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Abstract: Question answering in natural languages 

provides an intuitive and efficient way to help people 

access the rich information stored in various kinds of 

knowledge graphs (KGs). One of the key challenges for 

question answering over knowledge graphs (KGQA) is to 

learn a semantic representation of the input question and 

candidate relation chains over KGs and accurately 

measure the similarity between them. However, existing 

methods often failed to capture the semantic similarity for 

complex question answering, e.g., multi-hop and 

temporal constrained situations. In addition, existing 

KGQA related research mostly concentrates on entities 

while often ignores the events which contain a large 

portion of the world knowledge. To solve this issue, we 

propose a Contrastive Semantic Similarity Learning 

(CSSL) method for multi-hop question answering over 

event-centric KGs. In this method, for candidate relation 

chains generation, the retrieval subgraph is first 

constructed by identifying the topic event or entity in the 

question. To better accommodate complex questions, we 

introduce the contrastive learning framework to learn a 

common semantic space, where the similarity score is 

finally calculated to select the final answer. The 

experimental results on the EventQA dataset show that 

the proposed method achieves superior performances 

compared to the state-of-the-art baselines.  

Keywords: Multi-hop question answering; Semantic 

similarity; Contrastive learning; Event-centric knowledge 

graph 

1  Introduction 

The knowledge graphs (KGs) are defined as a set of nodes 

and directional edges, where nodes represent entities, 

events or other concepts in the real world, and directional 

edges represent the semantic relations between nodes [1]. 

To access the huge amount of human knowledge stored 

in KGs, it is usually required to know the schema of KGs 

and master the Structural Query Languages (SQL), such 

as SPARQL 1  and Cypher 2 . In contrast, Question 

Answering in natural language over KGs (KGQA) 

provides an intuitive and efficient way to help people 

acquire these information in intelligence analysis and 
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1 https://www.w3.org/TR/rdf-sparql-query/ 
2 https://neo4j.com/developer/cypher/ 

 

Figure 1 An example question and corresponding retrieval 

subgraph of the EventKG. The correct relation chain is colored 

in red.  

decision making. One of the key challenges for KGQA is 

to learn a semantic representation for input questions and 

relation chains over KGs, which is used to score the 

similarity between them and select correct answers (see 

Figure 1 for an illustration). Recently proposed research 

work usually adopts deep learning-based methods to learn 

the representation of questions and relations. For example, 

Bi et al. [2] proposes an unrestricted multi-hop reason 

network to encode questions and relations. Yan et al. [3] 

introduces three additional pre-training tasks for BERT, 

including relation extraction, relation matching and 

relation reasoning for relation-augmented training and 

improves relation representation abilities. Zhang et al. [4] 

utilizes dependence tree, constituency tree and the first 

token to construct a composited structural attention so as 

to generate relation features. However, for complex 

questions such as multi-hop and temporal constrained 

questions, existing methods often failed to learn a 

semantic representation for them to conduct similarity 

matching. In addition, existing KGQA methods usually 

concentrate on entities and ignore events, which represent 

the fast-developing world and are also important sources 

of world knowledge. The main reason is that most KGs 

are entity-centric, e.g., Wikidata, DBpedia, NELL, 

YAGO, and OpenKG. To better incorporate event 

information, some event-centric KGs are recently 

proposed, such as EventKG [5] and ASER [6]. 

In this paper, we propose a Contrastive Semantic 

Similarity Learning (CSSL) method for complex question 

answering over event-centric KGs. The proposed method 
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first constructs a retrieval subgraph of the KGs using the 

identified topic event or entity to generate candidate 

relation chains. To better accommodate complex 

questions, we adopt the contrastive learning framework to 

specifically learn a common semantic space for them. 

Lastly, the final answer is selected with the highest 

similarity score. 

The main contributions of this paper are summarized as 

follows. 

(1) We propose a contrastive semantic similarity 

learning method for multi-hop question answering over 

event-centric knowledge graphs, which consists of 

relation chain generation, semantic similarity learning 

and similarity score calculation. 

(2) To better accommodate complex question 

answering in multi-hop and temporal constrained 

situations, we adopt the contrastive learning framework 

to calculate the similarity between the input questions and 

candidate relation chains in a common semantic space. 

(3) Experimental results on the standard EventQA 

dataset demonstrate that our proposed method achieves 

superior performances compared to the state-of-the-art 

baselines. 

The rest of this paper is organized as follows. The related 

work is introduced in Section 2. The proposed method is 

described in Section 3. The experiment is presented in 

Section 4. The conclusion is provided in Section 5. 

2  Related Work 

There has been numerous research work on question 

answering over knowledge graphs, which mainly fall into 

three categories, namely template-based methods, 

semantic parsing-based methods and information 

retrieval-based methods. 

2.1 Template-based methods 

Template-based methods usually construct logic query 

forms (e.g., SPARQL and Cypher) using predefined 

question templates [7] and execute them on the KGs to 

find answers. Wahyudi et al. [8] first matches a question 

with a template, which is then transformed into a graph, 

and finally translates the graph into a Cypher query. 

Athreya et al. [9] regards the question answering task as 

a classification problem, using recursive neural networks 

to classify questions and match SPARQL query templates. 

Reddy and Madhavi [10] integrates templates and 

convolutional neural network to decompose complex 

questions. In summary, template-based methods usually 

have good interpretability, but suffer from poor 

generalizations because of the limited coverage of pre-

defined templates. 

2.2 Semantic parsing-based methods 

Different from template-based methods, semantic 

parsing-based methods directly translate questions into 

logic query forms rather than using pre-defined templates 

[11]. Gao et al. [12] combines rules and neural networks 

to parse the semantic segment sequences and build the 

semantic query graphs. Liang et al. [13] puts forward a 

BERT-based semantic query graph extraction model. 

Sorokin and Gurevych [14] utilizes gated graph neural 

networks to encode the semantic parsing graph, partly 

solving the representation problem of complex questions. 

Semantic parsing-based methods usually require a large 

number of manually annotated pairs of question and 

corresponding logical query form, and seldom utilize the 

content and structure of the KGs. 

2.3 Information retrieval-based methods 

Information retrieval-based methods usually firstly 

extract the topic entity and predicates from questions, 

encode the questions and candidate answers, and finally 

rank the candidate answers from KGs according to their 

similarity with the questions. Chen and Li [15] presents a 

transformer-based deep attentive matching model to 

identify the relations from questions. Wang et al. [16] 

proposes a retrieval-and-reranking policy to select the 

answer from candidates with fine-grained matching. Lan 

et al. [17] iteratively grows the candidate relation paths 

which could lead to the answer entities. Yan et al. [3] 

introduces three auxiliary tasks to augment relation 

learning, i.e., relation extraction, matching and reasoning. 

Information retrieval-based methods generally performs 

better than the above two types of methods, and our 

proposed method also belongs to this category. 

3  Problem Definition 

In this paper, the problem is defined as: given an input 

multi-hop question 𝑄 in natural language and the event-

centric KGs 𝒦 with a collection of triples < 𝑒1, 𝑟, 𝑒2 >, 

where 𝑒1, 𝑒2 ∈ ℰ  are entities or events and 𝑟 ∈ ℛ  is the 

relation, and the goal is to find an entity or event node 𝑎 ∈
ℰ which serves as the answer for the input question 𝑄.  

4  Proposed Method 

The proposed method CSSL consists of three components 

(see Figure 2 for an overview), namely, relation chain  

generation, semantic similarity learning and similarity 

score calculation. The first component aims to obtain the 

candidate relation chains relevant to the input question by 

constructing a retrieval subgraph using the identified 

topic event or entity. The semantic similarity learning 

component learns the semantic representations of 

questions and candidate relation chains through 

contrastive learning. The third component selects the final 

answer with the highest similarity score. 

4.1 Relation Chain Generation 

To construct the retrieval subgraph, the topic event or 

entity is first identified, which is the focus of the input 

question. In our proposed method, the sequence labeling 

technique is adopted to find the topic event and entity. 

Specifically, the vector representation of input question 𝑄, 
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Figure 2 Overview of our proposed CSSL method for multi-hop question answering 

denoted as {𝑥𝑡 , 𝑡 = 1,2, … , 𝑀} where 𝑥𝑡 is a word and 𝑀 

is the maximum length of input questions, is obtained 

through BERT and Bi-LSTM.  

𝒗 = 𝐵𝐸𝑅𝑇𝐶𝐿𝑆([𝐶𝐿𝑆] 𝑥1, … , 𝑥𝑀  [𝑆𝐸𝑃] ) (1) 

𝒉 = 𝐵𝑖-𝐿𝑆𝑇𝑀(𝒗 ) (2) 

where 𝒉 = [ℎ1, … , ℎ𝑀]  is the output of the Bi-LSTM 

layer and ℎ𝑖 is the final hidden representation for word 𝑥𝑖. 

Then the topic event or entity 𝑡𝑒  is obtained through a 

CRF layer with 𝒉. 

Given by the identified 𝑡𝑒, the retrieval subgraph 𝒦𝑅𝑆  ⊆
 𝒦 is constructed as follows. The 𝑡𝑒 is first linked to 𝒦 to 

locate the topic node, and centering on this topic node, all 

relations and nodes within the maximum number of hops 

are retrieved from 𝒦  to construct 𝒦𝑅𝑆 . Finally, all the 

relation chains centering on the topic node are extracted 

as the candidate relation chains. 

4.2 Contrastive Learning for Semantic Similarity 

Intuitively, the correct relation chain denoted as 𝑟𝑐+ , 

which leads to the right answer, should be more 

semantically similar with the input question 𝑄  than the 

incorrect relation chains denoted as 𝑟𝑐− . To better 

distinguish the 𝑟𝑐+  and 𝑟𝑐− , the contrastive learning 

framework is adopted to learn a common semantic space, 

which aims to make 𝑟𝑐+ closer to 𝑄, and 𝑟𝑐− farther from 

𝑄 . Specifically, the BERT model is utilized to encode 

questions and each candidate relation chain (formed as 
<E1> Topic Node </E1> r1 node2 r2 <E2> 

node3 </E2>), respectively. The contrastive loss 

InfoNCE [18] is utilized:  

ℒ𝐼𝑛𝑓𝑜𝑁𝐶𝐸 = −𝑙𝑜𝑔
exp(𝒒 ⋅ 𝒓𝒄+ τ⁄ )

∑ exp(𝒒 ⋅ 𝒓𝒄𝒊 𝜏⁄ )𝑇+1
𝑖=1

(3) 

where 𝒒 represents the encoded question, 𝑇 is the number 

of negative relation chains, { 𝒓𝒄𝒊 | 𝑖 = 1, … 𝑇 + 1} is the 

set of encoded relation chains, 𝒓𝒄+  represents the 

encoded correct relation chain, 𝜏  is the temperature 

hyper-parameter. Considering that there are varying 

number of incorrect relation chains for different questions: 

if a question has more than 𝑇  negative relations, the 

random down-sampling method is applied; if a question 

has less than 𝑇  negative relations, the random dropout 

operation is adopted to generate more samples based on 

existing negative relation chains [19]. 

4.3 Similarity Score Calculation 

The similarity score between the input question and 

candidate relation chains is predicted by the BERT model 

which is already fine-tuned in the semantic similarity 

learning component. In the training phase, the similarity 

score is set to 1 for the correct relation chain and 0 

otherwise. The loss function can be the cross-entropy loss 

(CE) or the hinge loss (HL). 

𝒎𝒊 = 𝐵𝐸𝑅𝑇𝐶𝐿𝑆([𝐶𝐿𝑆] 𝑄 [𝑆𝐸𝑃] 𝑟𝑐𝑖  [𝑆𝐸𝑃]) (4) 

𝑡𝑖 = 𝜎(𝑾 ⋅ 𝒎𝒊 + 𝒃) (5) 

ℒ𝐶𝐿 = −(𝑦 ⋅ 𝑙𝑜𝑔𝑡𝑖 + (1 − 𝑦) ⋅ log(1 − 𝑡𝑖)) (6) 

ℒ𝐻𝐿 =
1

𝑇
∑ max(0, 𝑙 + 𝑠+ − 𝑠−)

𝑇

𝑖=1

(7) 

where 𝑟𝑐𝑖  is the candidate relation chain, 𝜎 is the ReLU 

activation function, 𝑾  and 𝒃  are parameters. For the 

cross-entropy loss, 𝑦  is the ground truth label which 

indicates whether 𝑟𝑐𝑖  is the correct relation chain or not. 

For the hinge loss, 𝑙 is a margin, 𝑠+ is the similarity score 

between 𝑄 and 𝑟𝑐+, 𝑠− is the similarity score between 𝑄 

and 𝑟𝑐−. 

5  Experiment 

5.1 Dataset 

We use the EventQA [20] dataset for evaluation, which is 

the only question answering dataset for event-centric KGs 

to the best of our knowledge. This dataset includes 1000 

two-hop questions, 1005 events, 1655 entities, and 309 

predicates. EventQA is created based on EventKG V2.0 
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[5] which is a multilingual event-centric temporal 

knowledge graph. EventKG V2.0 has more than 970k 

contemporary and history events and 2.8 million temporal 

relations extracted from DBpedia, Wikidata and YAGO 

knowledge graph as well as several semi-structured 

sources. The EventQA dataset is further split into three 

parts, i.e., training, validation and test, which contains 

600, 200 and 200 questions, respectively. 

5.2 Experimental Settings 

The maximum number of hops to construct 𝒦𝑅𝑆 is 2 and 

the maximum number of nodes in the retrieval subgraph 

is limited to 500. The number of negative relation chains 

𝑇  is 20. The dropout ratio in the random dropout 

operation is 0.2. The temperature 𝜏  of InfoNCE loss is 

0.05. The margin 𝑙 for the hinge loss is 1. The model is 

optimized by Adam with a learning rate 3e-5 [21]. The 

metrics used to evaluate the performance in this paper are 

precision, recall, and F1-score (F1). 

5.3 Baseline Methods 

Two groups of recently proposed KGQA methods are 

selected as baseline methods for comparison. The 

semantic parsing-based methods are not included because 

of the costly manual annotation process to generate logic 

query forms for each question. 

The first group contains two template-based methods. 

⚫ Athreya et al. [9] utilizes recursive neural network 

to classify a question and match a responding 

template. 

⚫ T-CRNN [10] adopts the template representation 

based convolutional recurrent neural network to 

obtain answers. 

The second group includes four information retrieval-

based methods, which achieve competitive results. 

⚫ Yan et al. [3] introduces two external datasets and 

proposes three auxiliary tasks for relation learning, 

namely relation extraction, relation matching and 

relation reasoning to better map the question to 

reasoning paths in the knowledge graph. 

⚫ Lan et al. [17] iteratively grows the candidate 

relation paths based on a topic entity and prunes 

away less relevant branches. 

⚫ DAM [15] proposes a transformer-based deep 

attentive matching model to extract the relations and 

employs the fine-grained word-level attention to 

enhance the matching of questions and relations. 

⚫ Wang et al. [16] applies a retrieval-and-reranking 

policy to select the answer from candidates with 

fine-grained matching. 

5.4 Experimental Results 

Topic event/entity identification result. The 

identification results of the topic event or entity are 

reported in Table I. As we can see, the identification 

results of events are relatively worse than entities, 

because events in a question may contain much more 

information than entities, such as time and location, 

which is more challenging to extract. 

Table I Results of identifying the topic event/entity (%) 

 Precision Recall F1 

Event 76.05 75.52 75.78 

Entity 95.07 92.02 93.52 

Table II Results of question answering (%) 

Method Precision Recall F1 

Athreya et al. [9] 40.50 38.77 39.62 

T-CRNN [10] 39.23 36.78 37.97 

Yan et al. [3] 47.70 45.03 45.36 

Lan et al. [17] 48.50 44.09 46.19 

DAM [15] 47.50 43.28 45.29 

Wang et al. [16] 49.27 47.09 48.16 

CSSL+HL 52.90 46.82 49.67 

CSSL+CE 53.50 47.73 50.45 

Question answering results. Table II shows the question 

answering results of our proposed methods and different 

baseline methods, where CSSL+HL and CSSL+CE 

denote the proposed methods with different loss functions, 

i.e., hinge loss and cross-entropy loss, for predicting the 

final similarity score. The best results are in bold and the 

second-best results are underlined. 

In general, Table II shows that information retrieval-

based methods perform better than template-based 

methods, which is also verified in related research [22]. 

The reason is that the performances of the template-based 

methods are highly dependent on the coverage of the 

question templates, while the information retrieval-based 

methods only need to compare the text similarity between 

questions and different relation chains (or entities) to find 

the answer, especially for complex questions. Table II 

also shows that our proposed methods achieve the best 

and second-best results in F1 score. Compared to other 

methods, our methods adopt the contrastive learning 

framework to learn a common semantic space to better 

distinguish the correct relation chains and incorrect ones. 

5.5 Ablation study 

In this section, we evaluate the effectiveness of the 

semantic similarity learning component. After removing 

the semantic similarity learning component, the similarity 

score calculation component is directly used to fine-tune 

a BERT model to predict the answer using two different 

loss functions, denoted as CE and HL. 

Table III Results of w/ and w/o the semantic similarity 

learning component (%) 

 Precision Recall F1 

HL 46.68 43.07 44.80 

CSSL+HL 52.90 46.82 49.67 

CE 47.14 43.68 45.34 

CSSL+CE 53.50 47.73 50.45 
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From Table III we can see that without the semantic 

similarity learning component, the performances of the 

proposed methods drop significantly, with a degradation 

of 4.87% and 5.11% in terms of F1 score for CSSL+HL 

and CSSL+CE, respectively. This further verifies the 

importance of learning a common semantic space of 

questions and relation chains through contrastive learning.  

6  Conclusions 

This paper proposes a contrastive semantic similarity 

learning method for complex question answering over 

event-centric knowledge graphs. The proposed method 

consists of three components, including the relation chain 

generation, semantic similarity learning and similarity 

score calculation. To generate candidate relation chains, 

the retrieval subgraph is first constructed based on the 

identified topic event or entity. To better distinguish the 

semantic similarity between questions and candidate 

relation chains, the contrastive learning framework is 

adopted to learn a common semantic space. Experimental 

results on the EventQA dataset demonstrate the 

effectiveness of our proposed method. 
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