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Abstract—This paper provides a comprehensive survey of
robotic autonomous grasping techniques. We summarize three
key tasks: grasp detection, affordance detection, and model
migration. Grasp detection determines the graspable area and
grasping posture of the manipulator, so that the robot can
successfully perform the grasps. The grasp detection methods
based on deep learning are divided into 3DoF grasp and
6DoF grasp. The object affordances based grasping methods
can further improve the robot’s understanding of objects and
environment, thereby improving the robot’s intelligence and au-
tonomy. Methods for object affordances detection are classified as
learning-based, knowledge-based, and simulation-based. Model
migration means that when the grasping model is migrated to
other scenes where lightness and background changes, only little
or no label data is required, so that the grasping model can
be used in the target scene quickly and efficiently. This paper
focuses on domain adaptation (DA) methods in model migration.

Index Terms—Robotic grasping, Affordance detection, Domain
adaptation

I. INTRODUCTION

The stable and reliable grasp is fundamental and significant
for robots to complete assembly, handling and sorting tasks.
Robotic grasp detection is a key research component in the
field of robotic autonomous grasping, which determines the
graspable area on the object and grasp pose of the robot end-
effector. Early grasp detection focuses on object geometry,
physical model, kinematics and mechanical analysis [1]. Such
as searching for contact points that afford the form and force
closure on objects of known three-dimensional models. How-
ever, these approaches are often computationally unaffordable

This work was supported in part by NSFC under Grant number 91848109,
supported by Beijing Natural Science Foundation under Grant number
L201019 and supported by Science and Technology on Space Intelligent
Control Laboratory under HTKJ2019KL502013.

and not adapted for new tasks or novel objects. Most recently,
the use of deep neural network methods to train an end-to-end
grasping strategy has made great progress. High-quality grasps
generated by deep learning have anti-interference ability and
strong generalization ability. This paper focuses on the grasp
detection based on deep learning.

In spite of the development of robotic grasp detection,
the grasp of arbitrary objects in unstructured environments
is still a challenging and complex task. Robot vision aims
to discover and understand information, then interact with
the environment. This requires the robot to understand the
affordances of objects even in the complex visual domains.
Affordances refer to the properties or characteristics of objects
that provide the agent with a series of potential actions.
In other words, this research field explores how robots use
objects. Gibson first proposed the concept of “affordances” in
1966 [2]. Since then, affordance detection has been widely
applied to perform higher-level reasoning on the scene. We
review the affordance detection approaches in this paper.

Although the robotic grasping technology based on deep
learning has been extensively studied, it still has many limita-
tions. Deep learning demands a great deal of learning data, and
collecting datasets and labelling are time-consuming and labor-
intensive. So most methods are trained on public datasets,
this leads to poor results when the model is migrated to
other scenes with different grasping background, view angle,
lightness, sensor, etc. Robotic grasping based on deep learning
is quite domain-related, studying the migration of the model
trained in the source domain to the target domain with less
annotated data is necessary to bridge the gap between artificial
intelligence and practical applications.

The rest of this paper is arranged as follows. Section II
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reviews the deep learning based grasping detection algorithms.
Section III reviews the methods for object affordances in
robotic grasping. Section IV reviews the methods for grasping
detection model migration. Finally, the conclusion is drawn in
Section V.

II. METHODS FOR GRASPING DETECTION BASED ON
DEEP LEARNING

To grasp object, the 6-dimensional pose of robot end-
effector in the camera coordinate is necessary information.
In this paper, the robot end-effector we only talk about
parallel grippers. The grasping configuration describes how to
arrange the gripper 6D pose to successfully grasp the object.
According to the different grasping configuration, the grasping
detection methods based on deep learning can be categorized
into the 3DoF grasp and 6DoF grasp.

A. 3DoF Grasp

3DoF grasp refers to the grasp pose that contains a two-
dimensional in-plane location and a one-dimensional rotation
angle. 3DoF grasp is also called 2D plane grasp because the
grasp pose is limited by the direction which is perpendicular to
the workspace plane. 2D planer grasp methods can be divided
into structured grasping configuration and pixel-level grasping
configuration.

1) Structured Grasping Configuration: In the early re-
search, the grasping configuration is based on points on scene
images. Aiming to find graspable points in the discrete three-
dimensional space, Saxena et al. [3] proposed a regression
learning method to estimate the graspable point position in the
cartesian coordinate system. But this approach only determines
where to grasp, not determines the gripper orientation. To
overcome this limitation, the oriented rectangle is proposed to
represent the grasping configuration and has been extensively
studied. Jiang et al. [4] proposed the use of directed rectangle
containing 3D position, 3D orientation and the gripper opening
width, expressing as G = (x, y, z, α, β, γ, w) to estimate 7-
dimensional grasp. Such presentation brings computational
expensively. Lenz et al. [5] used the rectangle with location,
orientation and size: G = (x, y, θ, h, w) to simplify the above-
mentioned grasping configuration from 7D to 5D. Fig. 1 shows
an example of rectangle presentation. This paper is the first
to use deep learning in the field of robotic grasping. They
proposed to use two networks as a two-step cascaded sys-
tem, first effectively pruning out impossible candidate grasps
and then re-evaluating the rest of grasps to find top-ranked
rectangle with a larger network. This 5D rectangle grasp
representation is used in many subsequent studies. Redmon
et al. [6] addressed the same problem as Lenz [5] with the
5D configuration, but used a different network architecture
that performs single-stage regression from RGB-D image to
graspable bounding boxes, and achieves the faster and more
accurate performance. Chu et al. [7] applied 5D configuration
to the multiple object situations. They proposed a framework
for predicting multiple grasp candidates rather than a single

Fig. 1. A five-dimensional rectangular grasp presentation with position, size,
and orientation.

outcome in a single shot. This framework transforms orienta-
tion regression to a classification problem and predicts both
grasp regression values and discrete orientation classification
scores. Pinto et al. [8] used the oriented rectangle only with
the position and orientation: G = (x, y, θ), removed the
rectangle size parameters. They recast the regression to a
binary classification and used a CNN-based classifier to predict
the grasp possibility for different grasp directions.

Another structured grasping configuration is grasping con-
tact points which uniquely defines the grasping pose. Mahler
et al. [9] used the point with position and angle in the
table plane, expressing as: G = (x, y, z, θ). They proposed
a network architecture to predict the robustness scores of
candidate grasps, and then selected the highest quality one as
the final grasp. Learning the grasp robustness function is one
of the central ideas of deep learning based grasp detection
research. It describes the successful grasp possibility of a
location or region in the image, and identifies the highest-
scoring grasp candidate as the output.

2) Pixel-level Grasping Configuration: The pixel-level
grasping configuration is to estimate the grasp quality for
each pixel in the image or to estimate pixel-wise grasp
affordances to evaluate the most probable grasping contact
points. Morrison et al. [10] proposed Generative Grasping
Convolutional Neural Network achieving one-to-one mapping
from a depth image to grasp map, which consists of three
pixel images: grasp quality, grasp angle, and grasp width.
These three pixel images determine a grasp at each pixel.
This network is light-weight and fast. Zeng et al. [11] pre-
sented a framework achieving pixel-wise grasp affordances
predictions that returns grasp locations, orientations, and the
confidence scores. The grasp affordances are pre-defined as
parallel gripper grasp and suction cup grasp. The author
used two fully convolutional networks to predict this two
affordances under 16 different angles to judge whether the
object can be sucked or has a graspable area, and then
generated grasp proposals with confidence scores. Cai et al.
[12] used network as an affordance interpreter to predict pixel-
wise grasp affordance map, where each pixel belongs to one of
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Fig. 2. The left shows the coordinate frame of the gripper. The right shows
the gripper rotates around the three coordinate axes.

predefined grasp affordances. These two papers predict pixel-
wise affordance maps and directly estimate grasp qualities.
[11], [12] use grasp affordance detection that does not involve
object understanding, that is, they only use the predefined
grasp affordances which aim to find the most suitable grasping
area. In section III, the methods of object affordances detection
will be introduced.

B. 6DoF Grasp

6DoF grasp means the gripper’s 6D pose in camera coor-
dinate should be all estimated to allow grasping objects from
various angles, which is shown in Fig. 2. 6D pose includes 3D
position and 3D orientation of the gripper. The early analytical
methods analyzed the geometric structure of known object
3D model to determine the graspable points that satisfy some
certain quality metrics [1]. As depth image becomes easily
available, monocular object 6D pose estimation [13] [14] is
extensively researched. With object complete shape, the object
6D pose can be achieved and 6DoF grasp can be inferred. If the
target object is known and 6DoF grasp poses are precomputed,
the 6DoF grasps can be obtained through sampling and ranking
the grasp poses in the knowledge base, and then the problem
of estimating grasp poses is converted into the problem of
estimating object 6D pose. Deng et al. [15] predict the objects
6D poses based on the prior knowledge about objects shape
and then project the predefined grasp poses to the workspace.

From [16], there is a new research direction that based
on partial point cloud which requires no prior knowledge
about objects, merely analysis the input partial point cloud to
estimate the 6DoF grasp poses. Most of these methods propose
grasp candidates and estimate the grasp quality for each
candidate. ten Pas et al. [16] proposed GPD algorithm that first
samples 6DoF grasp candidates from a region of interest (ROI)
which is identified by preprocessed viewpoint cloud, then the
candidates are encoded as a stacked multi-channel image. Use
convolutional neural network (CNN) to evaluated the each
candidate score, then select a grasp for execution based on this
score. Liang et al. [17] made further expansion and proposed
PointNetGPD. Instead of multi-view projection features, take
raw point cloud as input. Then evaluate the quality of the
sampled candidate grasps through geometric analysis based
on the PointNet [18]. This work outperforms GPD when input

point cloud is sparse overall. Mousavian et al. [19] proposed
6DoF GraspNet algorithm that uses a variational autoencoder
to sample grasps and then uses a grasp evaluator model to
assess and refine the sampled grasps. Qin et al. [20] proposed
a single-shot grasp network based on PointNet++ [21]. This
is a direct regression method for predicting 6DoF grasps, and
each grasp has a grasp quality score to evaluate.

III. METHODS FOR OBJECT AFFORDANCES DETECTION IN
ROBOTIC GRASPING

Affordance specifies the functions that the object allows
to the user (or agent), that is, what operations the user can
perform on a given object in the environment. Ecological
psychologist Gibson first introduced the concept of affordances
in 1966 [2]. Humans use vision to easily acquire object
affordances and utilize this information to perform daily
tasks including grasping objects. From the priori experience,
humans can determine the best way to grasp. In robotics,
detecting objects affordances is a fundamental ability for
robots to understand the objects. The grasp detection methods
mentioned in the previous section can successfully execute the
grasping action, but can not make the robots perform tasks like
human. So efficient affordance detection is the core function in
the developing autonomous systems. Vision-based affordance
is a branch of the field of computer vision and a detailed
review about visual affordance can be found in [22]. In the
following, we survey the affordance detection based grasping
approaches.

A. Learning-based Affordance Detection

Since humans mainly use visual cues to reason about
the object affordances, there are many studies using RGB-
D images modeling. Collect data by using human knowledge
and learn object affordances from it. Due to the popularity of
deep learning, many researches use CNN to replace traditional
feature engineering. And affordance detection is regarded as
the problem of labelling parts of objects at pixel level by
function. Nguyen et al. [23] proposed a deep CNN-based
encoder-decoder architecture to detect object affordances. This
method used automatic feature learning instead of manual
features. The depth image is encoded into three channels and
these channels combine with RGB images to form multiple
modalities input data. The output is a probability image, the
number of channels is the number of affordance classes. They
tested this algorithm on a real robot conducting grasping and
got significant enhancements on the UMD dataset [24]. But
the object scene in this dataset is not occluded or cluttered.
Another work also by Nguyen et al. [25] treats the affordance
detection as an object detection problem. They used a deep
network to predict the location of objects and represent it with
bounding box. Then deep CNN is used to create feature maps
from these bounding boxes, and finally these feature maps are
processed using Conditional Random Fields model to further
enhance the prediction results of affordance label of each pixel.
Based on the detected affordances, they conducted real robot
to perform grasp and demonstrated higher success rate and
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Fig. 3. An example knowledge graph. Relevant nodes are interconnected, dif-
ferent color edges depict different relations between nodes, such as attributes,
affordances, and graspable area.

more robustness. Do et al. [26] proposed a AffordanceNet
which achieves the simultaneous detection of multiple objects
and their affordances. The AffordanceNet has two branches,
one for object detection and one for affordance detection. Sig-
nificantly, the end-to-end model learning can perform model
training in a single framework, which has recently dominated
recognition techniques. Chu et al. [27] proposed a framework
that simultaneously detects objects position in the image,
object labels, and multi-label affordance maps. But unlike the
supervised learning described above, this framework takes into
account the adaptation of the domain from synthetic data to
real images and avoids the need for large annotated data when
model is migrated to other domains. We will introduce domain
adaptation in detail in section IV. In addition to studies in 2.5D
image domains, Deng et al. [28] presented a 3D AffordanceNet
dataset and focused on visual affordance detection on point
cloud data.

B. Knowledge-based Affordance Detection

The knowledge base (KB) is a library composed of entities
and rules, which is used to store and query the affordance of
objects. KB can be considered as a graph, where the notes
represent entities and edges represent general rules. Every
entity in the KB consists of object attributes and affordances.
Fig. 3 shows a KB example. A learned KB is a unified
framework under which many different reasoning tasks can
be performed without any further training. Zhu et al. [29]
extracted object information including their attributes and
affordances from images and online textual sources. Each
object has three attributes: visual attributes, physical attributes,
and categorical attributes. These attributes allow knowledge to
be transferred between objects, thus enabling the prediction of
the novel object affordance. After data collection, use Markov
Logic Network (MLN) to learn relations from it to construct a
knowledge graph. When performing reasoning, the model first
extracts the object visual attributes based on the image, and
then infers physical and categorical attributes, finally queries
the object affordances in the acquired knowledge graph. Ardón
et al. [30] proposed a method for detecting and extracting
multiple grasp affordances on one object. This work is similar
to that of [29], but focuses on solving the inference of the grasp
affordances which is subdivided. They used MLN to obtain

semantics relationships between attributes, locations and grasp
affordances to build a KB. In the affordance reasoning stage,
a CNN is used to extract the objects’ attributes from RGB
images, and use Gibbs sampling [31] to query the approxima-
tion of the probability distribution related to grasp affordances
from the learned model, so as to obtain the most probable
grasp affordance. The method of building a knowledge graph
is to use multiple clues to complete affordance detection. The
model is robust, interpretable, and easy to extend. But the
quality of the model largely depends on the knowledge graph,
which in turn depends on the quality of the collected data.

C. Simulation-based Affordance Detection

In contrast to learning appearance-based cues and building
knowledge base, there are some simulation-based approaches
to encode object affordances. In [32], using a physical simu-
lations, particles are dropped onto the object and the number
of particles left in it to quantify the open containability
affordance. First, a robot with a in-hand RGB-D camera
acquires object 3D model by scanning it. Then use the 3D
model for open containability and pouring imagination. On
the open container classification, this method’s performances
is comparable to deep learning approaches, but outperforms it
on autonomous pouring. Abelha et al. [33] made a robot find
the best way to grasp and orient an object. They gathered
3D models from the internet and through simulation auto-
matically learned both a object’s affordances and how the
object should be held and oriented. These methods dig into the
underlying physics of the object to obtain the affordanes and
avoid the problem that the appearance-based method become
fragile when meating objects with large intra-class variations.
Simulation-based method can realize functional reasoning of
objects that have not been seen before well and achieve the
inter-class function generalization.

IV. METHODS FOR GRASPING DETECTION MODEL
MIGRATION

Robot autonomous grasping based on deep learning meth-
ods is a hot research content. Training grasp detection and
affordance detection models based on deep learning are both
supervised learning which is in demand of large number of
well-labeled data, and models are trained under the assumption
that both the training and testing set share the same distribu-
tion. However, collecting data and making them annotated are
quite time-consuming. In some extreme working environment,
it is quite hard to acquire a well-labeled dataset. Besides,
testing set may have feature space different from that of
training set or follow a different distribution. In this scenario,
we need to deal with the problem of lacking sufficient well-
labeled data.

A common scenario in grasping detecting task is that there
are plenty well-labeled instances on public dataset which is
easy to obtain. While in new tasks, we may manage to acquire
only limited number of labeled instances that are different
from instances on the public dataset, or worse, there are only
instances without label. Luckily, the task remain the same, that
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Fig. 4. The difference between transfer learning (upper) and domain adap-
tation (lower). Domains and tasks may both be different in transfer learning,
while in domain adaptation, when the distribution of X changes, the task
remain the same.

is, the public dataset and task at hand share the same label set,
the marginal distribution or conditional distribution is the only
place where they differ. Thus, domain adaptation is brought
up to handle this situation.

A. A Brief Introduction to Domain Adaptation

As a matter of fact, it usually considered that DA is one
special branch of transfer learning [34], as shown in Fig. 4. In
transfer learning, a domain D, defined as D = {X , P (X)},
consists of a feature space X and a marginal distribution
P (X). Here X refers to an instance set in which each sample
is denoted as xi, i = 1, . . . , n. And a task T , defined as
T = {Y, f}, consists of a decision function f which can map
each xi from X into its corresponding label yi in the label
space Y .

Given observations DS = (XS , YS) and DT = (XT )
where YT , the corresponding labels of XT is unknown, domain
adaptation assume that two domains share the same task,
i.e., {YT } = {YS} or YT = YS , but instances drawn
from different domain follow different marginal distribution,
i.e., P (XT ) 6= P (XS). So DA methods tries to leverage
knowledge learned from DS to acquire a decision function
fT to perform well in DT obtain ŶT .

According to [34], transfer learning problems can be clas-
sified as transductive, inductive and unsupervised transfer
learning. In the first category, the target domain shares the
same label space with source domain, i.e., YT = YS , but has
no label available. Since there are abundant well-annotated
data available in DS , we can learn a basic decision function fS
and leverage the knowledge implied in XT to make fS perform
better on target domain. When target domain has different task,
this situation is categorized into inductive transfer learning.
In this situation, the target domain may have a different
label space compared with that of source domain, hence in
target domain, labeled data is needed so as to make the task
learnable. Further on, when labels on both domains are no

longer available, then it becomes an unsupervised transfer
learning problem. Different with inductive transfer learning,
it mainly tackles the unsupervised learning problem on the
target domain, such as clustering and estimation of probability
density .

Different domain of transfer learning may have different
task T , and a similar thought of jointly learning multiple tasks
is implemented in multitask learning. Multitask learning learns
a group of related tasks which share intertask information.
Since it hypothesize that related tasks are able to use intertask
information, multitask learning is able to learn and at the
same time keep the inner structure of data, and only transfer
shared knowledge expression among all the tasks. Transfer
learning and multitask learning adopt some similar methods
so as to leverage the transferred knowledge. But they also
hold some differences, multitask learning learns a group of
tasks simultaneously, while tasks of target domain will acquire
more attention in transfer learning.

Multiview learning aims to learn multiview data, that is,
to learn data with multiple set of features, such as a video
object with both image features and audio features. Multiview
learning holds the belief that multiple views of the same data
contain complementary information, and by describing infor-
mation from multiple views of the given data, the learner can
master a more comprehensive and more compact expression of
the data, and hence achieve better performance. Sophisticated
application includes recommender system [35], video analysis
[36], and natural language processing [37].

Domain generalization [38], [39] tries to train model on
several labeled domains. After training, it will devote to gen-
eralize them to unseen domains. Different with DA methods,
in the training process, data in target domain are not available,
while domain adaptation still needs them to adjust for cross-
domain migration.

Of course, there are also domain adaptation methods used in
reinforcement learning to generate robust grasping strategies,
but this section mainly discusses the methods that can be used
in domain adaptation methods to generate grasping configura-
tions in robot grasp detection from a visual perspective.

B. Categories of Domain Adaptation

The existing DA methods can be categorized as shallow
architectures and deep architectures. Shallow domain adap-
tation mainly aims to align domain distribution. One way to
achieve this goal is to minimize the distance between different
domains. Most commonly seen metrics include the maximum
mean difference (MMD) [40], the Correlation Alignment [41],
Kullback-Leibler(KL) divergence [42] and Contrastive Do-
main Discrepencies (discrepencies in pairs, CDD) [43]. Deep
domain adaptation algorithm uses deep neural network. Such
methods usually use convolution, autoencoders, or GAN [44]
to reduce the distance between domains.

1) Shallow Domain Adaptation: Traditional machine learn-
ing methods minimize the loss defined as follow:
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min
f

1

n

n∑
i=1

L(f(xi),yi) (1)

where xi denotes the input features of the i-th instance, yi

demotes the corresponding label, f is our desired decision
function which maps the input feature to the label space, L is
the loss to be minimized and n is the total number of instances.

In unsupervised domain adaptation(UDA), target domain
has no labeled data available. So we need to find approaches
to transfer the knowledge implied in the source domain.

a) Instance-Based Approaches: Considering that there
are always some instances that are very similar in the source
domain and the target domain, then the loss of all instances
from the source domain is multiplied by a weight during
training.

min
f

1

nS

nS∑
i=1

wiL(f(xS
i ),y

S
i ) (2)

where xS
i refers to the input features of the i-th instance, yS

i

demotes the corresponding label. wi describes the similarity
between the i-th instance and instances from target domain,
that is, the more similar the i-th instance is to the target
domain, the greater the weight wi will be, nS is the total
number of instances from the source domain.

It is easy to come up with the idea that we can adapt the
marginal distributions to obtain w, and the weighting strategy
is thus follows equation [45]:

E(x,y)∼PT [L(f(x),y)] = E(x,y)∼PS [
PS(x,y)

PS(x,y)
L(f(x),y)]

= E(x,y)∼PS [
PT (x)

PS(x)
L(f(x),y)]

(3)

where PS ,PT are distribution of the each domain. Hence
the theoretical value of wi should be PT (xi)

PS(xi)
. There are

many methods to estimate this theoretical ratio. Kernel mean
matching (KMM) [45] resolves the estimation problem by
minimizing the MMD metric in a reproducing kernel Hilbert
space (RKHS) between instances drawn from different do-
mains. KL importance estimation procedure (KLIEP) [46] is
another way which mainly minimizes the KL divergence to
obtain the estimated ratio.

b) Feature-Based Approaches: Feature-based approaches
assume that features of instances in both domains can be
mapped into a common feature space in which features
from different domain can be aligned. That is to say, these
approaches try to learn a transformation that represents the
original features as domain-invariant features, and at the same
time keep the inner structure of the original data. The general
learning object is as follow:

min
f

1

nS

nS∑
i=1

L(f(φ(xS
i )),y

S
i ) (4)

where φ is the mapping function.
Transfer Component Adaptation (TCA) [47] projects fea-

tures of both domains into a RKHS, and minimizes the
marginal distribution of different domain by minimizing the
MMD metric of points of two domains in the RKHS to
find desired domain-invariant features. Geodesic Flow Ker-
nel (GFK) [48] and Sampling Geodesic Flow (SGF) [49]
first perform PCA to obtain subspaces of two domains, and
then view two obtained subspaces as two points on the
Grassmann manifold [50], they then utilize the potential path
between the two points, and obtain doamin-invariant features
by stacking the projections from all the subspaces generated
by interpolating between two points on the manifold based on
properties of the Grassmann manifold. Jhuo et al. [51] show
us that a linear projection matrix which can transform source-
domain instances into a meta representation in which source-
domain instance can be linearly represented by target-domain
instances, so as to align the features, can be learned to perform
well as a novel DA method.

2) Deep Domain Adaptation: Since deep networks always
outperform traditional approaches based on hand-crafted fea-
tures on most discriminant tasks, it is natural to think that
introducing deep network into DA can also greatly enhance
the performance.

Deep DA approaches have three types: the discrepancy-
based, the adversarial-based and the reconstruction-based.

a) Discrepancy-Based Approaches: Deep domain con-
fusion (DDC) [52] adds an adaptation deep neural network
together with a novel discrepancy loss, while extracting fea-
tures from both domains, it minimizes the classification loss
and discrepancy loss at the same time.

L = LC(f(x
S),yS) + λ LD(φ(xS), φ(xT )) (5)

φ here is introduced as a representation of feature extraction
function, and f denotes the predict function of the whole
network, LC denotes the classification loss and LD denotes
the discrepancy loss of the input features of the two domains,
which is acquired by calculating the MMD of φ(xS) and
φ(xT ).

Deep Adaptation Network (DAN) [53] adds multiple adap-
tation layers and exploring multiple kernels, each adaptation
layer has its own discrepancy loss. Different with DDC, here
the discrepancy loss is multi-kernel version of MMD (MK-
MMD) [54] which takes advantages of several kernels.

b) Adversarial-Based Approaches: GAN [44] introduced
the game theory into deep learning. Generally, it plays a min-
imax game to let a generator be able to generate features that
can confuse the discriminator. Motivated by GAN, it natural
to draw the conclusion that we can obtain domain-invariant
features representation by playing the similar minimax game.

Domain-adversarial neural network (DANN) [55] uses a
feature extractor which acts like generator in GAN to extract
deep domain-invariant features from both domains, and uses a
domain classifier as the discriminator to detect which domain
the extracted features come from. A special layer termed
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gradient reversal layer (GRL) is plugged into the base model to
train faster. After training, a simple downstream label predictor
can well perform in the target domain using its extracted
domain-invariant features.

Tzeng et al. [56] proposed a model named ADDA which
unties the weights of feature extractors of two domain, that is,
each has its own feature extractor. This makes ADDA able to
leverage more domain-specific features. To be mentioned with,
in their earlier work [57], they showed a method which adds
soft label loss to align not only marginal but also conditional
distribution of both domains.

c) Reconstruction-Based Approaches: Another way of
align the features of different domains is to learn to reconstruct
the instance and minimize the reconstruction error. And the
reconstruction can be achieved by autoencoders [58] or GAN.
Stacked denoising autoencoders (SDA) [59] uses autoencoders
for reconstruction. The denoising autoencoder is an exten-
sion of the original autoencoder which will add noise to
the input. This corrupting mechanism is proved to enhance
the robustness. In SDA, instances from both domains are
used to train multiple denoising autoencoders, hence desired
domain-invariant features representation can be obtained by
stacking the encoding output, finally a simple classifier can be
learned from the transformed features. The deep reconstruc-
tion classification network (DRCN) [60] also learns a shared
feature representation using autoencoder, and the output of
the encoder is sent to two branches, that is, features of the
source domain are sent directly to a classifier, while features
of the target domain will continue to undergo a reconstruction
process.

GAN can also be used to reconstruct the instances. The
cycleGAN [61] uses two generators to learn two opposite
mappings, G : X → Y and its inverse mapping F : Y → X .
This makes it possible to learn a common latent representation
of two domains. Similar idea can also be found in dualGAN
[62] which adds skip connections in both generators so as
to share and leverage low-level features. The discoGAN [63]
reformulates the domain-shift reducing problem as conditional
image generation problem. Adopting the similar architecture of
cycleGAN and dualGAN, discoGAN studies various distance
functions to be used as loss function. After training, the model
is able to change given properties while keeping the other
contents unchanged.

V. CONCLUSION

In this survey, we make a retrospective study on robotic
autonomous grasping techniques focusing on three points:
grasp detection methods based on deep learning, object af-
fordance detection methods, and model migration methods
focusing on domain adaptation. We first introduce the basic
grasping operation, then to improve the robot’s understanding
of environment and objects, review the methods of object
affordance detection to achieve human-like grasp and com-
plete various autonomous tasks, and finally review the model
migration methods to apply the learned model in other scenes.
This paper goes from basics to improving the intelligence of

robots, step by step to bridge the gap between AI theory and
practical applications. It shows readers the different research
directions and progress from three aspects, so that readers can
understand the field of autonomous robotic grasping faster and
more comprehensively.
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