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Abstract—Alzheimer’s Disease (AD) is an irreversible neurode-
generative disease, the most common form of dementia, affecting
millions worldwide. Neuroimaging-based early AD diagnosis has
become an effective approach, especially by using structural
Magnetic Resonance Imaging (sMRI). The convolutional neural
network (CNN) based method is challenging to learn depen-
dencies between spatially distant positions in the various brain
regions due to its local convolution operation. In contrast, the
graph convolutional network (GCN) based work can connect the
brain regions to capture global information but is not sensitive
to the local information in a single brain region. Unlike a
separate CNN or GCN-based method, we proposed a brain-
inspired global-local information fusion network (BGL-Net) to
diagnose AD. It essentially inherits the advantages of both CNN
and GCN. The experiments on three public datasets demonstrate
the effectiveness and robustness of our BGL-Net. Our method
achieved the best performance on three popular public datasets
compared with the existing CNN and GCN-based methods. In
addition, our visualization results of the learned brain connection
on AD and normal people agree with many current AD clinical
research.

Index Terms—alzheimer’s disease, cognitive assessment, con-
volutional neural networks, graph neural networks, structural
magnetic resonance imaging.

I. INTRODUCTION

Alzheimer’s disease (AD) is an irreversible neurodegenera-
tive disease that results in a loss of mental function caused by
the deterioration of brain tissue. It is the most common form
of dementia, affecting millions of people around the world.
While currently there is no cure for AD, early AD detection
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Fig. 1: Comparison of existing methods based on CNN or
GCN. The CNN-Based method is challenging to learn depen-
dencies between spatially distant positions in the various brain
regions due to its local convolution operation. In contrast, the
GCN-Based work can connect the brain regions to capture
global information but is not sensitive to the local information
in a single brain region.

can contribute to effective interventions to delay the onset of
the disease, indicating the importance of accurate AD pre-
diction [1]. Structural Magnetic Resonance Imaging (sMRI),
one of the leading techniques in brain abnormality detection,
has been extensively used in AD detection [2]. Diagnosis
based on sMRI requires a lot of diagnosis experience and is
often affected by the clinician’s competence [3]. Fortunately,
computer-aided diagnosis technology has been applied to AD
detection and offers a possible way to detect AD through sMRI
quantitatively and effectively.

Motivated by the outstanding performance of CNN in a
great number of computer vision tasks, CNN has become
a promising method in AD detection. Though CNN-based
AD detection methods have achieved relatively satisfactory
performance, they have difficulty relating spatially distant
regions (Figure 1 (a)). The progression of AD is associ-
ated with structural changes over the brain and dysfunction
of the brain connectivity network between different brain
areas. As feature extraction in CNN is based on receptive
fields that operate on constrained local neighborhoods, it is
difficult to effectively learn dependencies between spatially
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distant positions, making it hard to capture the connectivity
disorder caused by AD. Previous approaches have tried to
solve this problem by increasing model depth and kernel sizes
or adopting new operations like non-local attention layers.
These methods increase the computational complexity and
only mitigate the problem instead of completely solve it [4],
[5].

Existing studies have shown that there is a difference in
the connection for areas of the brain between AD and normal
people. Graph Convolutional Network (GCN) generalizes the
convolution operation from grid data to graph representations
[6] and makes it possible to model the relationship between
different brain regions (Figure 1 (b)). The intrinsic nature
of AD-induced structure and connectivity disorder motivates
the exploration of brain network representation based on
graph theory [7]. The brain can be regarded as a network
graph, where nodes represent different brain regions and edges
represent these regions’ connections. To date, only a few
studies explored AD diagnosis by GCN with sMRI data. Their
graph representation construction relies on manually selected
features like cortical thickness, which limits the ability of
data representation. Also, those manual feature extraction takes
plenty of time (about 10 hours/sheet to obtain various cortical
thicknesses), making it challenging to meet the needs in real
scenes.

In summary, the CNN-based AD method is challenging to
learn dependencies between spatially distant positions in the
various brain regions due to its local convolution operation. In
contrast, the GCN-Based method can connect the brain regions
to capture global information but is not sensitive to the local
information in a single brain region. To solve these problems,
we propose a brain-inspired global-local information fusion
network (BGL-Net) that essentially inherits the advantages
of both CNN and GCN. Specifically, it includes global and
local information capture: (1) Inspired by the brain partition,
region of interest (ROI) level node features are divided by
the automated anatomical labeling (AAL) template and ex-
tracted by CNN. Then the graph representation is dynamically
constructed through the proposed Graph Generation Module
(GGM). Finally, global information features are obtained
through graph convolution networks, which learn potential
links between different brain regions. (2) Whole-brain MRI
constructs local information features based on CNN due to
the locality of the convolution operation. The global-local
information features are fused to realize the classification
diagnosis of multiple scale information.

The main contributions of this work can be concluded as
follows:

• BGL-Net is proposed to effectively inherit the advantages
of both CNN and GCN, achieving the best performance
on three popular public datasets.

• An adaptive graph representation building module, GGM,
is designed to automatically construct graph representa-
tion from sMRI, which avoids manually designing graph
node features.

• A brain-inspired graph embedding method is proposed to
capture global connection information between different
brain regions. The results show that the captured brain

area connections are consistent with the existing AD
clinical research.

II. RELATED WORK

A. CNN in AD detection

CNNs have achieved great success in various computer
vision tasks and have been introduced to sMRI-based AD de-
tection tasks [8]. Researchers [9] tried to convert sMRI to 2D
slices, which can be further processed by 2D CNNs. Though
this conversion expands the available dataset and facilitates the
utility of existing outstanding architectures in a transfer learn-
ing fashion, it severely destroys the 3D spatial information. 3D
CNNs are also widely used in AD detection [10]. Some studies
[11]–[14] selected 3D patches from the whole sMRI and
trained independent CNNs for each patch whose results were
combined to perform the final classification. While spatial
information is preserved, the computation cost and training
time overhead are costly, and the selected patches may contain
brain regions unrelated to AD progression. Also, some studies
[15] focused on disease-related ROIs, like hippocampus, and
used ROIs as input of CNN. As they only considered limited
brain areas, informative information might have been lost. To
better take advantage of the sMRI structure, several studies
[16]–[18] performed subject-level methods where the entire
sMRI data were used as input.

While CNN-based AD detection models have obtained great
attention, they have trouble relating spatially distant informa-
tion as its feature extraction depends on receptive fields that
operate on constrained local neighborhoods. Some studies [19]
try to use multi-task learning and multi-view weighted fusion
to alleviate this problem, but cannot solve it fundamentally.
Therefore, it’s difficult for CNNs to effectively capture the
potential relationship between different brain regions caused
by AD.

B. GCN in AD detection

GCNs have recently gained increasingly more attention in
AD diagnosis. GCN-based AD detection models can be di-
vided into two categories according to the type of classification
task they perform.

The first type converts the brain to graphs and carries out
graph-level prediction tasks to perform AD detection. Wee et
al. [20] employed Graph-CNN, a spectral graph convolutional
neural network, to process cortical thickness and its underlying
geometry information and perform AD detection. Sampathku-
mar [3] built a cortical thickness-based brain network graph
and developed a GCN model, ADiag, to update graph rep-
resentation and generate classification results. Current GCNs
for graph-level AD detection tasks relies on manually selected
features for graph representation construction instead of an
adaptively data-driven way. Also, the extraction of relevant
features (e.g., cortical thickness) takes plenty of time, making
it challenging to meet the needs in real scenes.

The second type of model regards each sMRI sample
as a node and performs node-level classification to classify
unlabeled nodes. Kazi et al. [21], [22] used different clinical
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Fig. 2: The framework of the proposed BGL-Net method. It contains four blocks, 1. ROI-level Graph Embedding: AAL atlas
is used to segment MRI into different brain regions, and extract the node features of each brain region through a series weight-
shared graph embedding network; 2. Global Information Extraction: transform those ROI-level node features into a graph
representation through the proposed adaptive graph generation module (GGM), and further capture the global information
between different brain regions through graph convolution to obtain advanced classification features; 3. Local Information
Extraction: CNN is used to extract features of the entire MRI and obtain advanced classification features focused on local
information due to the locality of the convolution operation. 4. Fusion Classification: Fusion classification of the advanced
classification features of the global and local information to obtain the diagnosis result.

features from multi-modal data to form multiple graphs and
then fused each graph’s classification results for the early diag-
nosis of AD. Though they achieved satisfactory performance,
they suffered from the limitation of lack of flexibility, as they
were not able to be used for independent testing. Song et al.
[23] proposed an auto-metric graph neural network, AMGNN,
which introduced a metric-based meta-learning strategy to
improve its performance. As AMGNN was trained on several
different tasks, the model complexity was high and the training
process was time-consuming.

III. METHODS

This section illustrates the proposed BGL-Net method. As
shown in Figure 2, the classification of our proposed method
relies on the combination of global and local information
features. The GM tissue map input is parcellated into N brain
areas according to AAL atlas [24], the commonly used brain
partition scheme [25]. Those ROIs are resized to the same
fixed size, 1× P × P × P , and further processed by a series
weight-shared graph embedding network. The obtained ROI-
level node features are concatenated to construct the node
feature matrix, denoted as M . The graph generation module
(GGM) adaptively transforms M into a graph representation,
then processed by graph convolution for global brain area

information capture. Local information features are obtained
by the Local Information Extraction block, which takes the
original MRI as input. The local information vector Vlocal is
further combined with the output (Vglobal) of the Global In-
formation Extraction block to perform the final classification.

A. ROI-level Graph Embedding

As shown in Figure 2, the ROI-level Graph Embedding
block receives a set of ROIs data extracted according to the
AAL atlas. Then each ROI is processed by a series weight-
shared ROI-level graph embedding network. We denoted the
input images as X ∈ R1×D×W×H , the above operation can
be formulated as:

Ri = Reshape (X ⊙Maski) , i = 1, 2, · · ·N (1)

mi = Emb (Ri) , i = 1, 2, · · ·N (2)

where ⊙ represents hadamard product, Maski is the binarized
mask of the AAL template in the i-th brain area, Ri ∈
R1×P×P×P , mi ∈ RF , N indicates the number of nodes.
Emb(·) is a ROI-level graph embedding network contains
four convolution layers and two fully connected layers. The
kernel size for each convolution layer is set to three with stride
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one and padding one. The convolution operation is followed
by batch normalization (BN), rectified linear unit (ReLU)
activation, and a maxpooling operation with stride two. As for
the two fully connected layers, dropout is adopted, and ReLU
activation function is used. As shown in (3), the obtained
ROI-level node feature vector mi is concatenated, denoted as
M ∈ RN×F , and further processed by graph convolution for
global brain area information capture.

M = [mT
1 ,m

T
2 , · · ·mT

N ] (3)

B. Global Information Extraction

The Global Information Extraction block transforms the
input node feature matrix M to a graph representation and
performs graph convolution and pooling operations to aggre-
gate and update the global information feature.

1) Graph Generation Module: We consider the brain as
a graph G where nodes feature are denoted by the obtained
ROI data and edges represent the relationship between these
regions. G is characterized by its node feature matrix M ∈
RN×F and adjacency matrix A ∈ RN×N . A describes the
latent connection between each node, can be obtained by the
following formula:

Aij =
e[Θ(M)Φ(M)T ]ij

e[Θ(M)Φ(M)T ]ij + e−[Θ(M)Φ(M)T ]ij
(4)

where i, j ∈ [1, 2, · · · , N ], Θ(·) and Φ(·) are convolution
layers with kernel size one and stride one.

2) Graph Convolution: The graph convolution operation is
adopted to aggregate and update node representation based
on nodes connectivity. For input node feature matrix M and
adjacency matrix A, the graph convolutional operator can be
denoted as:

m′
i = ReLU

 1

|N (i)|
∑

j∈N (i)

Aijmi

 (5)

where i = 1, 2, · · ·N , N (i) represents the set of neighbor
nodes of node i.

3) Graph Pooling: Graph pooling operator is adopted to
obtain global information features Vglobal ∈ RF by global
add pool layers. For input node feature matrix M ′ =
[m′

1
T
,m′

2
T
, · · · ,m′

N
T
] ∈ RN×F , the global information

features Vglobal can be obtained by the following formula:

Vglobal =

N∑
i=1

m′
i, m′

i ∈ RF (6)

C. Local Information Extraction

Whole brain MRI constructs local information features
based on CNN due to the locality of the convolution operation.

Vlocal = f (X) ∈ RF (7)

where f(·) contains five convolution layers followed by two
fully connected layers and adopts the similar layer setting as
the graph embedding network.

D. Fusion Classification

The fusion classification block takes the updated global
information feature Vglobal generated by the Global Informa-
tion Extraction block and the local information feature Vlocal

as input. These two feature vectors are added and processed
by a fully connected layer to achieve the final classification
result. This multi-scale feature fusion operation enables the
analysis of alterations of the global and local information
simultaneously.

ŷ = FC (Vglobal + Vlocal) (8)

IV. EXPERIMENTS

A. Dataset

Data used in the preparation of this article are obtained
from three public datasets: Alzheimer’s Disease Neuroimaging
Initiative (ADNI 1 ) database, Open Access Series of Imaging
Studies (OASIS 2) [28], and Neuroimaging in Frontotemporal
Dementia (NIFD 3).

1) ADNI: The ADNI (adni.loni.usc.edu) is a longitudinal
multi-site observational study of controls (CN), mild cognitive
impairment (MCI), and AD. A total number of 1253 subjects,
including 330 CN subjects, 587 MCI subjects, and 336 AD
patients, are used in our experiments. In MCI subjects, we
divide it to 296 stable MCI subjects (sMCI: MCI patients
who did not progress to AD in 36 months) and 248 progressive
MCI (pMCI: MCI patients who progress to AD in 36 months).
As data for each subject might be collected repeatedly, there
are 5132 available images for the 1253 subjects. The testing
set consists of the baseline data for 100 randomly chosen
subjects in each diagnostic class (i.e., 100 CN subjects, 100
MCI subjects, 100 AD patients, 100 sMCI subjects, 100 pMCI
subjects). The remaining data is used as the training set where
we perform 5-fold cross-validation.

2) OASIS: The OASIS is a series of magnetic resonance
imaging datasets that is publicly available for study and
analysis. Data used in this work consists of 193 images from
100 AD patients and 93 CN participants in OASIS-1. We
randomly select 20% of patients for each diagnostic class as
the testing set, and the rest of the data is used as the training
set and performed 5-fold cross-validation.

3) NIFD: NIFD is aimed to characterize longitudinal clini-
cal and imaging changes in frontotemporal lobar degeneration
(FTLD). We adopt 213 AD patients with 543 images and 114
CN participants with 312 images. Like OASIS, 20% of the

1As such, the investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investigators can
be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf

2Data were provided by OASIS: Cross-Sectional: Principal Investigators: D.
Marcus, R, Buckner, J, Csernansky J. Morris; P50 AG05681, P01 AG03991,
P01 AG026276, R01 AG021910, P20 MH071616, U24 RR021382

3NIFD is the nickname for the frontotemporal lobar degeneration neu-
roimaging initiative (FTLDNI, AG032306), which was funded by the NIA and
NINDS to characterize longitudinal clinical and imaging changes in FTLD.
The imaging and clinical methods are the same for NIFD and for the 4-
Repeat Tauopathy Neuroimaging Initiative (4RTNI), which is also available
for download from LONI. Controls for NIFD are the same controls as those
collected for 4RTNI.
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TABLE I: Experimental results of AD vs. CN classification with 5-fold CV on three large public datasets: ADNI, OASIA, and
NIFD. BGL-Net achieves the best test BA on the three datasets.

Dataset Model Para.
(M)

Valid Test
BA↑ SEN↑ SPE↑ BA↑ SEN↑ SPE↑

ADNI

DeepCNN [16] 0.12 89.13 ± 1.96 85.60 ± 2.41 92.66 ± 2.65 87.60 ± 1.24 83.80 ± 3.19 91.40 ± 4.84
ConvNet3D [17] 8.38 86.26 ± 3.55 81.36 ± 2.82 91.17 ± 4.54 86.30 ± 1.03 83.40 ± 3.98 89.20 ± 5.27

VoxCNN [18] 2.14 87.91 ± 2.22 85.59 ± 6.37 90.22 ± 6.71 87.10 ± 1.36 86.80 ± 5.60 87.40 ± 7.47
ResNet101 [26] 85.21 90.07 ± 2.39 89.41 ± 2.28 90.72 ± 6.78 86.30 ± 2.82 87.80 ± 4.53 84.80 ± 7.08

DenseNet121 [27] 11.24 91.09 ± 2.76 91.06 ± 5.45 91.12 ± 6.07 88.20 ± 0.98 88.00 ± 2.61 88.40 ± 2.25
BGL-Net(ours) 3.12 90.18 ± 3.79 84.32 ± 5.49 96.05 ± 3.73 89.00 ± 0.89 86.00 ± 2.61 92.00 ± 1.67

OASIS

DeepCNN [16] 0.12 72.50 ± 2.34 70.00 ± 13.35 75.00 ± 11.18 65.00 ± 5.13 60.00 ± 16.66 70.00 ± 8.32
ConvNet3D [17] 8.38 56.87 ± 9.76 71.25 ± 37.42 42.50 ± 38.41 54.92 ± 6.53 64.29 ± 37.25 45.56 ± 39.50

VoxCNN [18] 2.14 71.88 ± 1.98 61.25 ± 10.75 82.50 ± 10.00 65.63 ± 4.90 55.71 ± 22.77 75.56 ± 16.33
ResNet101 [26] 85.21 75.62 ± 4.15 76.25 ± 8.29 75.00 ± 11.18 63.65 ± 4.14 62.86 ± 14.57 64.44 ± 13.43

DenseNet121 [27] 11.24 69.37 ± 5.73 56.25 ± 24.37 56.25 ± 18.71 64.52 ± 4.55 55.71 ± 27.99 73.33 ± 24.44
BGL-Net(ours) 3.12 75.00 ± 5.59 80.00 ± 12.75 70.00 ± 6.12 67.22 ± 5.76 70.00 ± 12.29 64.44 ± 11.44

NIFD

DeepCNN [16] 0.12 85.55 ± 3.99 79.30 ± 11.79 91.79 ± 7.46 79.64 ± 3.24 72.27 ± 5.26 87.00 ± 11.22
ConvNet3D [17] 8.38 76.56 ± 8.01 86.06 ± 9.43 67.05 ± 22.52 72.05 ± 7.45 79.09 ± 11.17 65.00 ± 25.88

VoxCNN [18] 2.14 83.98 ± 4.55 76.03 ± 8.97 91.92 ± 10.35 79.45 ± 2.73 70.91 ± 11.45 88.00 ± 7.48
ResNet101 [26] 85.21 87.54 ± 2.55 79.95 ± 6.35 95.13 ± 3.99 77.09 ± 2.42 73.18 ± 6.49 81.00 ± 10.68

DenseNet121 [27] 11.24 87.73 ± 2.90 77.13 ± 5.84 98.33 ± 3.33 81.64 ± 4.26 72.27 ± 2.23 91.00 ± 6.63
BGL-Net(ours) 3.12 88.37 ± 2.63 79.95 ± 8.25 96.79 ± 3.93 83.27 ± 2.35 74.55 ± 6.65 92.00 ± 5.10

BA: Balanced accuracy; SEN: Sensitivity; SPE: Specificity; Para.: Parameter.

TABLE II: Experimental results of sMCI vs pMCI classification with 5-fold CV on ADNI datasets. BGL-Net achieves the
best BA on both validation and test sets.

Model Valid Test
BA↑ SEN↑ SPE↑ BA↑ SEN↑ SPE↑

DeepCNN [16] 74.89 ± 4.94 76.52 ± 3.32 73.26 ± 9.89 69.90 ± 1.02 77.20 ± 3.87 62.60 ± 2.33
ConvNet3D [17] 61.07 ± 3.41 43.26 ± 13.67 78.88 ± 11.71 54.60 ± 4.31 36.00 ± 30.74 73.20 ± 23.37

VoxCNN [18] 60.60 ± 4.57 50.83 ± 21.02 70.37 ± 16.92 53.30 ± 3.11 73.00 ± 18.30 33.60 ± 20.81
ResNet101 [26] 73.98 ± 4.87 84.66 ± 8.27 63.31 ± 17.07 66.90 ± 4.44 80.20 ± 5.78 53.60 ± 13.66

DenseNet121 [27] 76.45 ± 4.27 85.74 ± 10.05 67.17 ± 11.61 70.60 ± 2.52 82.40 ± 7.17 58.80 ± 10.68
BGL-Net(ours) 77.27 ± 1.70 79.72 ± 9.13 74.83 ± 10.36 71.90 ± 3.46 77.40 ± 4.13 66.40 ± 9.67

BA: Balanced accuracy; SEN: Sensitivity; SPE: Specificity.

patients for each diagnostic class are randomly selected to
compose the testing set, leaving the remaining data as training
set where 5-fold cross-validation is performed.

4) Data Preprocessing: The original data have been cu-
rated and converted to the Brain Imaging Data Structure
(BIDS) format [29] using Clinica [30]. Then the acquired
data passes through the t1-volume pipeline of Clinica [31].
The Unified Segmentation procedure [32] is used to simultane-
ously perform tissue segmentation, bias correction, and spatial
normalization. After that, t1-weighted volumetric images are
segmented into grey matter (GM), white matter (WM), and
cerebrospinal fluid (CSF). Only GM tissue maps are used in
the following experiments as they are more related to the AD
diagnosis. The size of GM tissue maps are 128× 128× 128.
During training, we perform 5-fold cross-validation. For each
fold, the model with the highest balanced accuracy (BA) on
the validation set is saved and further tested on the testing set.

B. Implementation Details

The models are implemented using Python 3.7.9, PyTorch
on a workstation with Nvidia Tesla V100. For all experiments,
we set the batch size to 8 and carry out an exhaustive
grid search for learning rate and weight decay parameter
combination. For models on ADNI, OASIS, and NIFD, their

learning rate is set to 7e-4, 3e-4, and 1e-3, respectively, with
weight decay of 5e-4, 1e-5, and 5e-3, respectively. All models’
dropout rate is set to 0.5 and use AdamW as optimizer. The
parameter of P is set to 32.

We adopt balanced accuracy (BA) to evaluate the classi-
fication performance. Also, sensitivity (SEN) and specificity
(SPE) are used. The average and standard deviation of each
metric are recorded to compare the performance of different
models. The formula of BA, SEN, and SPE is as follows:

BA =
1

2

(
TP

P
+

TN

N

)
(9)

SEN =
TP

TP + FN
(10)

SPE =
TN

FP + TN
(11)

Where TP , TN , FP , and FN are the number of true
positive, true negative, false positive, and false negative terms,
respectively, in the confusion matrix, P and N is the number
of all actual Positive and negative terms in confusion matrix
respectively.

C. Results
For comparison, we adopt three existing state-of-the-art

methods, DeepCNN [16], ConvNet3D [17], VoxCNN [18]
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Fig. 3: The test ROC curve of AD vs. MCI vs. CN and sMCI vs. pMCI task in ADNI dataset.

TABLE III: Experimental results of AD vs CN vs MCI classification with 5-fold CV on ADNI datasets. Sensitivity and
specificity were not available because the number of classes is greater than two. We use BA and F1 score to evaluate the
model. BGL-Net achieves the best test BA.

Model Valid Test
BA↑ F1↑ BA↑ F1↑

DeepCNN [16] 46.81 ± 2.88 49.21 ± 3.17 47.54 ± 3.69 47.43 ± 3.83
ConvNet3D [17] 70.41 ± 8.96 72.90 ± 6.65 46.55 ± 8.50 46.96 ± 8.51

VoxCNN [18] 72.60 ± 7.86 74.88 ± 6.29 50.64 ± 6.71 51.08 ± 6.87
ResNet101 [26] 54.27 ± 4.98 52.79 ± 6.79 52.02 ± 5.92 52.03 ± 6.17

DenseNet121 [27] 56.60 ± 1.81 44.43 ± 4.15 53.17 ± 3.01 53.78 ± 3.04
BGL-Net(ours) 54.30 ± 4.76 56.78 ± 2.31 53.74 ± 2.27 53.58 ± 2.26

BA: Balanced accuracy; F1: F1 Score.

TABLE IV: Cross-site evaluation results. The AD vs. CN models trained on the ADNI dataset is used to test all data in NIFD
and OASIS. BGL-Net maintains the best BA under the two untrained datasets.

Model NIFD OASIS
BA↑ SEN↑ SPE↑ BA↑ SEN↑ SPE↑

DeepCNN [16] 73.96 ± 2.76 59.03 ± 7.95 86.87 ± 16.97 72.70 ± 1.78 60.40 ± 3.93 85.00 ± 2.95
ConvNet3D [17] 61.42 ± 9.22 72.20 ± 17.44 50.64 ± 35.03 59.07 ± 5.38 68.80 ± 16.25 49.35 ± 24.19

VoxCNN [18] 49.83 ± 0.22 78.96 ± 39.51 20.71 ± 39.67 50.10 ± 0.48 77.80 ± 39.08 22.39 ± 39.08
ResNet101 [26] 75.63 ± 2.01 57.28 ± 3.55 93.98 ± 5.06 71.12 ± 2.40 66.60 ± 10.40 75.38 ± 12.52

DenseNet121 [27] 75.88 ± 1.00 56.12 ± 3.48 95.64 ± 2.17 72.79 ± 2.45 70.80 ± 6.11 74.78 ± 8.20
BGL-Net(ours) 76.63 ± 1.02 57.61 ± 2.85 95.64 ± 2.39 73.08 ± 1.44 71.60 ± 1.74 74.57 ± 2.71

BA: Balanced accuracy; SEN: Sensitivity; SPE: Specificity.

and convert classic deep learning models (esNet101 [26],
DenseNet121 [27]) to 3d versions to perform classification on
ADNI, OASIS, and NIFD dataset. Specifically, we construct
AD vs. CN experiments on three datasets, AD vs. CN vs. MCI
and sMCI vs. pMCI experiments on ADNI dataset.

1) Results on ADNI dataset: As shown in TABLE I, BGL-
Net achieves the best test BA and SPE while maintaining
the lowest variance. For baseline models, 3d version deep
learning models outperform the three popular methods. While
DenseNet121 obtains the highest validation BA, its BA on the
testing set is lower than our proposed BGL-Net, indicating
that there may be an overfitting problem. At the same time,
BGL-Net’s parameter size (3.12M) is much smaller than that
of two deep learning models. Specifically, it is about 1/3 of

DenseNet121 and about 1/27 of ResNet101.

As shown in Table II, in the sMCI vs. pMCI experiment,
BGL-Net achieves the best BA on both validation and test
sets. Combined with Figure. 3-(b), it can be found that the
ROC curve of our method is at the top, which shows that our
model outperforms other comparative methods.

In the AD vs. CN vs. MCI experiment, sensitivity and
specificity were not available because the number of classes
is greater than two. We use BA and F1 score to evaluate the
model. As shown in Table III, BGL-Net achieves the best BA
on the test set, and DenseNet121 achieves the best F1 score
on the test set. ConvNet3D and VoxCNN have high BA on
the validation set and poor performance on the test set. This
shows that the generalization ability of these models is poor.
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TABLE V: Comparison with GCN-based methods for AD and CN classification. As different data and preprocessing pipelines
are adopted in these studies, it is difficult to reproduce them. Therefore, the results reported in their papers are used here for
a naive direct comparison.

Method Modality Splits Train and valid
samples (AD/CN)

Test samples
(AD/CN)

Valid Test
ACC↑ BA↑ SEN↑ SPE↑ ACC↑ BA↑ SEN↑ SPE↑

Graph-CNN [20] sMRI 10-fold 960/592 NA 85.80 NA 83.5 87.5 NA NA NA NA
ADiag [3] sMRI train-valid 60/61 NA 83.44 NA NA NA NA NA NA NA

AMGNN [23] sMRI, Clinical features* 5-fold 337/413 NA 88.33 NA NA NA NA NA NA NA
BGL-Net (ours) sMRI 5-fold 236/230 100/100 89.77 90.18 84.32 96.05 89.00 89.00 86.00 92.00
* Clinical features include age, gender, year of education, APOe4 gene information, cognitive test score.

TABLE VI: Ablation study on ADNI datasets.

Feature Valid Test
BA↑ SEN↑ SPE↑ BA↑ SEN↑ SPE↑

Brain 87.83 ± 2.44 83.04 ± 5.73 92.62 ± 6.77 87.20 ± 1.57 84.00 ± 5.25 90.40 ± 5.08
ROI 85.21 ± 4.55 82.64 ± 8.30 87.77 ± 9.36 85.10 ± 1.02 85.00 ± 7.64 85.20± 6.46

Brain + ROI 90.18 ± 3.79 84.32 ± 5.49 96.05 ± 3.73 89.00 ± 0.89 86.00 ± 2.61 92.00 ± 1.67

Combined with Figure. 3-(a), the ROC curves of different
classes of BGL-Net are all at the top, which demonstrates
the excellent performance of our model.

2) Results on OASIS dataset: According to the results on
the OASIS dataset in TABLE I, BGL-Net achieves the top
BA which is 1.59% higher than the second-place VoxCNN
obtained. Meanwhile, BGL-Net has the highest SPE on both
validation and testing sets. Compared with VoxCNN, BGL-
Net’s SPE is 18.75% and 14.29% higher on validation and
testing set, respectively.

3) Results on NIFD dataset: According to TABLE I, BGL-
Net performs the best on the NIFD dataset, obtaining the top
BA on both validation and testing set. Generally, for baseline
models, while deep learning models perform better on the
validation set, they suffer from the problem of overfitting as
their testing performances are not as good as the three popular
methods.

4) Cross-site evaluation: To verify the performance of the
proposed method on the multi-site dataset, we test the AD vs.
CN model trained on the ADNI dataset on the full dataset of
OASIS and NIFD, respectively. As shown in Table IV, BGL-
Net achieves the highest BA in both datasets, which further
illustrates the generalization of the proposed method is better
than other contrasting methods.

5) Comparison with other GCN methods: We compared
the performance of BGL-Net with recent other GCN-based
methods that focus on AD and CN classification. The results
are illustrated in TABLE V. Various data and preprocessing
pipelines are adopted in these studies. In addition, the lack
of implementation details makes these methods can not to
reproduce. Therefore, the results reported in their papers are
used here for a naive direct comparison.

The construction of graph representations in these GCN-
based methods relies on manual intervention. For example,
the extraction of node features might depend on the cortical
thickness given by software like Freesurfer and the adjacency
matrix may be built based on the correlation between features
from different nodes. Unlike these methods, BGL-Net adap-
tively generates the graph representation with the help of a
learnable GGM module to build more robust feature space

TABLE VII: Comparison of computing resources.

Model Para.(M) Infer time(ms) FLOPs(G) Memory(M)

DeepCNN [16] 0.12 1.29 0.87 1431
ConvNe3D [17] 8.38 105.84 548.66 7445
VoxCNN [18] 2.14 35.34 50.49 3439

ResNet101 [26] 85.21 111.79 409.65 8131
DenseNet121 [27] 11.24 120.17 345.02 15859

BGL-Net(ours) 3.12 70.59 84.68 17137

mapping. It can be seen from TABLE V that compared with
manually defined graph representation, BGL-Net is able to
achieve better performance while using fewer data.

6) Ablation Study: An ablation study is conducted on the
ADNI dataset to evaluate the effectiveness of the global and
local information features. As shown in Table VI, the local
information features achieved a BA of 87.83% and 87.20% in
the validation set and testing set, respectively, which is similar
to other CNN-based methods. The BA of global information
features on the validation set and testing set is 85.21% and
85.10%, respectively, which is comparable to other GCN-
based methods. After integrating the features of the two type
levels, the BA of the validation set is increased by 2.35% and
4.97%, respectively. Compared with the Brian-level and global
information features, and the testing set is increased by 1.8%
and 3.9%, respectively.

D. Computing resources compare

The computation and inference time of BGL-Net are 84.68G
flops and 70.59ms, respectively, which are better than Con-
vNet3D, DenseNet121, and ResNet101. In terms of param-
eters, BGL-Net’s parameter size (3.12M) is much smaller
than that of two deep learning models. Specifically, it is
about 1/3 of DenseNet121 and about 1/27 of ResNet101. In
terms of memory occupation, since BGL-Net has two branches
for global and local information extraction, it requires more
memory during training. Overall, BGL-Net achieves the best
performance on the three datasets at the cost of a limited
memory increase.
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(a). Brain connection of AD.
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(b). Brain connection of CN.

Fig. 4: The connectograms for areas of the brain with different diagnosis groups which learned by BGL-Net. The left and right
halves in the figure represent the brain’s left and right brain regions, and curves represent the connections between different
brain regions. The thicker the curve and the yellower the color, the stronger the connection between brain regions. Adjacency
matrices of all subjects in AD and CN are averaged and then normalized, respectively. Here we demonstrate the results of
connections stronger than 0.6.

E. Interpretability study

To better understand how BGL-Net arrives at its predictions,
as shown in Figure 4, we visualize the connection between
different brain regions by further processing the adjacency
matrix A. Specifically, the adjacency matrices of all subjects
in each category are averaged and then normalized. Only those
connections that are stronger than 0.6 are demonstrated.

As AD causes brain disorders among different brain regions,
it is interesting to see that the connection between different
brain ROIs of AD patients is weaker than that of CN subjects.
Specifically, the weakened connection mainly occurs in the
left hemisphere, and such biased detection agrees with many
current AD clinical research [33], [34].

V. CONCLUSION

This paper proposes a brain-inspired global-local informa-
tion fusion network BGL-Net for AD diagnosis. It essentially
inherits the advantages of both CNN and GCN to explore
global and local information capture. The experiments on three
public datasets demonstrate the effectiveness and robustness of
our BGL-Net. Our method achieved the best performance on
three popular public datasets compared with the existing CNN
and GCN-based methods. We believe the proposed method
takes a significant step in constructing an sMRI based AD
diagnosis medical diagnostic system.
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