
FrameNet: Tabular Image Preprocessing Based
on UNet and Adaptive Correction

Yufei Wang1,2, Chen Du1,2, and Baihua Xiao1

1 The State Key Laboratory of Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing, China
{wangyufei2020, duchen2016, baihua.xiao}@ia.ac.cn

Abstract. Detecting and recognizing objects in images with complex
backgrounds and deformations is a challenging task. In this work, we
propose FrameNet, while a deep table lines segmentation network based
on our Res18UNet with an adaptive deformation correction algorithm for
correcting the table lines. We use Itinerary/Receipt of E-ticket for Air
Transport to evaluate our methods. The experiment results show that our
Res18UNet can reduce the number of parameters and improve the speed
of image segmentation without significantly reducing the segmentation
accuracy, and our correction method can better correct the perspective
deformation and some distorted tablular images with no dependence on
pixel-level ground truth image. In addition, we also apply our model and
method to VAT invoice dataset and prove that they also have better
transfer ability.

Keywords: Computer vision · Deep learning · Image rectification.

1 Introduction

The complex background and the deformation of the object of the image is
usually the difficulties in detection and recognition tasks. In the real world, such
problems exist on scanning QR code, extracting information from the picture
of invoices. Once a good preprocessing method can be designed, the subsequent
steps such as detection and recognition will be more efficient.

Invoices usually have texture, shade and red seal, and may be distorted since
the improper operation of photographers(shown in Fig. 1), which leads to difficul-
ties to obtain the information on this kind of invoice image effectively. However,
most invoices are structured, the horizontal and vertical lines of the invoices
will divide the information into specific areas. Therefore, the performance of
detection and correction of table blocks becomes a significant step in prepro-
cessing. Traditional line detection methods are usually based on edge detection
and Hough transform[1][2], but it is not robust due to the interference from com-
plex background and deformation of the image. In the recent years, researchers
tackled this problem using deep neural networks, which resulted in huge per-
formance leaps in computer vision tasks[3] [4] [5] and was extended to other



2 Y. Wang et al.

Fig. 1. Examples of Itinerary/Receipt of E-ticket for Air Transport, it can be seen that
since the invoices were bound into a book, the image has some deformation.

fields[6][7]. Thus, detecting table lines using deep neural network from complex
background and deformable image become realizable.

In this work, we propose FrameNet, which contains a deep neural network
for table line segmentation and an adaptive deformation correction for table line
rectification, can be used as a preprocessing step for distorted tablular image.
The contributions of this work are two-fold.

1. We propose a table line segmentation network based on Res18UNet to pre-
dict the table line on pixel level. The network can effectively reduce the
amount of parameters and computation without a significant drop of local-
ization accuracy.

2. An adaptive deformation correction method is proposed to correct the table
line without pixel-level corrected ground truth images. Results show that
our method can better deal with the obstacles of perspective deformation
and slight distortion in images and is suitable for tablular image than deep
neural network method DewarpNet[8].

2 Methods

2.1 Res18UNet for Table Line Segmentation

UNet[9] is an end-to-end semantic segmentation network that consists of a con-
tracting path and an expansive path. The contracting path extracts feature and
downsample the feature map, while the expansive path upsamples the feature
map and combines it to the origin feature map from contracting path at the
same stage.

However, UNet has a huge number of parameters and mass computation. To
this end, following ResNet[5], we propose Res18UNet where use ResNet18 as the
downsampling backbone of UNet(shown in Fig. 2) for our table lines segmenta-
tion task. Unlike ResNet, we remove max pooling layer in our Res18UNet, and
build a convolutional block by stacking two BasicBlocks. Our contracting path
consists of four convolutional blocks, the output of each convolutional block is
concatenated with the output of the upsampling layer at the same stage. Then



Title Suppressed Due to Excessive Length 3

 

Fig. 2. The architecture of Res18UNet.

the image scale will be expanded through a double convolutional layers and an
upsampling layer. In the output layer, we build two convolutional layers followed
by a Sigmoid function to predict the probability of horizontal and vertical lines
for each pixel respectively.

We use binary cross-entropy loss function(Equation 1) to calculate the hor-
izontal and vertical loss for each pixel respectively, and add them together to
obtain the total loss(Equation 2).

L (xi, yi) = − (yi · log xi + (1− yi) · log (1− xi)) (1)

L =
∑
i

Lh (xi, yi) +
∑
i

Lv (xi, yi) (2)

where xi is the output probability of horizontal line or vertical line of one pixel,
and yi is the ground-truth value of the pixel.

2.2 Adaptive Correction based on TPS

After obtaining the prediction of the probability of horizontal and vertical lines
for each pixel, we use binarization to get binary images where white pixels rep-
resent table lines and black pixels represent the background(shown in the upper
right part of Fig. 2). Then we apply bitwise-and operation to obtain the inter-
section points so that we can find the moment for each intersection contour by
Equation 3:

Mij =
∑
x

∑
y

xiyjI(x, y) (3)



4 Y. Wang et al.

 

Fig. 3. Main steps of our adaptive correction method, we only show how to correct the
horizontal line, correcting the vertical line is similar to this.

where I(x, y) denotes to the value of the pixel at (x, y), and M00 is the area
(for binary image) or sum of grey level. Therefore, we can calculate the centroid
(x̄, ȳ) for each intersection contour using the following equation:

{x̄, ȳ} =

{
M10

M00
,
M01

M00

}
(4)

We use centroid above to represent the corresponding intersection contour,
and the subsequent processes are Adaptive Localization and Correction.
1. Adaptive Localization: For the centroid (x̄i, ȳi) of the i-th contour, first

traverse all horizontal lines and vertical lines to find which one it belongs
to(we assume h for the horizontal line and v for the vertical line), then use
Equation 4 to calculate the centroid in the x direction of v (called x̄

(v)
i )

and the centroid in the y direction of h (called ȳ
(h)
i ), and (x̄

(v)
i , ȳ

(h)
i ) is the

corrected coordinates for (x̄i, ȳi).
2. Correction: Use thin plane spline(TPS[10]) to transfer image from (x̄i, ȳi)

to (x̄
(v)
i , ȳ

(h)
i ).

Our adaptive correction method is illustrated in Fig. 3 and Algorithm 1.

3 Experiment

3.1 Dataset
We use Itinerary/Receipt of E-ticket for Air Transport dataset in our experiment.
In order to show the correction effect, we also made some synthetic data by
distorting and deforming the invoice template image. The training set contains
51 images, 47 of which are real invoice images and 4 of which are synthetic
invoice images. Test sets are divided into real test set and synthetic test set,
where real test set contains 46 real images and synthetic test set contains 13
synthetic images.



Title Suppressed Due to Excessive Length 5

Algorithm 1: Adaptive Correction based on TPS.
Input: I denotes the original image, Ih, Iv denotes the prediction feature map

of horizontal and vertical lines respectively.
1 Ip = bitwise_and(Ih, Iv) ; // Extract intersection points.
2 C = findContours(Ip) ; // Find set of points for each contour.

// Use Eq4 to get the centroid of each contour.
3 for i = 1 to length(C) do (x̄i, ȳi)=moment(C[i]) ;
4 for each (x̄i, ȳi) do // Adaptive Localization.

// Find the contour mask of horizontal and vertical line where
(x̄i, ȳi) belongs to and calculate its centroid (h, v).

5 h=findHContour((x̄i, ȳi), Ih) ;
6 v=findVContour((x̄i, ȳi), Iv) ;
7 (_, ȳ(h)

i ) = moment(h);
8 (x̄(v)

i , _) = moment(v);
9 end

10 I ′ = tps(I, (x̄, ȳ), (x̄v, ȳh)) ; // Use TPS to correct the image.
11 return I ′ ;

Table 1. Comparison of FLOPS(Floating-point operations per second) and parameters
of different networks. Res18UNet has far fewer parameters and computations than the
other two networks.

Network GFLOPS Parameters(×106)
UNet 1371.8 17.27

MobileUNet 1056.92 10.04
Res18UNet 655.4 7.25

3.2 Experiment Settings

Applying data augmentation is essential to help network learn the desired in-
variance and robustness properties when few training samples are available. In
our experiment, we randomly flipped horizontally and vertically with a proba-
bility of 50%, and randomly added motion blur. At last, we resized the training
images uniformly to 256× 512.

We trained by RMSprop with a minibatch size of 5 images, learning rate
of 0.0001 with a decay of 1/2 at 50 and 100 epoch, weight_decay of 0.5 and
momentun of 0.9. Our model was trained and tested on a single NVIDIA GTX
1080Ti. We trained for 1000 epochs and saved the checkpoint for testing.

3.3 Results

Backbone We compared our Res18UNet to UNet and MobileUNet (use Mo-
bileNetv1[11] as the backbone of the subsampling section in UNet). The compar-
ison of parameters and computation operations of different backbone is shown
in Table. 1.



6 Y. Wang et al.

Table 2. Comparison of segmentation accuracy of different networks, where f.w. IU
denotes the frequency weighted intersection over union.

Network Pixel acc. Mean acc. Mean IU f.w. IU
UNet 97.1 97.4 81.8 95.1

MobileUNet 96.4 96.8 81.0 94.5
Res18UNet 96.8 97.2 81.0 94.8

Fig. 4. Comparison of UNet and Res18UNet on table line segmentation task. The
first column shows the original invoice image, the second and third columns show the
segmentation result from UNet and Res18UNet respectively. We can find from midlle
column that UNet may predict the red seal at the bottom of invoice to be lines.

Table 3. Comparison of different loss function.

Loss Pixel acc. Mean acc. Mean IU f.w. IU
dice loss 95.6 97.1 79.4 93.4
bce loss 96.8 97.2 81.0 94.8

We use four metrics proposed in FCN[12] for our table lines segmentation:
pixel accuracy, mean accuracy, mean IU and frequency weighted IU. The com-
parison of segmentation accuracy is shown in Table. 2.

Combined with the above results, we note that in the case of little difference
in accuracy, the number of parameters and computation of UNet is at least
twice than that of Res18UNet, which make it better to distinguish the edge
area. However, since the lack of training data and residual module, UNet tends to
overfit and predict the edge of red seal at the bottom of invoice to be lines in some
images (shown in Fig. 4). While compared with MobileUNet, our Res18UNet is
superior in computation, storage and accuracy.

Loss function We also compared binary cross-entropy(bce) loss with another
loss function, dice loss. Results in Table. 3 show that bce loss is more suitable
for the task.

Correction After performing the adaptive correction steps, we send the cor-
rected image into Res18UNet again to detect table lines, then calculate the



Title Suppressed Due to Excessive Length 7

Table 4. Change in variance before and after correction in test set.

Test set σy σx

Real images Before correction 77.06 73.31
After correction 44.99 55.16

Synthetic images Before correction 62.26 69.47
After correction 42.77 62.8

variance in the y direction of the obtained horizontal lines as well as the vari-
ance in the x direction of the obtained vertical lines, and finally compare them
with lines variance before correction.

The details of calculating variance for horizontal lines are as follows: Once we
obtain the horizontal segmentation map(the horizontal output of Res18UNet),
we first find the contour for all horizontal line segmentation results, then for each
contour, we calculate the variance of all pixels in the y direction using Equation
5, finally we sum up variance(Equation 6) from different contours so that we
obtain the variance of horizontal lines(σy).

σ(i)
y =

1

Ni

Ni∑
j=1

(
yj − E

[
y(i)

])2

, (xj , yj) ∈ Ωi (5)

σy =

N∑
i=1

σ(i)
y (6)

where Ωi denotes to the i-th contour(N contours in total), y(i) denotes to the y

coordinate values of all points in Ωi, Ni and σ
(i)
y denotes to the number of pixels

and the variance of the y coordinate in Ωi respectively. Analogous to this, we
can also calculate the variance of vertical lines (σx).

We test our correction algorithm on both real dataset and synthetic dataset,
and use variance to evaluate our algorithm. On the test set of real images, the
variance is reduced by 41% and 30% in the y and x direction respectively, where
on the test set of synthetic images, the variance is reduced by 31% and 10% in
the y and x direction respectively. The reason why the variance is smaller on the
synthetic test set than on the real test set is that the perspective deformation on
synthetic images are less obvious than that of real images. Although the edges
of the image are affected during the correction process and will result in the
information lost of some pixel(shown as black edge area in the middle column of
Fig. 5 and 6), the table line areas can be well corrected and the image looks flat.
So the result shows that our correction method can handle the the perspective
deformation and slight distortion well, and the performance is better reflected
in the synthetic test set than real test set. The variance of real dataset and
synthetic dataset are shown in Table 4, while the performance of correcting on
real and synthetic dataset is shown in Fig. 5 and 6.

We also compared our correction method with a famous document unwarping
network, DewarpNet[8]. We use the pre-trained proposed in [8] on our test set.



8 Y. Wang et al.

Fig. 5. Comparison of different correction methods for real test images. First column:
original image. Second column: image processed by our FrameNet. Third column: image
processed by DewarpNet[8].

Fig. 6. Comparison of different correction methods for synthetic test images. First col-
umn: original image. Second column: image processed by our FrameNet. Third column:
image processed by DewarpNet[8].

Results show that DewarpNet may fail to solve the correction for table line
images while our method can better deal with it(shown in Fig 5 and 6).



Title Suppressed Due to Excessive Length 9

Fig. 7. Results of FrameNet applied to VAT invoices. The left column shows the origin
VAT image while the right column shows the corrected results.



10 Y. Wang et al.

3.4 Extended experiment

We extended our FrameNet to VAT invoices. Based on the previous training set,
we added 10 labeled VAT samples for training, and tested on our VAT image
test set. As seen in Fig. 7, our Res18UNet model and correction method show
relatively good results, which implies that our method has the potential to detect
and correct different types of tabular images.

4 Conclusion

In this work, we propose FrameNet, a preprocessing method for tablular image.
We first build a table line segmentation network, Res18UNet, then an adaptive
correction algorithm is proposed to overcome the deformation interference prob-
lem. Experiment on Itinerary/Receipt of E-ticket for Air Transport first shows
that our segmentation network can effectively reduce the number of parameters
and have less computation without highly affecting the segmentation accuracy,
then our correction method can correct the perspective deformation and slight
distortion case. Extend experiment implies that our method can be extended to
other tabular images. Therefore, our model could be helpful to perform down-
stream tasks such as detecting and recognizing words for deformable tabular
image.
Acknowledgements: This work was supported by the National Natural Sci-
ence Foundation of China under Grant 71621002, Grant 62071469 and Grant
62073326.

Reference

1. F. Zheng, S. Luo, K. Song, C.-W. Yan, and M.-C. Wang, “Improved lane line
detection algorithm based on Hough transform,” Pattern Recognition and Image
Analysis, vol. 28, no. 2, pp. 254–260, 2018.

2. J. Tong, H. Shi, C. Wu, H. Jiang, and T. Yang, “Skewness correction and quality
evaluation of plug seedling images based on Canny operator and Hough transform,”
Computers and Electronics in Agriculture, vol. 155, pp. 461–472, 2018.

3. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105.

4. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural
Information Processing Systems, 2014, pp. 2672–2680.

5. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

6. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, \. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems, 2017, pp. 5998–6008.



Title Suppressed Due to Excessive Length 11

7. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

8. S. Das, K. Ma, Z. Shu, D. Samaras, and R. Shilkrot, “DewarpNet: Single-image
document unwarping with stacked 3D and 2D regression networks,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 131–
140.

9. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2015, pp. 234–241.

10. F. L. Bookstein, “Principal warps: Thin-plate splines and the decomposition of
deformations,” IEEE Transactions on pattern analysis and machine intelligence,
vol. 11, no. 6, pp. 567–585, 1989.

11. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

12. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3431–3440.


