows a Gaussian distribution is too-restrictive. The method

using a complex distribution such as mixture density networks

can be done in the future. 4) The linear model of HI does

not reflect the actual degradation process well. More realistic

indicators can be constructed to improve model performance

in real industrial applications.
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