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Abstract
Deep learning has achieved great success in areas such as computer vision and natural language processing. In the past,

some work used convolutional networks to process EEG signals and reached or exceeded traditional machine learning

methods. We propose a novel network structure and call it QNet. It contains a newly designed attention module: 3D-AM,

which is used to learn the attention weights of EEG channels, time points, and feature maps. It provides a way to

automatically learn the electrode and time selection. QNet uses a dual branch structure to fuse bilinear vectors for

classification. It performs four, three, and two classes on the EEG Motor Movement/Imagery Dataset. The average cross-

validation accuracy of 65.82%, 74.75%, and 82.88% was obtained, which are 7.24%, 4.93%, and 2.45% outperforms than

the state-of-the-art, respectively. The article also visualizes the attention weights learned by QNet and shows its possible

application for electrode channel selection.

Keywords EEG � Motor imagery � Convolutional neural network � Bilinear vectors � Attention mechanism

Introduction

Motor imagery is one of the ways to realize the brain-

computer interface. Another commonly used method is

steady-state visual evoked potentials. The advantage of

motor imagery is that it can generate control signals

without receiving external stimuli, avoiding visually

induced eye irritation. However, the accuracy of motor

imagery classification is relatively low. Improving the

classification accuracy of motor imagery can promote the

practical application of brain-computer interface devices

based on motor imagery.

The difficulties of the classification task of motor ima-

gery lie in: (1) The measured data contains many artifacts,

such as low-frequency drifts, power line noise, heartbeat

artifacts (ECG), and ocular artifacts (EOG). The movement

of the head during measurement will also bring artifacts.

Before classification, manual preprocessing is often

required to remove artifacts, which is not conducive to

real-time control of BCI systems. (2) Artificial design and

feature extraction are required, and a classifier is designed

based on this. (3) As people have different capabilities of

motor imagery. BCI control does not work for a non-
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negligible portion of users (about 15% to 30%) Dickhaus

et al. (2009). Models learn in one group are not well suited

for a new individual. Therefore, to conduct cross-individ-

ual cross-validation, high requirements are placed on the

generalization ability of the model.

To improve the classification accuracy of motor imagery

tasks, a series of methods have been proposed. Traditional

methods often need to preprocess the data, remove arti-

facts, extract features, and design classification algorithms

based on features. There are many jobs focused on feature

extraction, such as independent component analysis (ICA),

which used to extract features for motor imagery classifi-

cation (Guo and Wu 2010). Principal component analysis

(PCA) is used to extract EEG features to distinguish left

and right hand motor imagery classification tasks (Val-

labhaneni and He 2004). CSP is proposed to extract EEG

features (Müller-Gerking et al. 1999). By designing a

spatial filter, CSP maximizes the distinguishability of fea-

tures used by BCI (Ramoser et al. 2000). CSP performance

depends on the operational frequency band of the EEG.

FBCSP (Kai et al. 2008) is proposed to solve this problem.

In the FBCSP method, after the EEG is band-pass filtered

to multiple frequency bands, the CSP features are extracted

from each of these frequency bands. After the features are

extracted, they are mainly classified using linear discrimi-

nant analysis (LDA) Belhumeur Peter et al. (2006), random

forest (RF) Breiman (2001), and support vector machine

(SVM) Chen et al. (2005) as classifiers. These methods still

require manual removal of artifacts. The difference is that

different features are extracted, and then corresponding

classifiers are designed. Problems (1), (2) and (3) remain

unsolved.

With the development of deep learning, some deep

learning methods have been proposed to deal with motor

imagery tasks. Deep learning methods may perform dif-

ferently in different individuals, some works Li et al.

(2018, 2019) and Yan et al. (2018) with respect to stability

analysis for neural networks may helpful. The advantage of

the deep learning method is that there is no need to man-

ually extract features. The neural network learns end-to-

end classifiers through training. EEGNet Lawhern et al.

(2018) uses convolutional networks to process EEG signals

for classification tasks. A deep ConvNet with a variety of

different architectures is proposed in Schirrmeister (2017),

which has a better performance than the widely used filter

bank commonly used spatial pattern (FBCSP) decoding

algorithm. 1-D CNN layers is used to learn temporal and

spatial filters for feature extraction (Dose et al. 2018).

These methods do not require manual feature acquisition

and reached or exceeded traditional machine learning

methods. However, in the cross-individual motor imagery

classification task, the accuracy rate needs to be improved.

To solve the above problems, we propose an end-to-end

convolutional neural network QNet. The original data can

be directly inputted to the network through bandpass fil-

tering without manually remove artifacts. Furthermore,

convolutional neural networks can automatically extract

features through training. We introduced an attention

mechanism in three dimensions and designed a 3D-atten-

tion module to make the network automatically learn the

importance of different electrodes, time points, and feature

maps. QNet uses a two-branch structure to learn more

features. After fusing the double branches, bilinear vectors

are obtained. Finally, the fully connected layer is used as a

classifier. The contributions of this paper are as follows:

1. A new attention module called 3D-Attention Module

(3D-AM) is designed, which is used to learn the

attention weight of channels, time points, and feature

maps.

2. An end-to-end two-branch convolutional neural net-

work called QNet is proposed, and a bilinear vector is

obtained by merging the two-branch structure for

classification.

3. Visualize the weight information learned by the

attention module to explain the knowledge acquired

by the convolutional neural network, which provides a

learnable electrode and time selection method.

The rest of this paper is organized as follows: Sect. 2

describes the structure of QNet and the mathematical for-

mula of 3D-AM in detail. The data set, implementation

details, and experimental results are present in Sect. 3.

Section 4 discusses the ablation study of the 3-D attention

module. Conclusions are given in the Sect. 5.

Methods

In this section, the classification task of motor imagery

based on EEG is first formularized. Then, the architecture

of QNet is first illustrated in Fig. 1. Finally, the principle of

the 3D-Attention Module is explained in detail.

Problem formulation

EEG data are typically time-series data that measure the

voltage at each electrode location. It is important to define

the EEG data as follows: N means channel number, T

represents the total number of sampling points, so the EEG

input data x 2 RN�T , label y 2 X ¼ f0; 1; � � � ; c� 1g, c

denotes the total number of categories for classification

tasks. All of the samples set is X ¼ fx1; x2; � � � ; xng, the
corresponding label set is Y ¼ fy1; y2; � � � ; yng.

The neural network is used to learn a function:
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f ðxk; hÞ : xk ! ð~y0k ; ~y1k ; � � � ; ~yc�1
k Þt ð1Þ

where 1� k� n and ~y0k ; ~y
1
k ; � � � ; ~yc�1

k denotes the probability

to each of the classes. h is parameters of neural network.

Loss function is cross entropy, which is illustrated in the

following :

Lk ¼ �
Xc�1

m¼0

dm log ~ymk
� �

ð2Þ

where dm is a indicator variable, If ground truth yk ¼ m,

then dm ¼ 1, otherwise dm ¼ 0. By using back-propagation

algorithm (Rumelhart et al. 1986), the parameters h are

adjusted to minimize the loss function.

Overview of QNet architechture

In this work, a neural network with a Q-shaped structure is

proposed and named QNet. This model uses residual block

(He et al. 2016) as the basic feature extraction module.

ResNet18 pre-trained on ImageNet is used as the initial

parameter of the residual block in QNet. The architecture

of the residual block is shown in Fig. 2. After the EEG data

passes through the convolutional network, a feature map

channel dimension is added. Each channel corresponds to a

feature map. The number of feature map channels is rep-

resented by C. The EEG data are expressed as

zk 2 RC�N�T .

The 3D-AM module was proposed to introduce attention

mechanisms. For more information, please see Sect. 2.3.

The Q-shaped structure is used to learn the features under

different attentions. Bilinear vectors (Lin et al. 2015) can

be used to obtain second-order feature information, and this

paper uses this second-order information for classification

tasks. The fusion method of bilinear vector is shown in (3)

and (4).

zoutk i; jð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � T

XN

n¼1

XT

t¼1

zAk i; n; tð Þ � zBk j; n; tð Þ

vuut ð3Þ

where zAk ; z
B
k 2 RC�N�T are the outputs of A and B bran-

ches, respectively. 1� i�C; 1� j�C; zoutk 2 RC�C.

b ¼ gðzoutk Þ ð4Þ

where g is a function that transform the input z into a

1-dimensional vector, b 2 RC2

is bilinear vector.

Fig. 1 The architecture of QNet. It uses the residual learning module

(He et al. 2016) as the basic feature extraction module, and combines

the 3D-AM module to introduce the attention mechanism. The

Q-shaped structure is used to learn the features under different

attentions, and the bilinear vector is used to classification

Fig. 2 The architecture of the residual block. It consists of two 1� 1

convolutional layers, with a batchnorm layer and a relu layer in the

middle. The input and the data after the convolution layer are added,

then activated by relu layer as the output of the residual block
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3D-attention module

After analysis of the motor imagery task and related papers

Park et al. (2014), Handiru and Prasad (2016) and Loboda

et al. (2014), we made the following two assumptions: (1)

The importance of each electrode channel is not the same;

(2) During the execution of motor imagery tasks, there is a

divergence in execution intensity at different sampling

times. Not all 64 electrode channels are related to motor

imagery tasks. Irrelevant electrode data may even interfere

with the network to obtain valid information. Besides,

within 4s of performing the motor imagery task, due to the

existence of fatigue, we cannot guarantee that there is a

strong motor imagery during the 4s. Therefore, the atten-

tion mechanism is introduced to the processing of EEG

data in accordance with the characteristics of motor ima-

gery task data.

The 3D-attention module is shown in Fig. 3. By permute

in (5), the input data is expanded out of T � C � N and

N � C � T branches.

zt1k ¼ zk

zt2k ¼ ft1ðzkÞ

zt3k ¼ ft2ðzkÞ

ð5Þ

where zt1k 2 RC�N�T , zt2k 2 RT�C�N and zt3k 2 RN�C�T .

ft1; ft2 refers to permute operations.

The global average pooling is used to aggregate global

information into an attentive vector (Ni et al. 2019). Con-

volution operation can only obtain a local perceptive field

while global average pooling operation can obtain a global

perceptive field. The global information can supplement

the network model with richer information and also be used

for weight learning of different feature maps, electrodes or

sampling times. Equation (6) shows the mathematical

description of the global average pooling.

aCk ¼ fgap zt1k
� �

¼ 1

N � T

XN

i¼1

XT

j¼1

zt1k ði; jÞ

aTk ¼ fgap zt2k
� �

¼ 1

C � N

XC

i¼1

XN

j¼1

zt2k ði; jÞ

aNk ¼ fgap zt3k
� �

¼ 1

C � T

XC

i¼1

XT

j¼1

zt3k ði; jÞ

ð6Þ

where fgap refers to the global average pooling. All three

branches are pooled into a one-dimensional vector through

GAP, with size C � 1� 1, T � 1� 1, and N � 1� 1.

Two 1� 1 convolutional layers are used to learn

attention weights, with a batchnorm layer and a relu acti-

vation layer. Then the softmax layer is used to standardize

the weights.

AC
k ¼ hs gc / bn fc aCk

� �� �� �� �� �

AT
k ¼ hs gc / bn fc aTk

� �� �� �� �� �

AN
k ¼ hs gc / bn fc aNk

� �� �� �� �� �
ð7Þ

where fc; gc denotes 1� 1 convolution, bn refers to batch-

norm, / represents ReLU function and hs denotes softmax

function. The softmax layer is described in (8).

Fig. 3 The architecture of the 3D-Attention Module. By global

average pooling, three attention vectors were generated. Softmax is

used to standardize the weights, then the outputs of these three

attention vectors are fused to generate the 3D-attention map. Finally,

weighted input plus the original input as the output of the 3D-

Attention Module. � means addition and � means element-wise

multiplication
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hs aCk ½i	
� �

¼ ea
C
k
½i	

PC
j¼1 e

aC
k
½j	 for i ¼ 1; . . .;C:

hs aTk ½i	
� �

¼ ea
T
k ½i	

PT
j¼1 e

aT
k
½j	 for i ¼ 1; . . .; T:

hs aNk ½i	
� �

¼ ea
N
k
½i	

PN
j¼1 e

aN
k
½j	 for i ¼ 1; . . .;N:

ð8Þ

Next, expand and permute the three branches to size

C � N � T , we can get AC
k ;A

T
k ;A

N
k 2 RC�N�T . 3D-attention

map is calculated in the following way:

Ak ¼ AC
k � AT

k � AN
k ð9Þ

where Ak 2 RC�N�T and ‘‘�00 denotes Hadamard product.

As shown in (10), the input data is multiplied with the 3D

attention map after 1� 1 convolution to obtain features

with an attention mechanism. The original input data is

added as the output of the entire module.

output ¼ zk þ mcðzkÞ � Ak ð10Þ

Experiments

Dataset

We use EEG Motor Movement/Imagery Dataset to verify

the effectiveness of our model. This data set consists of

EEG Data from 109 volunteers, which is open-sourcing on

Physionet (Goldberger 2000). Volunteers were asked to

wear a 64-channel EEG cap (Fig. 4) and measure EEG data

using the BCI2000 system (Schalk et al. 2004). Each

subject performed two one-minute baseline runs (with eyes

open or closed), and three two-minute runs of each of the

four tasks: (1) open and close left or right fist; (2) imagine

opening and closing left or right fist; (3) open and close

both fists or both feet; (4) imagine opening and closing

both fists or both feet; The data is sampled at 160Hz, due to

some unknown reason, three (number 88, 92 and 100) of

the 109 subjects were sampled at 128Hz, and subject 104

have missing data. Remove those nonstandard data, a

subset of 105 subjects was used in this paper.

The experiment paradigm is shown in Fig. 5. It shows a

cycle of one trial, with 2s of rest time before each trial. The

subject was then asked to perform a 4s motor imagery task

and finally had a 2s rest time.

The data of imagine opening and closing left or right fist

task was selected to use in this paper. For comparison with

Dose (2018), all 64 channels and the first three seconds

after the MI task cue data was used to be the input of the

network. In this paper, the data set is divided into three

subsets, which are used for different classification tasks.

• 2-class The trails of imagining opening and closing left

or right fist. Choose 21 trials for each class, 42 trials per

subject in total.

• 3-class In paper (Dose et al. 2018), a random sections

from the baseline recordings with eyes open were used

as a third class. The baseline data is about 60s, and 21

trials 3sð Þ are randomly selected. So data overlap

between different trials is bound to occur. In order to

avoid data overlap as much as possible, we intercept the

21 trials at equal intervals Tbaseline=21ð Þ to minimize the

overlap of samples to compare with this method. The

third class refers to the resting state, plus the previous

42 trials, a total of 63 trials per subject.

• 4-class The fourth class is the simultaneous imagination

of both feet. Choose the first 21 trials, plus the previous

63 trials, for a total of 84 trials per subject.

Fig. 4 64 channel sharbrough

Fig. 5 Experiment paradigm. It shows a cycle of one trial, with 2s of

rest time before each trial. The subject was then asked to perform a 4s

motor imagery task and finally had a 2s rest time
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The data we processed has 64 channels. At the same time,

during the training, we take the data from 0 to 3s at the

beginning of the task. Since the sampling frequency is 160

HZ, there are 481 sample points in total.

Preprocess

EEG data was read through MNE-Python package

(Gramfort et al. 2013) and band-pass filtered from 0.1-64

HZ. In order to remove power-line noise, a 60 HZ notch

filter was performed. In addition, no other artifacts removal

operation is performed. This can verify whether QNet can

learn useful information from the data with artifacts.

Implementation details

We used 5 folder cross-validation to evaluate the model.

105 volunteers were divided into 5 groups. Each time, 80%

of the subjects (84) were selected for training, and the

remaining 20% of the subjects (21) were used as a vali-

dation set. Note that this division makes the data of the

validation set subjects never participate in training, which

is called the global model in Dose et al. (2018). The mean

maximum accuracy across all five folders is reported as an

accuracy value. In the training process, an early stopping

strategy is used. When the verification accuracy of a certain

fold does not increase continuously for 20 epochs, the

current training is stopped and the next fold training is

entered.

Our model is constructed in PyTorch and trained using

TITAN Xp GPU. Adam is used as an optimizer. Min-max

normalization method is used to normalize the training data

to the [0, 1] interval. The normal initialization method is

used to initialize the parameters of the convolutional layer.

The weights of the batchnorm layer and the fully connected

layer are filled with 1, and the bias is set to 0. The batch

size is 32. The initial learning rates in the four, three, and

two classes of classification tasks are 3:48� 10�4, 3:98�
10�4 and 1:19� 10�3, respectively. Set the learning rate of

each parameter group using a cosine annealing schedule. In

order to prevent the network from overfitting, the weight

decay parameters of 1:42� 10�9, 2:55� 10�8 and 4:18�
10�9 were set. The accuracy history of the 4-class QNet is

shown in Fig. 6.

Result

The experimental results are shown in Table 1. QNet

achieved 65.82%, 74.75%, and 82.88% accuracy in the

four, three, and two classes of classification, respectively.

To the best of the author knows, the best current result is

obtained by Dose et al. (2018). QNet exceeded its 7.24,

4.93, and 2.3 percentage points, respectively, which veri-

fied the effectiveness of our model.

To further compare with other methods, QNet is com-

pared with traditional methods that use the EEG Motor

Movement/Imagery Dataset. All experiments used the

same electrode channels and data as the corresponding

papers, and 5 fold cross-validation was used as the final

report accuracy rate. With 16, 58 electrodes, QNet is

10.57%, 15.67% exceed than the traditional method, and

2.62%, 1.26% better than the state-of-the-art. With 14

electrodes, QNet is 2.32% outperforms than the state-of-

the-art. In the case of 9 electrodes, QNet is about 5.73%

exceed than the traditional method and 1.43% better than

the state-of-the-art. QNet achieved the best results in all

tasks. It is worth noting that both the CNN method in Dose

et al. (2018) and the QNet proposed in this paper greatly

exceed the results of the traditional method, which may

benefit from a large number of samples .

Discussion

Confusion matrix

4 Classification of confusion matrix shown in Fig. 7. The

percision of the four categories is 0.735, 0.680, 0.711, and

0.638. The recall rates are 0.712, 0.689, 0.696, and 0.662,

respectively. The 63 both class were misclassified into the

right class, resulting in a low recall rate of both class; 63

right class and 58 rest state were misclassified as both class,

which resulted in a lower precision of both class. It can be

seen from the confusion matrix that QNet tends to

Fig. 6 4 Class QNet train acc history. The figure shows a history of 5

fold cross-validation accuracy. When each model is trained for about

20 epochs, it can reach about 65% accuracy, which exceeds the state-

of-the-art result of 58.58%
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determine the data as both class, and it is more difficult to

distinguish between both class and the right class.

Visualization for 3-D attention module

As a novel approach explains the attention learned by 3D-

AM, we test the trained model on the validation set. Each

sample can get an N-attention vector and a T-attention

vector from the first 3D-AM, and the average value is taken

as the N vector and T vector. After visualization, the

attention head map and temporal attention distribution in

Fig. 8 are obtained. The input data of the last two 3D

attention modules cannot correspond to the original 64

electrodes, because these data have been down-sampled by

the residual block. We only look at the weights gained by

the first 3D attention module to get a sense of QNet’s

attention.

From the perspective of the electrode’s attention distri-

bution, the edge parts of the head topographic map have

larger weights. According to the experience of EEG pro-

cessing, the edge of the forehead area may correspond to

ocular artifacts(EOG), while the edge of the occipital lobe

may correspond to abnormal head movements or damaged

electrodes. The first 3D-attention module has not been able

Table 1 Compared with

existing methods
Work N NSubjects Task Acc (%) Methods

Dose et al. (2018) 64 105 4 class 58:58 CNN

This work 64 105 4 class 65:82 QNet

Dose et al. (2018) 64 105 3 class 69:82 CNN

This work 64 105 3 class 74:75 QNet

Dose et al. (2018) 64 105 2 class 80:38 CNN

This work 64 105 2 class 82:88 QNet

Park et al. (2014) 58 105 2 class 72:37 SUT-CCSP SVM

Dose et al. (2018) 58 105 2 class 80:32 CNN

This work 58 105 2 class 82:94 QNet

Handiru and Prasad (2016) 16 85 2 class 63:62 FB-CSP SVM classifier

Dose et al. (2018) 16 85 2 class 78:03 CNN

This work 16 85 2 class 79:29 QNet

Dose et al. (2018) 14 105 2 class 76:66 CNN

This work 14 105 2 class 78:98 QNet

Loboda et al. (2014) 9 103 2 class 71:55 Phase information

Dose et al. (2018) 9 103 2 class 75:85 CNN

This work 9 103 2 class 77:28 QNet

The bold numbers represent the highest accuracy rate under the same data set and classification task. All

accuracy in this table are the results of using 5 fold cross-validation in the EEG Motor Movement/Imagery

Dataset. On four, three, and two classification tasks, QNet achieved 65.82%, 74.75%, and 82.88% accuracy,

which are 7.24%, 4.93%, and 2.45% outperforms than the state-of-the-art performance. On the same

electrode, sample, and classification tasks, QNet is compared with traditional methods in the same dataset.

With 16, 58 electrodes, QNet is 10.57%, 15.67% exceed than the traditional method, and 2.62%, 1.26%

better than the state-of-the-art. With 14 electrodes, QNet is 2.32% outperforms than the state-of-the-art. In

the case of 9 electrodes, QNet is about 5.73% exceed than the traditional method and 1.43% better than the

state-of-the-art

Fig. 7 4 Class 5 fold confusion matrix. Left, right, rest and both

respectively represent imagine opening and closing left fist, imagine

opening and closing right fist, resting state and imagine both feet

movement. The 63 both class were misclassified into the right class,

resulting in a low recall rate of both class; 63 right class and 58 rest

state were misclassified as both class, which resulted in a lower

precision of both class
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to eliminate the effects of artifacts well. It should be noted

that these results are just the weights learned by the first

3D-attention module. In the next two branches, the two 3D-

attention modules will still weight the electrode channels,

so the visualization here can only partly represent QNet’s

attention. Without considering these artifact components,

some interesting phenomena can be observed. In four

classification task, the 3D-attention module mainly focuses

on the central region C3 and the temporal lobe T8 region;

In three classification task, the attention is focused on the

central region C3, C2, the frontal region F3, and the

anterior temporal lobe region FT7; In two classification

task, The classification task focuses on the frontal region

F3 and the parietal region P1. Motor cortex is an area of the

frontal lobe located in the posterior precentral gyrus

immediately anterior to the central sulcus (Donoghue and

Sanes 1994), which is basically consistent with the atten-

tion area learned by the 3D-attention module.

From the perspective of temporal attention distribution,

the attention of all three tasks is concentrated within 0s-

0.8s. This may be related to the intensity of motor imagery

during the experiment. In the early stages of the instruction,

the intensity of motor imagery is the largest. As time

increases, the subject may reduce the intensity of motor

imagery due to fatigue.

The 3D-attention module provides a way to automati-

cally learn the electrode and time points selection. This

may allow us to avoid previous electrode channel selection

and directly get a better result. Visualization of attention

weights may be used in electrode channel selection of

portable brain-computer interface devices.

Conclusion

In this study, we designed QNet, which introduces 3D-AM

to learn the attention weights of channels, time pionts, and

feature maps. QNet uses a dual branch structure to fuse

bilinear vectors for classification. It performs four, three,

and two classes on the EEG Motor Movement/Imagery

Dataset. The accuracy values of 65.82%, 74.75%, and

82.88% were obtained, which are also the best mean

accuracy. This paper also visualizes the attention weights

learned by QNet and attempts to explain the results. Deep

learning depends on a large number of samples. QNet can

achieve excellent performance in the case of a large

number of samples, but the effect in the case of a small

Fig. 8 Attention visualization of electrodes and time sampling points

extracted from 3D-AM. A, B, and C are the electrode attention

visualization results corresponding to the first 3D-attention module

classified in four, three, and two classes, respectively; D, E, and F are

the corresponding time attention weight maps. In terms of electrodes,

if artifacts at the edge of the head topographic map are not considered,

the 3D-attention module focuses on the central, frontal, and anterior

temporal regions. In terms of time, the main focus is on the 0s-0.8s

time period
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number of samples needs further verification. The next

work will focus on how to transfer the models learned from

a large number of samples to a small sample data set to

achieve transfer learning between data sets.
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