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Abstract— Attention mechanism has been ubiquitous in neural
machine translation by dynamically selecting relevant contexts
for different translations. Apart from performance gains, atten-
tion weights assigned to input tokens are often utilized to ex-
plain that high-attention tokens contribute more to the prediction.
However, many works question whether this assumption holds
in text classification by manually manipulating attention weights
and observing decision flips. This article extends this question
to Transformer-based neural machine translation, which heavily
relies on cross-lingual attention to produce accurate translations
but is relatively understudied in this context. We first design a
mask perturbation model which automatically assesses each input’s
contribution to model outputs. We then test whether the token
contributing most to the current translation receives the highest
attention weight. We find that it sometimes does not, which closely
depends on the entropy of attention weights, the syntactic role of
the current generation, and language pairs. We also rethink the
discrepancy between attention weights and word alignments from
the view of unreliable attention weights. Our observations further
motivate us to calibrate the cross-lingual multi-head attention by
attaching more attention to indispensable tokens, whose removal
leads to a dramatic performance drop. Empirical experiments
on different-scale translation tasks and text summarization tasks
demonstrate that our calibration methods significantly outperform
strong baselines.

Index Terms—Attention mechanism, interpretability,
Transformer, attention calibration.

I. INTRODUCTION

A TTENTION mechanism [1] has become a ubiquitous
component of natural language processing (NLP) tasks,

especially for neural machine translation (NMT). It computes
conditional distributions over inputs to obtain a weighted context
vector for downstream modules. In addition to performance
improvements, attention weights are often implicitly or explic-
itly claimed to explain the model’s decision-making process:
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inputs assigned with large attention weights contribute more to
the output. Such claims that attention provides explanation are
common in the literature [2]–[4].

However, many recent studies challenge whether attention
can be an explanation. The underlying question seems to be:
do high-attention weights on specific inputs lead the model
to make its prediction? Some studies observe decision flips
by manually perturbing attention weights and claim that the
answer is surprisingly no [5], [6]. Another opposite idea is that
trained attention weights do learn something meaningful about
relations between inputs and outputs [7]. Existing discussions
are mainly based on text classification tasks, with a focus on
classical attention functions. In this paper, we extend this ques-
tion to Transformer-based NMT [8], which heavily relies on
cross-lingual attention weights to generate correct translations.
As a core element of Transformer, multi-head attention, a new
attention variant, may have different interpretability properties,
which are not systematically explored.

Attention Analysis. To answer the above question in Trans-
former, we plan to identify the most informative inputs and
compare them with high-attention tokens. Specifically, we pro-
pose to observe how the model decision changes as perturbing
parts of inputs. We define the perturbation operation as applying
a learnable mask to scale each attention weight. Then, we
perform a “deletion game” to find the smallest perturbation
extents that cause significant quality degradation. In this manner,
we can find the most informative inputs for the output and
then compare them with high-attention tokens. If they are the
same, we can treat attention as a reliable explanation and vice
versa.

We take Fig. 1 as an example. After producing the target
word “in,” the source word “�� [countryside]” receives a high
attention weight. Our mask perturbation model finds that per-
turbing that word can indeed largely hamper the next generation.
In this case, attention can be a reliable explanation. However,
after the prediction “deaths,” attention mechanisms attach most
attention to “〈EOS 〉,” while source words “�� [traffic]” and
“�� [interruption]” are truly important for the subsequent
translation discovered by our mask perturbation model. Thus
attention is not a reliable indicator of inputs’ contributions at
this timestep.

We thoroughly examine whether attention weights in Trans-
former can precisely indicate inputs’ contributions on three
benchmarks: Zh ⇒ En, En ⇒ De, and En ⇒ Fr. We find that it
is not a simple “yes-or-no” question but related to three factors:
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Fig. 1. Examples of attention weights before and after calibration. “in _”
denotes the timestep after the prediction “in”. The dashed boxes indicate inputs
which are expected to receive more attention measured by our mask perturbation
model.

� The entropy of attention weights. When the entropy is
relatively higher, the likelihood that high-attention input
tokens decide the model output decreases. But the declining
trend differs among the three language pairs.

� The syntactic role of the current translation. Attention
weights are more likely to indicate inputs’ contributions
when generating content words (e.g., nouns and verbs) than
function words (e.g., conjunctions and prepositions).

� The type of language pairs. The chance that attention
weights can be a reliable explanation is much higher in
language pairs with a smaller syntactic gap.

We further explore another role of attention weights as a
word alignment learned by black-box NMT models [9], [10].
Former researches show that learned attention weights diverge
from word alignment, a correspondence between a pair of source
and target words [11], [12]. For instance, semantically unrelated
words like “〈EOS 〉” frequently draw a wide range of attention
(as seen in the bottom case in Fig. 1). Here we question whether
unreliable attention weights cause this divergence. Analytical
results show that alignments extracted from inputs’ contributions
are closer to word alignment than those from attention weights.
It indicates that the model behaviour does not greatly deviate
from our intuition but is misled by unreliable attention weights.

Attention Calibration: According to our observations, we
find that the NMT model is prone to assign high attention
weights to those tokens with limited effect on the prediction,
leading to wrong-translation or over-translation in NMT [13].
Thus, we propose to calibrate the vanilla attention mechanism
by focusing more on critical inputs. As mentioned earlier, the
mask perturbation model helps to detect informative inputs for
each prediction. Based on this, we further calibrate attention
weights by reallocating more attention to informative inputs. The

mask perturbation model and NMT model are jointly trained,
while attention weights in NMT are corrected based on actual
contributions measured by the mask perturbation model.

Recall the example in Fig. 1. For the top situation, we
strengthen the attention weight of “�� [countryside]”. But
in the bottom case, we redistribute attention weights to source
words (“�� [traffic]” and “�� [interruption]”) which receive
little attention but are critical for the following translation. After
calibration, the missing source information “traffic interruption”
is well-translated.

We verify the effectiveness of our method on extensive trans-
lation tasks (NIST Zh ⇒ En, WMT14 En ⇒ De, WMT17 En ⇔
Fi, WMT17 En ⇔ Lv, and WMT16 En ⇔ Ro) and abstractive
text summarization task. Experimental results confirm that our
attention calibration method achieves significant improvements
over strong baselines. We further visualize calibrated attention
weights and investigate which attention weights need to be
corrected across different layers.

Attention calibration methods have been presented in our
previous paper [14]. In this article, we make the following
significant extensions to our previous work.
� We explore the capability of our mask perturbation model

as an analytical tool to comprehensively study the inter-
pretability of multi-head attention in Transformer-based
NMT. We give detailed analyses to show when attention
weights are reliable indicators of inputs’ contributions,
which provides value to the study of the model’s inner
working through attention mechanisms.

� We further evaluate our methods on abstractive text sum-
marization, where attention weights are heavily relied on
to search salient inputs. Our attention calibration method
shows substantial advantages in this case, showing the
effectiveness of our approach in different attention-based
networks. It also reinforces the necessity of attention anal-
yses and calibration in more attention-dependent tasks.

II. BACKGROUND

The Transformer has a typical encoder-decoder framework
with stacking layers of attention blocks. The encoder first trans-
forms an input x = {x1, x2, . . .xn} to a sequence of continuous
representations h = {h1, h2, . . .hn}, from which the decoder
generates an output sequence y = {y1, y2, . . .ym}. Multi-head
attention (MHA) between encoder and decoder enables each
prediction to attend overall inputs from different representa-
tion subspaces jointly. For the single head, we first project
h = {h1, h2, . . .hn} to keys K and values V using different
linear projections. At the t-th position, we project the hidden
state of the previous decoder layer to the query vector qt. Then
we multiply qt by keys K to obtain the attention distribution
at, which is used to calculate a weighted sum of values V .

Attn (qt,K,V ) = at ∗ V

at = softmax

(
qtK

T

√
dk

)
(1)
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Fig. 2. Overview of the mask perturbation model. It is trained to perturb the
attention weights of decisive inputs to harm the performance, which is used as
the analytical tool in Section III. The dashed arrow lines represent the operations
in the mask perturbation model.

where dk is the dimension of the keys. For MHA, we use
different projections to obtain the queries, keys, and values
representations for each head.

It is noted that the Transformer model performs N cross-
lingual attention layers and employs h parallel attention heads
for each time. Thus we implement our methods on N × h
attention operations separately. For simplicity, we next denote
the query, keys, and values as qt,K,V regardless of what layers
and heads they come from.

III. THE INTERPRETABILITY OF MULTI-HEAD ATTENTION

This section explores whether multi-head attention in Trans-
former can explain inputs’ contributions to the model output. We
first propose a novel mask perturbation model to detect decisive
inputs automatically and then compare them with high-attention
tokens. We thoroughly analyze the extent to which the one with
the highest attention weight leads the model to make its decision.

A. Mask Perturbation Model

To search the source-side inputs that the model relies on to
produce the output, we can observe how the model prediction
changes as perturbing different parts of the input sentence. We
apply a mask to scale each input’s attention weight, which
simulates the process of perturbation.

As shown in Fig. 2, let mt be a mask at t-th step. The
perturbed attention weight ap

t is calculated as:

ap
t = mt � at + (1−mt)� μ0 (2)

μ0 is a uniform distribution (an average vector of 1
n

) and �
denotes element-wise multiplication. The mask mt is obtained
based on hidden states in the decoder qt and keys K:

mt = σ

(
qtW

Q(KWK)
T

√
dk

)
(3)

Here, σ(·) is the sigmoid function. A smaller value ofmt means
a larger perturbation extent on original attention weights. Con-
sidering the structure of multi-head attention in Transformer,
WQ and WK differ among layers and heads.

To test the effect of perturbing different regions of inputs, we
borrow the idea “deletion game” to find the smallest perturbation
extent, which leads to a significant performance drop. The
objective function of the mask perturbation model is:

L (θm) = −LNMT (ap
t , θ) + αLc (θ

m) (4)

where θ denotes the parameters of the original Transformer.
LNMT(a

p
t , θ) is the cross-entropy loss of the translation model

when using perturbed attention weightsap
t . θm = {WQ,WK}

represents parameters of the mask perturbation model. The first
term indicates that the perturbation operation aims to degrade
the translation quality. The second one serves as a penalty term
to encourage most of the mask to be turned off (perturb inputs
as few as possible).

Lc (θ
m) = ‖1−mt‖2 (5)

The perturbation extent is determined by the hyperparameter α.
Under this setting, our mask perturbation model is trained to
remove the most informative input to deteriorate the translation.
The large perturbation extent indicates great contributions to the
prediction and vice versa. We define the actual contribution of
inputs at t-th step as the corresponding perturbation degree:

ϕt = |ap
t − at| (6)

We aim to measure the extent to which actual contributions
of inputs (ϕt) are consistent with attention weights assigned to
each token (at). Considering that the greatest attention in at is
often dominant (the value is often greater than 0.5), we simplify
the question by comparing the top-1 in ϕt and at.

i∗t = argmax
i∈[1,n]

ϕit

j∗t = argmax
j∈[1,n]

ait (7)

At t-th step, the i∗t-th input contributes most to the prediction,
and the j∗t -th input receives the highest attention weight. We
further define Reliability Level as the likelihood that those two
are the same.

Reliability Level =

∑|y|
t=1 1{i∗t = j∗t }

|y| (8)

We calculate this metric upon the whole dataset to evaluate the
overall reliability level of attention weights. A high-reliability
level means the token assigned with the highest attention weight
is more likely to decide the model output.

Notably, earlier studies employ masks and “deletion game”
as analytical tools to explore the importance of each attention
head [15] or the contributions of each pixel in the figure to the
model output [16]. Different from them, we extend to probing
the inputs’ contributions to the model prediction in NMT.
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B. Experimental Setting

We present extensive analyses on three benchmarks: LDC
Chinese ⇒ English (Zh ⇒ En),1 WMT14 English ⇒ German
(En ⇒ De)2, and WMT14 English ⇒ French (En ⇒ Fr)2. We
train the model on the training data and report analytical results
on their validation set. For Zh ⇒ En, we remove sentences of
more than 50 words and collect 2.1 M training samples. We use
NIST 2002 as the validation set. For En⇒De, we train on 4.5 M
training samples. For En ⇒ Fr, we extract 5.4 M sentence pairs
from 35.8 M training corpora. We use newstest2014 dataset as
the validation set for En ⇒ De and En ⇒ Fr.

To follow the standard NMT processing, we tokenize the
corpora using a script from Moses [17]. We employ Byte Pair
Encoding (BPE) [18] to all language pairs to construct a join
vocabulary except for Zh ⇒ En where the source and target
languages are separately encoded.

We experiment with Base Transformer [8] as default, which
consists of a 6-layer encoder and 6-layer decoder and 8 attention
heads. We find that the mask perturbation model tends to perturb
the top-layer attention most, closer to the softmax layer. So
our analyses are based on the top-layer attention. Following
Garg et al. [19], we average eight heads to study the overall
distribution of several attention heads. The NMT model and our
mask perturbation model are jointly trained with 150 k steps,
but their parameters are separately updated based on different
loss functions. For the mask perturbation model, it works as an
external detector to discover decisive inputs for each prediction,
the gradients of which only flow to θm, as seen in Equation (4).
Thus, it does not affect the optimization of the NMT model.

C. When Attention Weights Can Indicate Inputs’
Contributions?

This section investigates the correlation between the reliabil-
ity level of attention weights and the following properties: the
entropy of attention weights, the syntactic role of the current
translation, and the type of language pairs. Specifically, we first
figure out the input contributing most to each prediction by our
mask perturbation model. We then group target outputs based
on the above three factors and calculate the overall reliability
level for each group as in (8).

1) The Entropy of Attention Weights: To provide insights on
the relation between the confidence level and the dispersion of
attention distribution, we report the overall reliability level of
attention weights where the entropy is no more than ε. The
entropy of an attention distribution with n inputs are calculated
as e = −∑n

i=1 ailogai, a metric to describe the dispersion of
this distribution.

Observation 1: there is a negative correlation between the
reliability level and the entropy of the attention distribution. As
presented in Fig. 4, lines start at the peak at around 90% and
gradually decline when the upper limit of entropy rises to 5.0.
Taking Zh ⇒ En as an example, the attention can be relied on

1The corpora includes LDC2000T50, LDC2002T01, LDC2002E18,
LDC2003E07, LDC2003E14, LDC2003T17 and LDC2004T07.

2[Online]. Available: http://www.statmt.org/wmt14/translation-task.html

to explain inputs’ contributions at the 90% confidence when
its entropy is smaller than 1.5. However, the reliability level
dramatically reduces to 47% as the entropy goes to 3.0.

Based on this, we can give detailed advice on setting the
threshold according to the acceptable reliability level and lan-
guage pairs. If we suppose the score is 0.7 in En ⇒ De task, the
threshold should be no more than 3.0.

It is noted that a high entropy never means the distribution
is uniform. It is hard for us to directly figure out the unreliable
attention weights without any additional tool. From this, our
model works as a detector to measure the reliability of attention.
We further find a natural indicator, the distribution entropy,
which can approximately evaluate the reliability of attention
without external judgment.

2) The Syntactic Role of the Current Translation: In this ex-
periment, we investigate the relation between the reliability level
of attention weights and syntactic roles of the current translation.
Words in German and French sentences are labeled by nltk,3

and Chinese sentences are labeled by jiaba.4 We distinguish
between the following POS tags: noun, verb, adjective, adverb,
number, preposition, conjunction, determiner, and punctuation.
The first five tags belong to content words, and the others belong
to function words. The results are displayed in Fig. 3, where
the entropy of attention distribution is also given to provide a
detailed comparison.

Observation 2: the ascending order of POS tags is similar
among language pairs. The numeral is always the best, and noun,
verb, and adjective are not far behind. Conjunction, punctuation,
and preposition consistently rank at the bottom. Besides, we find
nouns and verbs usually rank in the front of conjunction and
preposition. It implies that the percentage of deceptive attention
weights in function words is more significant than content words.

Thus, we suggest treating attention differently for different
POS tags. As for numeral and adjective, the most attended word
is particularly the one that decides the model prediction, and
attention absolutely can be a reliable explanation. Nevertheless,
the perturbation model sometimes does not heavily attack the
highest weight, including conjunction and preposition. In this
case, it is questionable to use attention weight as the indicator
of inputs’ contributions.

However, “〈EOS 〉” is the only exception, which is middle
in Zh⇒ En and En ⇒ Fr but takes the last place in En ⇒ De.
This is because our perturbation model finds it vain to pose any
disturbance on source side to hamper the generation of “〈EOS
〉,” which mostly relies on the target-side decoder. Only 6% of
“〈 EOS 〉” is attacked by mask perturbation model, the small
scale of which leads to unstable results.

3) The Type of Language Pair: In addition to the two above
factors, we also analyze from the view of language pairs. Among
three translation tasks, Chinese belong to the Sino-Tibetan
language family. English, French, and German are all Indo-
European with overlapped vocabulary.

Observation 3: the overall confidence level varies across three
language pairs. The general confidence level is relatively lower

3[Online]. Available: https://www.nltk.org/
4[Online]. Available: https://pypi.org/project/jieba/
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Fig. 3. Reliability level of attention weights when generating translation with different syntactic roles. The lines represent the reliability level. The bars illustrate
entropies of attention weights in each group. The target-side POS tags are sorted by the reliability level of their corresponding attention weights.

Fig. 4. Overall reliability level of attention weights where the entropy is no
more than ε.

in Zh ⇒ En than those in En ⇒ Fr and En ⇒ De. It can attribute
to the significant syntactical discrepancy between source and
target language in the Zh ⇒ En task.

As shown in Fig. 3, there are around two-thirds of POS tags
having the above-0.6 confidence level in En ⇒ Fr and En ⇒ De.
Meanwhile, only numerals and adjectives meet that condition in
Zh⇒ En. Besides, the value of the attention entropy in Zh⇒ En
(indicated by bars in Fig. 3) is larger than those in the two other
language pairs. This further adds evidence to the unreliability of
attention when the Transformer performs Zh ⇒ En translation
task.

A similar pattern is also found in Fig. 4. The figure experiences
a rapid fluctuation in Zh ⇒ En translation rather than a gradual
decrease in another two. When the threshold is larger than 3.0,
attention is too weak to explain input tokens’ contributions in
the Zh ⇒ En task.

D. Revisiting the Divergence Between Attention Weights and
Word Alignment

Many pieces of research reveal that attention weights ex-
tracted from the NMT model diverge from the word alignment
between the source and target sentences. As shown in Section
III-C, learned attention weights sometimes could not indicate
actual source-target correspondence learned by the model. Thus,

we tend to investigate whether unreliable attention weights
worsen this divergence.

We first separately select the most significant input for each
prediction based on attention weights and our measurement
as described in (6). Due to BPE operation, two words are
aligned if part of them are strongly connected. Then, we employ
fast-align5 [20] to obtain word alignment in parallel sen-
tences as silver references. We use the alignment error
rate (AER) [21] as the measurement of alignment qual-
ity. AER=0 represents a perfect consistency with word
alignment.

Fig. 5 exhibits AER differences of attention weights
(AERattn) and our measurements (AERours). We see that align-
ments extracted from our measured inputs’ contributions are
much closer to word alignment, especially in En ⇒ Fr and En
⇒ De. The most striking AER differences are in conjunction
and preposition, where attention weights are found to be most
unreliable in Fig. 3. That is to say, the actual model manners
are closer to word alignment but misled by unreliable attention
weights.

Besides, we discover a different pattern in the Zh ⇒ En
task, where the alignment obtained based on our measurements
sometimes differs from word alignment to a greater degree when
predicting nouns and verbs. In such cases, the model itself
does not work as our expected word alignment to complete
translation.

Note that we never mean the model behaviour in NMT
should keep pace with the standard word alignment because
attention is not alignment. The black box probably learns more
unintelligible clues from the mass of data [22]. However, the
comparisons aim to show how much we could understand model
manners rather than establish a standard to score the quality of
explanations. Thus, a stronger correlation with word alignment
is not evidence for the superiority of our model. Our purpose is
to show whether our measurements correspond to our intuition
or not, and how to explain model behaviors from this new
perspective.

5[Online]. Available: https://github.com/clab/fast_align
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Fig. 5. AER differences of attention weights and our measured inputs’ actual contributions for different syntactic roles (AERattn −AERours). If the bar lies
in grey areas (AERattn > AERours), alignment extracted from our measurement is closer to word alignments between input and output words. The dashed lines
represent average AER differences.

IV. ATTENTION CALIBRATION FOR TRANSFORMER

Based on observations in Section III, we can infer that at-
tention weights in Transformer cannot always indicate inputs’
contributions to the model output. In other words, attention
mechanisms are incapable of precisely identifying decisive in-
puts for each prediction. Some unimportant words (e.g., punctu-
ations) frequently attract high attention [23], resulting in wrong-
translation or over-translation in NMT [13]. It further motivates
us to calibrate the attention weights to focus more on decisive
inputs to enhance translation accuracy.

A. Attention Calibration Network

The following operations are based on the mask perturbation
model described in Section III-A. As aforementioned, our mask
perturbation model removes the most informative input to deteri-
orate the translation by setting the corresponding mask to zero. In
other words, a smaller mask means a larger perturbation, namely
a more significant impact on the prediction. Thus, we propose
to calibrate original attention weights in NMT by highlighting
essential inputs for each model prediction, some of which are
undiscovered under the attention mechanism.

Formally, the calibrated attention weightac
t can be designed

as:

ac
t = at � e1−mt (9)

We increase attention weights of key inputs which suffer from
large perturbation extents. The attention weights of other unim-
portant inputs are correspondingly decreased. We design three
methods to incorporate ac

t into the original one at to obtain
combined attention weights acomb

t :
� Fixed Weighed Sum. In this method, the calibrated atten-

tion weights are added to the original attention weights of
fixed ratio λ as:

acomb
t = softmax(at + λ ∗ ac

t) (10)

� Annealing Learning. Considering the mask perturbation
model is not well-trained at the early stage, we expect the
effect of ac

t to be smaller at first and gradually grow with
the training step s. To this end, we use annealing learning

to control the ratio of ac
t as:

acomb
t = γ(s) ∗ at + (1− γ(s)) ∗ ac

t

γ(s) = e−s/105 (11)

� Gating Mechanism. We propose a calibration gate to
dynamically select the amount of the information from the
perturbation model in the decoding process.

acomb
t = gt ∗ at + (1− gt) ∗ ac

t

gt = σ(qtW
g + bg) (12)

where W g and bg are trainable parameters varying among
different layers and heads.

Our mask perturbation model and NMT model are jointly
optimized. As shown in Fig. 6, the mask perturbation model is
trained to worsen the performance by limited perturbation on
attention weights (as seen in Equation (4)). Given what inputs
are perturbed, we can figure out decisive inputs for each model
prediction and calibrate original attention weights in the NMT
model by ACN. With calibrated attention weights, the NMT
model is finally optimized by:

LNMT (θ) = −
m∑
t=1

logp(yt|y<t, x;a
comb
t , θ) (13)

During testing, the mask perturbation model also helps iden-
tify informative inputs based on the hidden state in the decoder
at each step (as seen in Equation (3)). The NMT model decodes
with calibrated attention weights. Moreover, our method can
provide the saliency map between inputs and outputs based
on the generated mask, an accessible measurement of inputs’
contributions to model predictions.

B. Experimental Setting

Dataset. We assess our method in LDC Chinese-English
(Zh ⇒ En), WMT14 English-German (En ⇒ De), WMT17
English-Latvian (En ⇔ Lv), WMT17 English-Finnish (En ⇔
Fi), and WMT16 English-Romanian (En ⇔ Ro).

We tokenize the corpora and apply BPE as mentioned in
Section III-B. For Zh ⇒ En, we remove sentences of more than
50 words. We use NIST 2002 as validation set, NIST 2003-2006
as the test set. For En ⇒ De, newstest2013 and newstest2014
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Fig. 6. Overview of the framework. The mask perturbation model is trained to perturb the attention weights of decisive inputs to harm the performance (as denoted
by yellow arrows). ACN looks for what inputs are perturbed and enhance the corresponding attention weights (as shown by blue arrows), which is described in
Section IV.

TABLE I
STATISTICS OF THE DATASETS

1The corpora includes LDC2000T50, LDC2002T01, LDC2002E18,
LDC2003E07, LDC2003E14, LDC2003T17 and LDC2004T07. Follow-
ing previous work, we use case-insensitive tokenized BLEU to evaluate
the performance.
2http://www.statmt.org/wmt14/translation-task.html
3http://www.statmt.org/wmt17/translation-task.html
4http://www.statmt.org/wmt16/translation-task.html

are set as validation and test sets. We use the standard 4-gram
BLEU [24] on the true-case output to score the performance.
For En ⇔ Ro, we use newsdev2016 and newstest2016 as devel-
opment and test sets. For En ⇔ Lv and En ⇔ Fi, newsdev2017
and newstest2017 are validation set and test set. See Table I for
statistics of the data.

Settings. We implement described models with fairseq6

toolkit for training and evaluating. We experiment with Trans-
former Base [8]: hidden size dmodel = 512, 6 encoder and
decoder layers, 8 attention heads and 2048 feed-forward inner-
layer dimension. The dropout rate of the residual connection is
0.1 except for Zh ⇒ En (0.3). During training, we use label
smoothing of value εls = 0.1 and employ the Adam (β1 =
0.9, β2 = 0.998) for parameter optimization with a scheduled
learning rate of 4,000 warm-up steps. All experiments last
for 150 k steps except for small-scale En ⇔ Ro translation
tasks (100 k). For testing, we average the last ten checkpoints
and use beam search (beam size 4, length penalty 0.6) for
inference.

6[Online]. Available: https://github.com/pytorch/fairseq

TABLE II
COMPARISON OF OUR MODEL, TRANSFORMER BASELINES AND RELATED

WORK ON THE WMT14 EN ⇒ DE USING CASE-SENSITIVE BLEU. RESULTS

WITH ‡ ARE TAKEN FROM CORRESPONDING PAPERS

TABLE III
EVALUATION OF TRANSLATION QUALITY FOR ZH ⇒ EN TRANSLATION USING

CASE-INSENSITIVE BLEU SCORE

Besides, the hyperparameter λ in Equation (10) decides how
much calibrated attention weights are incorporated in the Fixed
Weighted Sum method. We set λ = 0.1 in all experiments.

C. Main Results

To comprehensively compare with existing baselines and
similar work, we report the results of some competitive models
including GNMT [25], Conv [26] and AttIsAll [8] on WMT14
En ⇒ De translation task. Besides, we also compare our method
against the most related one, FE NMT, which introduces word
alignment information to guide translation [27]. As presented
in Table II, our method exhibits better performance than the
above models. Unlike supervised attention with external word
alignment, our model yields a significant gain by looking into
what inputs affect the model’s internal training.

Table III shows the translation quality measured in BLEU
scores for NIST Zh ⇒ En. Our proposed model significantly
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TABLE IV
EVALUATION OF TRANSLATION QUALITY FOR WMT17 EN ⇔ FI, WMT17 EN

⇔ LV AND WMT16 EN ⇔ RO USING CASE-INSENSITIVE BLEU SCORE

Fig. 7. Translation performance (BLEU score) on the validation set and
average value of generated masks with respect to different hyperparameter α
on Zh ⇒ En translation task (Gate Mechanism).

outperforms the baseline by 0.96 (MT02), 0.84 (MT03), 0.58
(MT04), 1.02 (MT05) and 0.76 (MT06), respectively.

We also conduct our experiments on WMT17 En ⇔ Fi and
En ⇔ Lv. As shown in Table IV, our methods improve the
performance over baseline by 0.54 BLEU (En ⇒ Fi), 0.6 BLEU
(Fi ⇒ En), 0.57 BLEU (En ⇒ Lv) and 0.95 BLEU (Lv ⇒ En).
For the small-scale WMT16 En ⇔ Ro, our methods achieve
a substantial improvement of 1.44 more BLEU (En ⇒ Ro) and
0.95 BLEU (Ro ⇒ En). Compared to the large-scale dataset, the
insufficient training data make it harder to learn the relationship
between inputs and outputs, leaving a greater need for calibrating
attention weights.

Overall, our proposed model significantly outperforms the
strong baselines, especially for the small-scale dataset. More
importantly, the parameter size is tiny (6 M), which does not
add much cost to the training and inference process.

Effect of Fusion Methods. For three fusion methods, the fixed
weighted sum has a limited gain. Annealing learning is com-
paratively more stable, which reduces the impact of ACN when
the mask perturbation model is not well-trained in the initial.
But it is challenging to design an annealing strategy that can be
applied to all language pairs. Gate mechanism mostly achieves
the best performance for dynamically controlling proportions of
original and calibrated attention weights.

Effect of Hyperparameter. As shown in Equation (4), the
hyperparameter α in the loss function of the mask perturbation
model decides how much masks would turn on to perturb the
original attention weights. Fig. 7 exhibits the average value of
generated masks across heads as the function of the setting of
α. A larger α forces the model to turn off most masks, which
makes the value of the mask closer to 1, resulting in a smaller
perturbation extent on the attention weights.

TABLE V
JSD BETWEEN ATTENTION WEIGHTS BEFORE AND AFTER CALIBRATION AT

EACH LAYER ON ZH ⇒ EN AND EN ⇒ DE TASKS. ↓ DENOTES THE JSD AT

ONE LAYER IS LOWER THAN AVERAGED JSD, WHILE ↑ IS ABOVE AVERAGE.
NOTE THAT THE OVERALL JSD FOR EACH LANGUAGE PAIR IS DECIDED BY

THE HYPERPARAMETER α, BUT THE CALIBRATION EXTENTS OF DIFFERENT

LAYERS ARE LEARNED BY ACN

D. Analysis

In this section, we explain how our proposed method helps
produce better translation by investigating: (1) what attention
weights need to calibrate and (2) calibrated attention weights are
more focused or more uniform. Specifically, we delve into the
differences between layers, which give insights into the attention
mechanism’s inner working. We conduct analyses on Zh ⇒ En
NIST03 and En ⇒ De newstest2014 to understand our model
from different perspectives.

We apply Jensen-Shannon Divergence (JSD) between atten-
tion weights before and after calibration to measure the calibra-
tion extent:

JSD (a1, a2) =
1

2
KL[a1‖a] + 1

2
KL[a2‖a] (14)

where a = a1+a2

2 . A high JSD means calibrated attention
weights are distant from the original one. Besides, we use
entropy changes of attention weights (Ent) to test whether
calibrated attention weights become more uniform or focused.

Ent (a1, a2) = e (a1)− e (a2) (15)

where e(a) = −∑m
i=1 ailogai, a metric to describe the uncer-

tainty of the distribution.
1) What attention weights need to calibrate?
High or low layers? Regarding distinct roles of multiple

attention layers, one natural question is what attention layers
are not well-trained in the original NMT model and urgently
need to calibrate. Table V depicts the JSD between original
and calibrated attention weights. We find JSD at 4-6 layers are
greater than those at 1-3 layers in the Zh ⇒ En task, which
means high-layer attention needs more calibration. However,
there is a different pattern in the En ⇒ De task, where JSD at
the high layer is smaller than at the low layers. We speculate that
the difference is due to the language discrepancy, and we will
explore this phenomenon in our future work.

High or low entropy? A lower entropy of attention weights
suggests that several input tokens count for a large amount of
attention. That is, the model is confident about its selection of
important tokens [28]. We attempt to validate whether attention
weights are more likely to be calibrated when the NMT model
is uncertain about its decision. Fig. 8 displays a positive rela-
tionship between calibration extent and the entropy of attention
weights. Take the 6-th attention layer in Zh ⇒ En translation as
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Fig. 8. JSD between attention weights before and after calibration with respect
to the entropy of original attention distributions.

TABLE VI
ENTROPY DIFFERENCES (Ent) BETWEEN THE ORIGINAL AND CALIBRATED

ATTENTION WEIGHTS. “+” MEANS THE CALIBRATED ATTENTION WEIGHTS

ARE MORE DISPERSE. “-” INDICATES ATTENTION WEIGHTS ARE SHARPER

AFTER CALIBRATION

an example (as seen in Fig. 8(b)). The average JSD is 0.0084
for attention weights in rang [0,0.8], while the value is 0.0324
for attention weights where the entropy is larger than 3.2. These
findings can also be observed at different attention layers and
language pairs.

We infer that a higher entropy indicates the NMT model
relies on multiple inputs to generate the translation, which
increases the probability of information redundancy or error
signals. Our proposed model is more prone to calibrate these
attention weights, making the NMT model pay more attention
to informative inputs.

2) Calibrated attention weights are more dispersed or fo-
cused?

We also explore underlying reasons why calibrated attention
can boost performance from the perspective of entropy changes.
We present the entropy differences of the original and calibrated
attention weights in Table VI. We notice that entropies of atten-
tion weights are overall smaller after calibration. But, differences
vary across layers. For En ⇒ De task, calibrated attention
weights are more uniform at 1-3 layers and more focused at 4–6
layers, while attention weights become more concentrated at all

layers except the 1-st layer in Zh⇒En task. These findings show
that each attention layer plays a different role in the decoding
process. Low layers generally grasp information from various
inputs, while high layers look for particular words tied to model
predictions.

V. APPLICATION TO TEXT SUMMARIZATION

We further verify the superiority of our approach on the
abstractive text summarization task, which is another real-world
application that attention mechanism succeeds [29]–[32]. This
task aims to generate a summary with a few sentences that
contain the primary information of an article, which benefits
a lot from the attention mechanism to search salient ideas of the
original.

A. Experimental Setting

Dataset. We use the CNN/Daily Mail dataset [29], which
contains online news articles (781 tokens on average) paired
with multi-sentence summaries (3.75 sentences or 56 tokens on
average). We download non-anonymized version of the data7

using scripts supplied by [33], which has 287,226 training pairs,
13,368 validation pairs and 11,490 test pairs. We use a sharing
vocabulary of 50 k words for source and target side. We use the
standard ROUGE as our evaluation metric [34], reporting the F1
scores for ROUGE-1, ROUGE-2 and ROUGE-L by the pyrouge
package.8

Settings. We experiment with 4-layer Transformer with 8
attention heads. The dropout rate of the residual connection is
0.2. We train using Adagrad [35] with learning rate of 0.15 and
an initial accumulator value of 0.1. All experiments last for 150 k
steps. For testing, we average the last ten checkpoints and use
beam search with beam size 4.

B. Results and Analysis

As shown in Table VII, we list the results of three competi-
tive models, which are all equipped with the traditional atten-
tion mechanism. It is worth noting that pointer-generator [36]
achieves better performance by using the attention mechanism
in two ways: (1) dynamically fetching the relevant piece of in-
formation for generating the next word as usual, and (2) locating
a certain segment of the input article and directly copying the
segment to the output sequence. For comparison, we also add
COPYNET [37] to Transformer model as our second baseline.
In practice, we select one attention head from the 4-th decoder
layer to find the copy words.

Compared with baseline I, calibrated attention weights help
generate more precise summaries, and annealing learning per-
forms the best. When implemented with COPYNET, attention
calibration obtains significant gains over baseline II. We find
that even the most simple fusion method does well. The fixed
mode achieves +1.56 ROUGE-1, +0.79 ROUGE-2, and +1.39
ROUGE-L points, respectively. The considerable improvements

7[Online]. Available: https://github.com/abisee/cnn-dailymail
8[Online]. Available: https://pypi.org/project/pyrouge/0.1.3/
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TABLE VII
ROUGE RECALL EVALUATION RESULTS ON CNN/DAILY MAIL DATASET.

RESULTS WITH ‡ MARK ARE TAKEN FROM SEE ET AL. [33]. BY ATTENTION

CALIBRATION, OUR METHOD GETS A SIGNIFICANT BLEU IMPROVEMENT

THAN BASELINE II

are due to the enhanced copy accuracy yielded by calibrated
attention weights.

The success of our calibration method in the text summariza-
tion task shows that attention weights’ ability to detect salient
inputs greatly affects the model performance in attention-based
networks. It further reinforces the necessity of analyzing the
interpretability of attention mechanisms and guiding attention
weights to precisely locate essential inputs.

VI. RELATED WORK

The attention mechanism is first introduced to augment vanilla
recurrent network [1], [38], which are then the backbone of state-
of-the-art Transformer [8] for NMT. It yields better performance
and lets us have a closer look at how a model is operating [2],
[4]. This section briefly introduce the taxonomy of attention
mechanism and recent researches on analyzing and improving
attention mechanisms.

A. The Taxonomy for Attention Mechanism

The attention mechanism allows for dynamically picking
relevant parts in the input. It computes a weight distribution
over input tokens and assigns higher values to more related
ones. Galassi et al. [39] describe attention models based on the
following orthogonal dimensions. (1) The nature of inputs. K
and V are generally continuous representations of characters,
words, or sentences. Li et al. [40] consider the inputs com-
posed of texts and images. (2) The compatibility function. For
example, dot function [38], scaled multiplicative function [8],
convolution-based function [41] and so on. (3) The distribution
function. It depends on the requirement of weights distribution,
i.e., local or global attention [42], soft or hard attention [38].
(4) Multiplicity. It aims to generate multiple and heterogeneous
inputs or outputs, which helps extract diverse information [43].
One typical example is the multi-head attention discussed in this
article.

Considering the similar framework shared by different vari-
ants of the attention model, our work can easily apply to the
above situations with adaption for specific structures.

B. Is Attention Interpretable?

Recent studies have spawned interest in whether attention
weights faithfully represent each input token’s responsibility
for model prediction. Serrano and Smith [6] flip the model’s
decision by permuting some attention weights, which finds that
high-weighted components not being the reason for the decision.
Another line of work finds a weak correlation between atten-
tion scores and other well-ground feature importance metrics,
specially gradient-based and leave-one-out methods, in various
text classification tasks [44], [45]. Unlike criticizing attention
weights as an explanation, Wiegreffe and Pinter [7] claim that
trained attention mechanisms do learn something meaningful
about the relationship between inputs and outputs, such as
syntactic information [46], [47].

The above discussions are mainly done in the text classifica-
tion with a focus on the classical attention function. We extend
this question to Transformer-based NMT, which heavily relies
on multi-head attention, an underexplored attention variant,
to produce accurate translations. Unlike a “yes-or-no” answer
given in prior work, we offer detailed advice on when attention
is a reliable explanation for the model’s behavior.

C. Does Attention Work as Word Alignment?

The key contribution of the attention model in NMT is the
imposition of an alignment of the output to the input words.
Arguably, Koehn et al. [11] state that the attention model for
NMT does not always fulfill the role of a word alignment
model, but may dramatically diverge, which is also found in
Transformer-based NMT [12]. However, many works insist that
NMT and word alignment are closely related tasks benefiting
each other. Much effort has been made in guiding attention
weights with word alignment [19], [48]–[51] or extract more
accuracy word alignment from trained attention weights [12].
In this paper, we show that the discrepancy between attention
model and word alignment in parallel sentences can be attributed
to unreliable attention weights to a certain extent. In other words,
the model beheviour is not much far from our intuition.

D. Can Attention Be Improved?

Many efforts have been made to strengthen the attention
mechanism. They supervise attention weights with lexical prob-
abilities [52], word alignment [19], [48]–[51], human ratio-
nales [53], and sparsity regularization [54]. Another related
line of work locates important input to guide training in a
self-supervised way [55]. Tang et al. [56] repeatedly extract
active/misleading words based on attention weights which are
used as attention supervision to retrain the model. Compared
with them, our method is more efficient as done in a feed-forward
manner. The contributions of input words are predicted by the
mask perturbation model together with the training of the NMT
model.

Another work line aims to make attention better indicative of
the inputs’ importance [23], [57]. They are designed for analysis
with no significant performance gain, while we incorporate
analytical results to enhance the NMT performance.
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VII. CONCLUSION

In this paper, we have proposed a mask perturbation model
to automatically discover decisive inputs for the model predic-
tion and compare them with high-attention tokens. Thorough
analytical results show that multi-head attention is not always a
reliable indicator of inputs’ contributions in Transformer-based
NMT. We have introduced three factors related to the reliability
level of attention: the entropy of attention weights, the syntactic
role of the current translation, and the type of language pairs.
We also discover that the discrepancy between attention weights
and word alignment in the source and target sentence is partly
due to unreliable attention weights.

Based on our findings, we propose three methods to calibrate
the attention mechanism by focusing on discovered vital inputs.
Extensive experiments on different-scale NMT tasks and text
summarization tasks show that our approaches obtain significant
improvements over the state-of-the-art system.

Attention mechanisms play different roles in varied tasks. In
the future, we plan to measure the reliability level of attention
distributions in more attention-based networks and further apply
our attention calibration methods to more NLP applications (text
classification, dialog system, and speech translation), and other
attention-based computer vision tasks.
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