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Abstract— Autonomous robot navigation in unpredictable
and crowded environments requires a guarantee of safety and
a stronger ability to pass through a narrow passage. However,
it’s challenging to plan safe, dynamically-feasible trajectories
in real-time. Previous approaches, such as Reachability-based
Trajectory Design (RTD), focus on safety guarantee, but the
lack of online strategy always makes the robot fail to pass
through a narrow passage. This paper proposes to learn a
policy that guides the robot to make successful plans using
deep Reinforcement Learning (RL). We train a deep network
based on the RTD method to create cost functions in real-
time. The created cost function is expected to help the online
planner optimize the robot’s feasible trajectory, satisfying its
kino-dynamics model and collision avoidance constraints. In
crowded simulated environments, our approach substantially
improves the planning success rate compared to RTD and some
other methods.

I. INTRODUCTION

Autonomous mobile robots, like autonomous cars, are
always required to make successful navigation in crowded
environments. Safe control of autonomous mobile robots for
use in crowds directly impacts public safety, especially when
more complicated environments such as narrow passages are
considered. Without safety guarantees, autonomous mobile
robots are prone to collisions in crowded environments, but
robots often behave too conservatively with some algorithms
based on safety guarantees. For instance, when facing a
narrow passage, some planners with safety guarantees will
make failed plans, which wastes the robots a lot of time to
replan and turn around.

Receding-horizon strategies are often used in robot nav-
igation in unpredictable environments with limited sensor
horizons because the robot’s final goal usually exceeds the
sensing range. The planner always uses a cost-to-go heuristic
to optimize subgoals, which is easy to accomplish in a static
environment. The specified designed cost function may not
suit different kinds of obstacles. Some previous works try to
improve robots’ ability to the neighbor selection, combining
a more powerful local planner with hybrid sampling to solve
the narrow passage problem [1]. Since the environment is
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Figure 1: The schematic diagram of robot trajectory planning
online. The forward reachable set is computed offline, which
provides the robot with all feasible parameterized trajecto-
ries. Once the sensor detects the obstacles ahead, the trained
deep reinforcement learning model will generate the cost
function for the trajectory optimizer. Then the planner uses
the generated cost function to optimize a feasible trajectory.

unpredictable and complex, it is hard to preplan a feasible
trajectory for every kind of obstacle. It is challenging to
extend some algorithms designed for specific scenarios to
complex environments. The planner needs an intelligent
policy to help it make correct decisions when the robot faces
different kinds of obstacles.

Learning methods can be used to improve the robot’s
motion [2]. Deep reinforcement learning has recently been
used in autonomous driving [3], [4] and collision avoidance
[5], [6], [7]. The agents learn a policy from a long-term
offline training phase to adapt to different scenarios through
simulation in the randomly generated environments. Still, the
way learning is implemented does not give safety guarantees
with respect to the robot dynamics. Reachability-based meth-
ods precompute a reachable set offline to ensure collision
avoidance at runtime, which introduces some conservatism
into trajectory planning [8]. Safe and efficient planners are
what we want.

In this paper, we propose a feasible trajectory planner
with a safety guarantee for mobile robots crossing complex
static environments to improve the successful planning rate,
as depicted in Figure 1. Based on the RTD method [8],
we precompute the Forward Reachable Set (FRS) and use
it to ensure safety during the offline RL training. After
offline training, the robot learns a policy that uses the current
state of the robot and obstacles generating cost functions.
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With the generated cost functions, the planner optimizes
to generate a safe and feasible trajectory during online
running. Our approach improves the success rate and saves
the running time for robots in crowded situations, especially
when passing through narrow passages.

Finally, we design some experiments and give results to
demonstrate our strength compared to some other trajectory
planning methods in crowded environments. We give some
specially designed scenarios to show the advantage of our
approach in passing through narrow passages.

II. RELATED WORK

Several collision avoidance methods have recently been
used in planner design to ensure safety guarantees. Sample-
based algorithms are widely used in robot navigation, like
the Rapidly-exploring Random Tree (RRT) [9] algorithm
and Probabilistic Road Maps (PRM) [10]. Sample-based
algorithms usually linearize the agent’s model for collision
checking. They have difficulty dealing with high-dimensional
models.

Model Predictive Control (MPC) with online optimization
is used to solve trajectory planning for nonlinear vehicle
robots to respect some non-convex constraints [11], [12].
Computation time is a crucial challenge for MPC methods
to ensure real-time safety and feasibility guarantees, and
reinforcement learning has recently been used with MPC to
overcome this disadvantage. [13] replaced the MPC’s cost
function with the value function which is learned from offline
RL training. [14] suggested combining MPC and RL to get
a better planner and [15] proposed a goal-oriented model
predictive control method, using RL to train a policy offline
to optimize a feasible subgoal for the MPC online, which is
similar to our approach.

Reachability-based methods focus on safety guarantees
for robots. They usually precompute some reachable sets
for the robot and then use them to ensure collision avoid-
ance at runtime. Hamilton Jacobi (HJ) reachability analysis
[16]–[18] suffers from the curse of dimensionality, so this
kind of reachable analysis is difficult to extend to high-
dimensional models. Because the HJ reachability’s compu-
tation is expansive, [19] proposes an online algorithm to
update the BRS using the sensed environmental informa-
tion. Reachability-based Trajectory Design (RTD) methods
compute the Forward Reachable Set (FRS) offline and use
FRS to perform trajectory optimization online [8], [20]–[23].
The FRS contains all parameterized trajectories which the
robot can follow. RTD can also supply safe trajectories for
robots in offline reinforcement learning [24]. However, these
methods always introduce conservatism into the planner. It
makes the planner always fails to plan feasible trajectories
for robots crossing narrow passages. Our approach is based
on RTD methods to ensure safety guarantees and is combined
with RL to overcome this challenge. We use RL to train a
model offline to generate cost functions online, allowing the
planner to optimize a safe and feasible trajectory when the
robot faces different obstacles.

III. PRELIMINARIES

This section introduces the Forward Reachable Set (FRS)
briefly. We follow the implement from [8], define FRS for our
robot, compute it offline, and use it to get the safe trajectory
set for online planning.

A. Notation

The real numbers are defined as R and the natural numbers
are defined as N. Rn is the euclidean space in n ∈ N
dimensions. Having a set K, the Lebesgue measure on K
is defined as λK . The volume of K is vol(K) =

∫
K
λK .

The {s, a} stands for the state and action variables in the
RL training.

B. Dynamic Model

Consider a dynamic model for the vehicle robots:

˙xhi(t) = fhi(t, xhi(t), u(t)) (1)

where fhi : [0, T ]×Xhi×U → Rn, X ⊂ Rn and U ⊂ Rm.
T is the planning time horizon so T > 0. It’s challenging
to compute the reachability through this kind of high-fidelity
model, so here comes a simple trajectory-producing model
[8] : [

ẋ(t)

k̇(t)

]
=

[
f(t, x(t), k(t))

0

]
(2)

where f : [0, T ] × X × K → R. X is a subspace of
Xhi, where dim(X) ≤ dim(Xhi). f is a simpler model
to generate trajectory while fhi is the dynamic model.

We also need a tracking error function to constrain the
tracking error and some other gaps between (1) and (2).
There are two ways to get the tracking error function g, one
is simulating the dynamic model (1) and the other is using
Sums-of-Squares optimization to compute it [25]. For each
i ∈ 1, ..., ns, there exists gi : [0, T ]×X×K → R such that:

max
xhi∈A

|xhi,i(t;xhi,0, k)− xi(t;x0, k)| ≤
∫ t

0

gi(τ, x, k)dτ,

(3)
for all x ∈ X , t ∈ T , and k ∈ K where A =
{x ∈ X|xhi = xi} is the set that the model (1) and (2) have
the shared states. Tracking error function is g = [g1, ..., gns ]

T

and g is Lipschitz continuous in t, x and k.
The function g is used to close the gap between the

models, so the trajectory-tracking model can be written as
[8]:

ẋ(t, x(t), k, d) = f(t, x(t), k) + g(t, x(t), k) ◦ d(t) (4)

where d(t) ∈ [−1, 1] for almost each t ∈ [0, T ]. The d is
manually set to make the trajectory-producing model similar
to the true dynamic model in shared states, and ◦ denotes
the Hadamard product.

C. Forward Reachable Set

Using the trajectory-tracking model, we can define and
compute the Forward Reachable Set (FRS) for our robot
offline. FRS shows all the positions that are reachable by a
robot over a time horizon T . In other words, FRS contains all
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the possible trajectories for a robot. At run-time, obstacles are
discretized and intersect with the FRS in the parameterized
trajectory space to return the safe trajectory parameters set.
FRS can be defined as [8]:

FRS =
{

(x, k) ∈ X ×K| ∃ x0 ∈ X0, τ ∈ [0, T ], (5)

d : [0, T ]→ [−1, 1] s.t.x(τ) = x,where

ẋ(t) = f(t, x(t), k) + g(t, x(t), k) ◦ d(t)

a.e. t ∈ [0, T ] and x(0) = x0

}
FRS is computed offline by solving a linear program. To

implement and solve it, we follow the implementation from
[8]. We relax the continuous function to polynomial functions
and transform the inequality constraints into SOS constraints
to change the linear program to a Semi-Defined Program
(SDP) [26]. By solving the SDP offline, we get the FRS,
and we will use it as a trajectory set online.

IV. METHOD

Having the FRS precomputed offline is not enough for
the robot to make successful online plans, so we will next
combine the FRS with reinforcement learning to propose a
feasible trajectory planning policy π. We first formulate the
problem and then introduce our specific design for RL.

A. Problem Formulation

We want the robot to make a successful plan during
navigation. First, the robot must ensure collision avoidance
and reach the goal successfully. Second, the robot can’t stop
or advance slowly, which extends the running time a lot.
Third, our work focuses on challenging environments, such
as a narrow gap between two obstacles. Planning a smooth,
feasible trajectory and avoiding re-planning to save running
time is what we want.

Computing FRS offline brings us parameterized trajecto-
ries used for real-time planning. The RTD plans a set of safe
trajectory parameters online. Tracking the trajectory from
this set ensures the robot’s safety. So we aim to get a policy
via RL training that guides the robot to make a successful
plan when facing challenging obstacles.

Considering a scenario where a robot with limited sensor
horizon, needs to navigate from a start q to a goal g on the
plane R2. The robot had precomputed a FRS that contains
all reachable trajectories with some constraints over a time
interval [0, T ] . At each time-step t, the robot senses
obstacles, combines its state to get st, then takes action at,
formulating a cost function. Perform trajectory optimization
with this generated cost, to optimize a trajectory parameter
k ∈ K. Given k ∈ K to the controller, it will lead the robot
to the next state st+1. Then the robot gets a reward R(st, at).

The goal for RL is to learn a policy πθ that minimizes the
agent’s time to reach the goal while ensuring safety, which
is defined as:

π∗θ = argmax
πθ

E
[ T∑
t=0

γtR(st, πθ(st))
]

(6)

s.t. x(t+ 1) = f(x(t), u(t)),

xT = g, x0 = q,

u(t) ∈ U, s(t) ∈ S, x(t) ∈ X,
t ∈ [0, T ]

where f is the dynamic model, and U, S,X are the set of
admissible control states, states for reinforcement learning,
and the robot’s own states. We will introduce more details of
the reinforcement learning model based on the RTD methods
in the remainder of the section.

B. Cost Function Design

When facing challenging obstacles, the robot needs to
make a decision and choose a feasible trajectory from
the parametered safe trajectory set. The online trajectory
optimization algorithm picks a new trajectory parameter k
when given a specific cost function, and the robot uses a
feedback controller uk to track k. So cost function design is
the key point to guide the robot to make the right decisions.

Figure 2 shows how the cost function design greatly
influences the trajectory choice. Past work on RTD has paid
little attention to cost function design. They just use the
current robot’s distance to the sub-goal as the cost function.
This cost function tends to choose straight trajectories, so it
often performs poorly when the robot needs to pass through
a narrow space. Figure 2c shows the robot failing to pass
through the narrow space between two obstacles using the
previous cost function. But we can design a specific cost
function to help the robot make a successful plan, which is
shown in Figure 2d. Through the cost function we designed,
the robot will plan a smooth and feasible trajectory.

Considering that the real environment is so complex that
we can’t design a cost function that adapts to all situations,
we want the robot to have the ability to adjust the cost
function when facing different situations. The cost function
J is defined as:

J =
T∑
t=0

[(x(t)− zx) + (y(t)− zy)]2

+ a ∗ CUR+ b ∗XAA+ c ∗ Y AA (7)

CUR =
T−1∑
t=0

|vx(t) ∗ ay(t)− ax(t) ∗ vy(t)|
(vx(t)2 + vy(t)2)

3
2

XAA =
T−2∑
t=0

|d(vx(t))2

dt
|

Y AA =
T−2∑
t=0

|d(vy(t))2

dt
|

The CUR is trajectory’s curvature, XAA, and Y AA
are the jerk in x and y direction. These three terms play
different roles in different situations, so we use reinforcement
learning to learn a strategy to dynamically adjust the weight
parameters a, b, and c.

For example, if the robot is so close to the obstacles that
it needs to make a sharp turn, as shown in Figure 2b. In this
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(a) (b)

(c) (d)

Figure 2: The simulation diagram. Figure 2a and 2c show
that the planner used the previous cost function and the robot
failed to reach the target point. Figure 2b and 2d show that
the planner uses our artificially designed cost function, and
the robot reaches the target point successfully.

situation, we want the weight parameters a, b, and c to take a
small value to let the robot swerve sharply to avoid collisions.
In the situation shown in Figure 2d, it’s challenging for the
robot to pass through the narrow gap. This time we want
CUR, XAA, and Y AA to make contributions to planning
a feasible trajectory. These three terms make the robot tend
to choose a smooth trajectory, which can improve the rate
of successful planning.

C. Online Simulation Environment

In this subsection, we will give the specific design of the
simulation environment for reinforcement learning.

1) Action Space: The action at defines the weight of three
cost items described in IV-B. Before training the model, we
manually narrowed the scope of the parameters.

2) State Space: The state st = (xt, ot) at time t has two
components. The first is the observable robot own state xt
at the time step t and the second component is the states of
obstacles that are closest to the robot currently. We set the
relative position of the two obstacles closest to the agent on
the forward horizon as ot.

3) Goal: Although the RTD online planning ensures
safety guarantees and we set replan methods to reach the
goal in actual running, we treat replan as a failure in the
simulation. Navigation from the start point to the goal with-
out stopping, replaning, and collision seems like a successful
plan in our simulation environment.

D. Reward Function

The reward function is designed to encourage the agent to
avoid collisions and take less time to reach the goal:

R(s, a) =


rgoal if xt = g

rcollision if dt < dmin or vt < vmin

rt otherwise

(8)

where dt = min
i

∥∥x− xiobs∥∥ is the robot’s current distance
to the closest obstacle at the time-step t. rgoal is set to reward
the agent if it reaches the goal, and rcollision penalizes it if
the agent collides with obstacles. Sometimes the robot fails
to pass through the narrow gap, tries to turn around, and
bypasses the obstacles. We also treat it as a collision and
use rcollision to penalize it. At other time-step, rt = −0.1
is designed as a time reward to penalize the agent until it
reaches the goal. Spending less time reaching the goal while
avoiding collision is what we aim to do.

E. Learning Model

We use a state-of-the-art method, Proximal Policy Op-
timization (PPO) [27] with clipped gradients to train our
policy, and we combine the PPO training with the RTD
online planning. Algorithm 1 shows the specific training
strategy.

Algorithm 1: PPO Training with RTD Planning

1 Inputs :initial policy πθ, trajectory sets K, cost
function J , reward function R(st,at), dynamic
model f , RL training episodes Nep;

2 while episode < Nep do
3 for k=0, ... ,N do
4 initialize robot state x0, goal position g, t=0;
5 subgoal {g0, ...,gn} ← UpP lanner(x0,g);
6 while not done do
7 sense obstacles {Xobs,i}nobsi=1 ;
8 compute ot from Xobs;
9 st ← {xt,ot};

10 run policy πθ, get at;
11 compute J ← PrecomputeCost(at);
12 compute safe trajectories set Ksafe ;
13 compute ut ← Optk(J,Ksafe);
14 xt+1 = f(xt,ut);
15 collect {st,at, rt};
16 t← t+ 1;
17 end
18 end
19 PPO training;
20 end
21 return πθ

After the robot’s initial and target position are given,
the UpP lanner function will give a series of subgoals
{g0, ..., gn} using a path planning algorithm extend form
the A-star algorithm. If the robot has not reached the goal,
the algorithm senses surrounding obstacles. We use the
same method in [12, Section 6] to represent the simulation
obstacles as a finite, discrete set, to get the safe trajectories
set Ksafe ∈ K. PrecomputeCost function is used to
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generate the specific cost function based on the action at the
current time-step. Finally, the optimization Optk is defined
as:

min
k

J(k) (9)

s.t. k ∈ Ksafe

Finite constraints and low-dimension variable k allow
Optk to be used in online planning. We get the control
input ut by solving the optimization using the interior point
method.

V. RESULTS

We use a different-drive robot named Segway. We train the
policy using PPO in simulation and apply the trained policy
to the Robot to indicate that our planner can optimize feasible
and safe trajectory in unstructured, complex environments
without collision. We also present a comparison of our
method to RRT, NMPC, and RTD.

A. Experiment Setup

The Segway’s Parameters are summarized in the Table II.
It runs in a 9 × 5 m2 room in the simulation training. The
room is filled with 7 randomly-generated boxes to simulate
crowded environments. The length of each box is 0.3 m.
The starting position is randomly set on the left side of the
simulation room, the goal position is randomly set on the
right side.

Our RL algorithm implementation is based on the open-
source PPO algorithm provided in the Stable-Baselines.

We first study some hyperparameters’ influence on policy
performance, and the results are shown in Figure 3. The
curves have been smoothed. Each experiment only changes
one hyperparameter compared with the hyperparameters
summarized in Table IV. The final hyperparameter values
we used are summarized in Table IV.

TABLE I

SEGWAY PARAMETERS

Footprint radius 0.83m
Maximum yaw rate ω = ±1 rad/s

Acceleration [γ, γ̄] = [−5.5,+5.5] rad/s2

Angular acceleration [α, ᾱ] = [−3.50,+3.50] m/s2

TABLE II

HYPER-PARAMETERS

Batch size 64 Num. mini batches 2048
Num. epochs 10 γ 0.99
Clip factor 0.1 Learning rate 2 ∗ 10−4

rgoal 5 rcollision -9

0 20000 40000 60000 80000 100000
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Figure 3: The ablation experiment
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Figure 4: Moving average rewards during training

B. Simulation Results

Figure 4 shows the robot’s average reward curve during
long-term training.

We generate 1000 random trials for each method to show
the advantages of our approach in complex environments.
The results are summarized in Table VI and our method
outperforms each of the compared methods in random,
complex environments. Since the environments are randomly
generated, there may be no feasible paths from the start to
the goal. We also manually design some narrow passages
where feasible passing paths exist to test whether our method
outperforms baselines. The results in Table VIII shows
our method improves the robot’s ability to pass through
narrow passages. The We also design experiments to show
that using our method spends less time reaching the goal.
Under the same environment, both the RTD and our method
successfully reach the goal, the average time we calculated
from 100 experiments shows that our method saves 14.6 %
of the time.
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TABLE III

RANDOM COMPLEX ENVIRONMENT

Planner success rate
RRT 61.3%

NMPC 66.7%
RTD 75.2%

RTD with manually designed cost 79.5%
RTD trained with DRL 85.4%

TABLE IV

PASSING NARROW PASSAGE

Planner success rate
RRT 68.0%

NMPC 72.0%
RTD 87.0%

RTD with manually designed cost 93.0%
RTD trained with DRL 98.0%

VI. CONCLUSION AND FUTURE WORK

We propose a reachability-based trajectory planner trained
with DRL for crowded environments and passing narrow
passages, which generates safe and feasible trajectories.
Offline training using deep reinforcement learning improves
the ability of mobile robots to pass through narrow passages.

The current work is mainly focused on mobile robots
passing through narrow passages. Next, we will extend our
method to some other complex environments, like uneven
terrain. We also want our planner to be more intelligent for
different situations to generate different cost functions.
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