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Abstract— To provide off-chain federations with complete pri-
vacy services to realize on-chain federated learning (FL), this
article proposes a novel privacy framework for FL based on
blockchain and smart contracts, named Artificial Identification.
It consists of two modules: private peer-to-peer identification
and private FL, using two scalable smart contracts to manage
the identification and learning process, respectively. Based on
Ethereum and interplenary file systems (IPFS), we implement
our framework and comprehensively analyze its performance.
Experiments show that the proposed framework has acceptable
collaboration costs and offers advantages in terms of privacy,
security, and decentralization. Furthermore, combined with radio
frequency identification (RFID) technology, the framework has
the potential to realize automatic on-chain identification and
autonomous FL of machine clusters composed of Internet of
Things (IoT) devices or distributed participants.

Index Terms— Blockchain, federated learning (FL), private
identification, radio frequency identification (RFID), smart
contracts.

I. INTRODUCTION

FEDERATED learning (FL) is a new distributed machine
learning architecture proposed by Google in 2016 for data

islands problem [1]. The standard FL aims to learn a united
statistical model on data stored on remote devices under the
constraint that device-generated data are stored and processed
locally, with only intermediate updates being communicated
periodically with a central cloud or sever [2]. As it can train
data from multiple parties without data leakage, FL has a
promising application in fields where data cannot be directly
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aggregated due to factors such as intellectual property rights,
privacy protection, and data security [3]. The exchange and
fusion of local parameters determine the performance of FL;
however, the centralized processing center has the potential
risk of single point of failures, which may still lead to data loss,
leakage, and tampering. Therefore, the FL community begins
to seek the help of blockchain, an emerging decentralized
architecture with the characteristics of de-trust, traceability,
and tamper-resistance [4].

In the general process of FL based on blockchain, feder-
ated members upload their local models on the blockchain,
download updates from others and locally fuse global feder-
ated models after verifications, thereby replacing centralized
processing centers with distributed ledgers, tracing on-chain
interaction records, and avoiding single point of failures.
According to this idea, there are two typical design patterns in
recent research: building a dedicated FL blockchain and devel-
oping smart contracts to manage the collaborative learning
process. Since the design of programmable smart contracts is
applicable to different types of blockchain, the latter is usually
more scalable than the former. BlockFL [5] is a dedicated
FL blockchain that is assumed to be open only to federated
members, and thus without identification and data encryp-
tion mechanisms. However, once attackers find BlockFL, all
data on the blockchain will be leaked immediately, including
models and participants. Learning markets (LM) [6] based on
smart contracts improves BlockFL by encrypting all private
parameters to be transmitted. But it needs to publicly record all
member lists on the blockchain for permission management,
thereby introducing a new risk of de-anonymous attack. In a
word, both BlockFL and LM can only provide on-chain FL
with partial privacy protection. There is an urgent need for a
new privacy framework to provide off-chain federations with
complete privacy protection in the whole process from on-
chain identification to collaborative learning.

To fill this critical gap, we propose a novel privacy frame-
work for FL based on blockchain and smart contracts, named
Artificial Identification. Our framework aims to provide com-
plete privacy services for off-chain federations who want to
realize on-chain FL. Specifically, our service consists of two
parts: 1) private peer-to-peer (P2P) identification that can
transform an off-chain federation into an on-chain form and
2) private FL that only shares, verifies, and fuses federated
models within the federation. In this article, we implement
and comprehensively analyze our framework based on two
prevalent blockchain projects, i.e., Ethereum and inter-plenary
file systems (IPFS). Experiments show that the proposed
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framework with acceptable collaboration costs has advantages
in privacy, security, and decentralization. Furthermore, com-
bined with radio frequency identification (RFID) technology,
the framework has the potential to realize automatic on-
chain identification and autonomous FL of machine clusters
composed of Internet of Things (IoT) devices or distributed
participants. As a preliminary attempt to provide FL with
complete privacy services, our framework can be extended
with more identification or learning mechanisms based on
scalable smart contracts.

The remainder of this article is organized as follows.
Section II reviews the basic concepts and recent advances of
FL, blockchain and smart contracts, blockchain-based FL and
RFID technology; Section III presents our framework of Arti-
ficial Identification, explains its detailed design of operation
mechanisms and smart contracts, and describes its combination
with RFID; Section IV implements our framework based on
Ethereum and IPFS and analyzes its performance; Section V
discusses our future work; and Section VI concludes.

II. LITERATURE REVIEW

In this section, we briefly review the basic concepts
and recent advances of FL, blockchain and smart contracts,
blockchain-based FL, and RFID technology.

A. Federated Learning

FL proposes a privacy-preserving mechanism in distributed
machine learning systems [7]. With data stored locally and
models shared globally, FL can achieve collaboration between
multiple nodes, organizations, and companies. According to
the distribution of feature and sample spaces in different data
parties, FL can be grouped into horizontal FL, vertical FL,
and federated transfer learning [3]. Horizontal FL aims at the
collaboration between different samples that share similar fea-
tures [8], [9]. And vertical FL focuses on the scenarios where
the samples are same while the features are different [10],
[11]. For more general scenarios where both the samples and
features are almost different between different parties, transfer
learning is integrated to give an effective solution named
federated transfer learning [12]. As the core of FL systems,
collaboration mechanisms play great importance in both the
efficiency and the security of the federation. Many works have
been proposed to reduce the communication costs [1], [13],
[14] and strengthen the aggregation security [15], [16], [17],
[18], [19] in the collaborative group. However, the centralized
manner and the lack of incentive mechanisms in FL systems
can still make them vulnerable and inefficient [6]. In this
article, we propose to build FL architectures on blockchain
systems to keep the stability and activeness of the collaboration
process.

B. Blockchain and Smart Contracts

Blockchain is a decentralized system that can achieve
coordination and collaboration among multiple mutually dis-
trustful nodes [20]. Originated in the bitcoin system [21],
blockchain technology has been widely used in finance [22],
industry [23], healthcare [24], [25], communication, and trans-
portation areas [26], [27], [28]. Generally, a blockchain system

can be divided into six stacked layers, including data layer,
network layer, consensus layer, incentive layer, contract layer,
and application layer [20]. Smart contracts are a set of self-
execute and self-verify protocols which provide the interfaces
for flexible software-defined services and promote the wide
application of blockchain systems in various scenarios [29].
Toward the issues of privacy [30], [31], security [32], [33],
[34], [35], [36], design and performance [37], [38], and formal
verification [39], [40], many works have been proposed to
analyze and strengthen the existing smart contracts. Besides,
lots of tools and frameworks [40], [41] have been developed
to analyze their security, validity, and other characteristics.

In this article, we implement our framework based on two
blockchain systems, i.e., Ethereum [42] and IPFS [43]. Pro-
posed by Vitalik Buterin in 2013, Ethereum has become one
of the most popular open-source blockchain projects. Similar
to the bitcoin system, it also develops its own cryptocurrency
(Ether) but is much more flexible, benefiting from the Turing
complete smart contracts. IPFS is a peer-to-peer hypermedia
protocol that can identify and share files in a global space with
all the devices connected. Driven by the Protocol Labs, it has
attracted thousands of contributors globally. The distributed
and content-addressing manners used in IPFS make it a secure
and robust system to avoid attacks and damage to files.

C. Blockchain-Based FL

In complex scenarios with unknown security, FL can be
vulnerable and unstable due to the accidents such as potential
attacks on the message propagation process and unreliable
nodes. Introducing blockchain into FL is promising to solve
these problems [44], [45]. First, blockchain can be used as the
secure bridge between federated nodes and the center for local
model uploading and global model downloading. Second, the
incentive mechanisms in blockchain can be used to improve
the activeness of the federation. Many works have proposed
ways in which the blockchain and FL are combined [46],
[47], [48], [49]. The insecurity and privacy leakage in the FL
communication process are discussed in [46], and blockchain
is proposed as the media for information exchange. Con-
sidering possible malicious nodes in FL, BlockFL adds the
consensus process to validate the effectiveness of the local
models from different nodes [47]. To avoid the breakdown
of FL caused by the failure of centralized servers, FLchain
proposes to aggregate local models on a dedicated blockchain
network which can greatly improve the robustness of fed-
eration [48]. Considering the reliability and viciousness of
federated members, Kang et al. [49] propose the concept of
reputation to measure the reliability of federated nodes. They
build a new incentive mechanism to encourage high-quality
nodes by combining reputation with smart contracts. Recently,
LM builds an auditable and traceable AI market based on the
blockchain system to support verified AI resource sharing and
distributed machine learning like FL without mutual trust [6].
However, all above frameworks lack safe on-chain identifi-
cation mechanisms and fail to protect off-chain federations’
member lists. In this article, we propose a novel identification
mechanism to transform off-chain federations into on-chain
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FL collaborations, which protects the information of related
members and promotes secure collaboration between valid
nodes.

D. Radio Frequency Identification

A typical radio frequency identification (RFID) system is
usually comprised of three parts, i.e., electronic tags used
for encoding object-level information, RFID readers used for
decoding information from tags, and the information manage-
ment system. RFID technology is widely used in industry, food
area, retail business, and IoT systems due to the low cost,
flexible usage, small size, and ease of use [50], [51], [52],
[53]. For industrial applications, an emergency management
system is built with RFID in [54]. An outdoor localization
algorithm is designed with RFID and GPS data in [55].
To monitor the states of objects during the manufacturing
process, RFID is used to develop a manufacturing execution
system [56]. RAPShell proposes a sharing mechanism of
production information with RFID to promote the cooperation
of decision-makers in the planning and scheduling system [57].
Similarly, RFID-based monitoring systems are built in [58],
[59], and [60] to monitor the production process in distributed
scenarios. For IoT applications, RFID is regarded as the key
component for automatic identifying, tracking, and monitoring
of objects worldly [61], [62]. Driven by the advantages of
RFID technology, we combine it to bridge the gap between
physical organizations and on-chain collaborative federations.

III. ARTIFICIAL IDENTIFICATION

In this section, we explain our proposed framework from
aspects of framework overview, operation mechanisms, and
detailed design of smart contracts. Also, we discuss our
potential combination with RFID.

A. Framework Overview

Our framework aims to provide off-chain federations with
complete privacy services to achieve on-chain FL. Therefore,
we assume that before using our framework, the off-chain
federations have been formed, and some necessary interaction
information has been negotiated and shared within the feder-
ations. In this context, our proposed framework is shown in
Fig. 1. The framework is running on an underlying blockchain
network, and consists of two modules, namely, private P2P
identification in (a) and private FL in (b). The former helps
federated members with privacy protection requirements to
transform their off-chain federation into an on-chain form, and
the latter helps them to realize the subsequent collaborative
FL. The main functions of the two modules are respec-
tively implemented by two smart contracts, i.e., identification
smart contract (ISC) and collaborative training smart contract
(CTSC), and they are jointly programmed, reviewed, and
deployed by all federated members before all operations start.
By expanding the programmable ISC and CTSC, our frame-
work is expected to support more customized identification
workflows and collaborative learning modes, and this article
only demonstrates a simple illustrative implementation. Some
concepts are introduced as follows.

Blockchain Account: denoted by acc and associated with a
pair of public key and private key {pkacc, skacc}. A blockchain
account represents a participant and its value is a blockchain
address derived from pkacc.

Federated Members: denoted by F . A member of an off-
chain federation who has registered in the blockchain network
with assigned {pkFi

, skFi }. The pre-shared interaction informa-
tion includes the federal account accFE with its corresponding
{pkFE, skFE}, the deployment address of ISC and CTSC, i.e.,
addISC and addCTSC, and the scale of off-chain federation N .
To protect anonymity and privacy, members will not directly
share their blockchain accounts off the blockchain, but have
to invoke ISC to identify each other on the blockchain.

Federal Account: denoted by accFE. A blockchain account
negotiated by a federation whose {pkFE, skFE} is shared among
all federated members. Fs broadcast messages within the
federation by sending messages to the federal account and
listening to messages from the federal account.

TrustList: If Fi ∈ TrustListFj , it means Fi has passed Fj ’s
P2P identification. Fj admits that Fi is a member of the
federation. We stipulate that trust is mutual, namely, if Fi ∈
TrustListFj , then Fj ∈ TrustListFi . The final TrustListFE

merged from the consensus of all federated members is our
desired member list of the on-chain federation.

ActiveList: If Fi ∈ ActiveListFj , it means Fi has published
the consensused TrustListFE merged by Fj , and Fj believes
that Fi is an active participant of the subsequent collaborative
FL. Every TrustList corresponds to a unique ActiveList, and
TrustListFE corresponds to ActiveListFE.

Additionally, to reduce the storage burden of the blockchain
network and ensure communication security, private files such
as datasets and models are encrypted with the owner’s self-
defined symmetric key kowner and stored on IPFS. The access
path Path(file) composed of the obtained IPFS hash and
kowner is recorded as formula (1). And federated members
exchange these private files by sharing their access paths. Also,
we require senders to broadcast and send messages with their
digital signatures in the form of {Mes, Sig{Mes}sksender }, and
this applies in all sections unless otherwise specified

Path(file) = {IPFS{Enc{file}kowner}, kowner}. (1)

Both in Fig. 1(a) and (b), we take the interaction among
four federated members as an example to show our framework,
but their federated members do not correspond to each other.
The detailed operation mechanisms and contract design are
explained in Sections III-B and III-C.

B. Private P2P Identification

This section aims to transform the off-chain federation
into the on-chain form. Before the on-chain identification
starts, the initial information held by a federated member
Fi is {pkFE, skFE, pkFi

, skFi , addISC, addCTSC, N}. Since the
pre-shared interaction information is regarded as the only
proof of identity, all participants who know the complete
{pkFE, skFE, addISC, addCTSC, N} will be identified as federated
members in our design. The private P2P identification has two
stages: P2P identification and TrustList & ActiveList merging.
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Fig. 1. Framework of Artificial Identification. (a) Private P2P identification. (b) Private FL.

According to Fig. 1(a), their detailed operation mechanisms
are as follows.

1) P2P Identification:

1) A federated member Fi broadcasts his/her puzzle, i.e.,
rand number randFi and accFi , within the federation by
sending Enc{(accFi , randFi )}pkFE

to accFE. At the same

time, Fi listens and responds to puzzles from other
members.

2) Another federated member Fj listens and responds to Fi :
Fj verifies and decrypts Fi ’s puzzle, if the digital signa-
ture is correct and the sender is accFi encrypted in Fi ’s
puzzle, Fj sends Enc{(accFi , randFi ), (accFj , randFj )}pkFi

to Fi .
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3) Fi verifies and decrypts the returned message, if the
digital signature and randFi are correct and the sender
is accFj encrypted in the message, Fi adds Fj to
TrustListFi , and sends Enc{(accFj , randFj ), accFi }pkFj

to Fj .
4) Fj verifies and decrypts the returned message. If the

digital signature and randFj are correct and the sender
is accFi encrypted in the message, Fj adds Fi to
TrustListFj , and sends Enc{(accFi , accFj ), “paired!”}pkFi

to Fi .
5) Fi verifies and decrypts the returned message. If the

digital signature and “paried” message are correct, P2P
identification between Fi and Fj finishes, and Fi and
Fj build mutual trust. Otherwise, Fi deletes Fj from
TrustListFi , their P2P identification fails.

For federated members, whether they choose to actively
broadcast puzzles or passively respond to puzzles, they will
enter the above process and finally build mutual trust with
others. Two members only need to complete P2P identification
once, and the order of broadcast and response does not affect
the identification result. Moreover, lazy members who neither
broadcast nor respond cannot establish their own TrustList
or be added to another TrustList, thereby being automatically
excluded. After the end of this stage, every federated member
locally maintains a TrustList. They add their own accounts to
their TrustList, and only if len(TrustList) ≤ N , they go to the
next stage. Otherwise, they stop all collaboration.

2) TrustList and ActiveList Merging:

1) Every Fi sorts the accounts in the TrustListFi in
dictionary order (or in other same orders), com-
putes the hash digest of the sorted TrustListFi ,
and broadcasts within the federation by sending
Enc{Hash(TrustListFi ), accFi }pkFE

to accFE. At the same
time, Fi listens and compares hash digests from other
members in TrustListFi .

2) For every Fj ∈ TrustListFi , Fi first listens and verifies
their encrypted messages. If their digital signatures are
correct and the senders are accFj s encrypted in the
messages, Fi compares their hash digests to find the
consensused hash digest, and takes its corresponding
TrustList as TrustListFE. Additionally, Fi adds all the
members who have published the merged TrustListFE

to his/her locally maintained ActiveListFi . At last, Fi

derives the new shared key kActive for collaborative FL
among ActiveListFi by sequentially splicing the randFj ,
Fj ∈ TrustListFE.

Ideally, at the end of P2P identification, all federated mem-
bers have identified with each other, and thus all TrustListFi =
TrustListFE and all ActiveListFi = ActiveListFE. Especially,
in Fig. 1(a), we show how our framework works in a poten-
tially nonideal situation where F2 and F4 do not mutually
identify due to latency or other faults. Although they belong
to the correct TrustListFE merged by F1 and F3, they do not
know the full content (plaintext) of this TrustListFE and the
corresponding kActive, so they cannot collaborate with F1 and
F3 later. On the contrary, ActiveListFi and ActiveListFE are
almost overt within the federation, because they can be easily

derived by F2 and F4, and that is why kActive cannot be created
based on ActiveListFi or ActiveListFE.

Finally, we discuss the design of ISC. To improve privacy,
we do not store and compare any TrustList and ActiveList on
the blockchain, and all the collection and consensus operations
are performed locally by federated members. Therefore, ISC
only has three main functions to broadcast puzzles, send
messages to a specific receiver, and broadcast TrustLists. Both
puzzles and TrustLists can only be broadcast once by one
account in the preset time, so as to avoid the denial of
service attack, exclude inactive members and realize automatic
control of two stages. Since our framework is implemented
based on Ethereum, these three functions transmit messages
by triggering and monitoring “Event” to reduce the costs of
on-chain storage. At the end of private P2P identification,
all honest and active federated members additionally held the
same TrustListFE, ActiveListFE, and kActive.

C. Private FL

This section aims to help federated members in ActiveListFE

realize private FL with fair rewards and punishments. Accord-
ing to Fig. 1(b), the detailed operation mechanisms are as
follows.

1) In the preset registration time, every Fi ∈ ActiveListFE

reports len(ActiveListFE) to CTSC with deposit Dr

for registration. CTSC computes the consensused
len(ActiveListFE) after the registration time, every Fi ∈
ActiveListFE adds accounts who have reported the cor-
rect len(ActiveListFE) but not belong to ActiveListFE to
his/her locally maintained RejectListFi

.
2) In the preset VSet construction time, every Fi ∈

ActiveListFE exchanges validation set VSetFi sampled
from privately-held dataset in ActiveListFE: Fi sends
Enc{Enc{Path(VSetFi ), accFi }kActive }pkFE

to accFE. At the
same time, he/she listens, verifies, downloads and com-
bines all other VSetFj s from Fj ∈ ActiveListFE to
construct a unified validation set VSet locally.

3) In each iteration,
a) in the preset verification time, every Fi ∈

ActiveListFE exchanges his/her local model
ModelFi trained on privately-held dataset and its
performance EFi on VSet in ActiveListFE: Fi

sends Enc{Enc{Path(ModelFi ), EFi , accFi }kActive }pkFE

to accFE. At the same time, Fi listens and verifies
all other ModelFj s from Fj ∈ ActiveListFE,
if Fj uploads false models or does not upload
models for two consecutive rounds, Fi adds Fj

to RejectListFi
, and reports RejectListFi

to CTSC
after finishing all verifications.

b) after the preset verification time, CTSC merges all
RejectListFi

s from Fi who have reported consen-
sused len(ActiveListFE), and counts RJFi , the num-
ber of times that Fi is rejected. If RJFi is greater
than the preset threshold, CTSC adds Fi to the
public PuniList, otherwise every Fi ∈ ActiveListFE

adds Fi to their local private SucList.
c) every Fi ∈ ActiveListFE locally fuses the federated

model ModelFE of this round merely based on
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ModelFi , Fi ∈ SucList, and goes to the next
iteration.

4) Until the preset stop conditions are met, the training
of ModelFE is completed. CTSC confiscates deposits of
Fi ∈ PuniList and rewards to Fi ∈ SucList.

Generally, the security of on-chain collaboration is ensured
by the function call permissions preset in smart contracts based
on member lists. However, in this article, member lists like
ActiveListFE and TrustListFE cannot be publicly accessed and
stored, so as an alternative, CTSC has to set strict cooperation
time for each stage to manage collaboration process and avoid
single point of failures. And this will bring some malicious
behaviors we need to consider and solve.

First, although {pkFE, skFE, addISC, addCTSC, N} as the only
identity proof will not be actively disclosed, transparent and
public CTSC may still be accidentally invoked by participants
outside the federation (outsiders). To eliminate their influences,
we require members to report len(ActiveListFE) for registration
and only those who know the correct len(ActiveListFE) can
report RejectListFi

to CTSC. Thus, these unexpected intruders
without the correct len(ActiveListFE) will not really affect
ModelFE, and they can get back all their deposits in the end.
Then, for members with the correct len(ActiveListFE), there
are two kinds of malicious behaviors. One is like F2 and F4 in
Fig. 1(a) who can derive the correct len(ActiveListFE) but not
the kActive, so they can report RejectListFi

to CTSC, but cannot
decrypt the encrypted data and models, which corresponds to
F3 in Fig. 1(b). The other extreme case is that in small-scale
collaboration, malicious members may decipher the correct
TrustListFE and kActive in an exhaustive way, and then they can
easily obtain the shared data and models. However, because
they are not really identified by ActiveListFE, their data and
models will never be accepted in the collaborative training,
and thus ModelFE is not the best model for them.

To limit and punish the latter two kinds of malicious
behaviors, we stipulate in CTSC that every Fi can only submit
a RejectListFi

once in each iteration, and all Fi ∈ ActiveListFE

should actively monitor members who have reported the
correct len(ActiveListFE) but are not identified in ActiveListFE,
and add them to their RejectListFi

. Since it is difficult to
distinguish whether the members in the RejectListFi

and
PuniList are malicious members or active members who have
published false models [like F2 in Fig. 1(b)], the privacy of
ActiveListFE and the real honest members is still protected.
Considering that members in the final PuniList may affect
collaboration results, they will be forfeited all their deposits,
and these forfeiture deposits DPuni will be equally rewarded
to all honest members in ActiveListFE.

Finally, we discuss the design of CTSC. CTSC consists
of five main functions for registration, exchanging VSetFi ,
exchanging ModelFi , reporting RejectListFi

and withdrawing
deposits after collaboration. All of them can only be invoked
in the preset callable time, and the functions of reporting
RejectListFi

and withdrawing deposits can only be invoked
once by one account, so as to protect the security of ModelFE

and funds. Similar to ISC, the functions of exchanging VSetFi

and exchanging ModelFi transmit messages by triggering and
monitoring “Event.” At the end of private FL, members in

Fig. 2. Automatic on-chain identification process based on RFID and our
proposed framework.

ActiveListFE can obtain ideal ModelFE, and be fairly rewarded
or punished in the form of cryptocurrency.

D. RFID-Based Automatic On-Chain Identification and
Collaboration

As aforementioned, our framework is enabled based on
programmable smart contracts, which can serve as software-
defined agents to encapsulate and process scalable identifica-
tion mechanisms and collaboration relationships. Therefore,
by encapsulating these standard smart contracts and their
corresponding interaction programs on trusted hardware or
machines, we can combine RFID technology to realize auto-
matic on-chain identification and autonomous FL of machine
clusters composed of IoT devices or distributed participants.

Fig. 2 shows the automatic on-chain identification process
based on RFID and our framework. All initial information,
i.e., {pkFE, skFE, pkFi

, skFi , addISC, addCTSC, N}, is encoded in
electronic tags and bound with off-chain machine clusters
composed of IoT devices or distributed participants in the
form of RFID stickers or RFID cards. These off-chain trusted
hardware or machines are preset with standard processing
programs. They first read and decode their tag information
with RFID readers, and then automatically interact with smart
contracts to complete the private P2P identification described
in Section III-B and realize the on-chain autonomous FL
described in Section III-C.

IV. EXPERIMENTS

In this section, we develop the smart contracts designed in
Section III to implement the proposed framework and examine
its advantages from four aspects, including collaboration costs,
privacy, security, and decentralization.

A. Platform and Setup

Based on the development architecture Ganache + Truffle,
we create a virtual Ethereum blockchain locally and develop
the designed smart contracts using Solidity programming lan-
guage to implement the proposed framework. Web3.js is used
to interact with smart contracts and verify their performance,
JavaScript libraries eth-ecies and crypto-js are used to support
various cryptography algorithms, and Python + Keras is used
to implement training, prediction, and fusion algorithms of
AI models. Additionally, files of models or model weights
are saved using the Keras.model library, and then stored or
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TABLE I

DEPLOYMENT COSTS OF SMART CONTRACTS

shared on IPFS. To reduce the execution costs, we extract the
common functions in ISC and CTSC to form a Helper contract
for others to call, including querying a specific member in a
specific list and querying the consensused len(ActiveListFE).
Therefore, three contracts are deployed, i.e., Helper, ISC, and
CTSC.

The experimental scenario is assumed corresponding to
Fig. 1(b). Five federated members with privacy protection
requirements transform their off-chain federation into an on-
chain form for the on-chain FL. Among them, only F3 and
F5 do not mutually identify, so they do not belong to
ActiveListFE but can derive ActiveListFE. Since F3 and F5 have
the same situation, we omit F5 in Fig. 1(b). Also, we assume
that F2 submits a false model in the iteration, and F1 and
F4 reject F2. Additionally, due to the inherently limited
computing ability of Ethereum smart contracts, such as only
supporting 8–256 signed or unsigned integer variables, and
lacking complete mathematical libraries, we inherit a verified
contracts library named SafeMath for preventing overflow.
Considering that there is no list of honest members to query,
all functions in ISC and CTSC are preset with strict callable
time.

B. Evaluation and Discussion

1) Collaboration Costs: According to the preset rules in
Ethereum Yellow Paper [42], any execution of programming
segments in Ethereum will trigger a payment for computing
resources calculated using the unit called gas. The actual cryp-
tocurrency payment of a transaction is CostEth = gas∗gasPrice,
where gasPrice is the exchange rate between Ethereum’s
cryptocurrency Eth and gas, and can be set arbitrarily by
senders. The higher the gasPrice, the faster the transaction
will be packaged into the blockchain. The gas consumption
of our smart contract deployments and executions are shown
in Tables I and II, respectively. Since the order of invoking,
the complexity of calculations, and the size of parameters
will all affect the gas consumption, the data in Tables I and II
are the maximum values we observe in the experiment. For
instance, the function of registration consumes the most gas
(102 765) on the first call to create a new list and con-
sumes much less gas (87 765) on subsequent calls, similar to
broadcasting puzzles and TrustListFi . Also, F1, F2, F3 and
F4 may consume different amounts of gas when calling the
same function for different computational complexity, such as
publishing RejectListFi

(157 459 / 85 392 / 171 030 / 216 678)
and withdrawing deposits (93 024 / 61 257 / 61 873 / 79 457).
And the costs of functions that only transmit messages mainly
depend on the size of messages, such as sending a message,
exchanging VSetFi and ModelFi . Hence, cryptography algo-
rithms with shorter ciphertexts are preferred to reduce gas
consumption. In a word, the execution costs of smart contracts
are not fixed values, and we choose the observed maximums
as a representation.

At the maximum estimation, the gas of N federated mem-
bers to complete P2P identification can be computed as
formula (2). Taking gasPrice = 2 × 1010 wei as an exam-
ple, three federated members should cost 1 100 712 gas for
identification, i.e., 0.022 Eth. According to Eth’s historical
highest and lowest prices from April 2016 to August 2021,
1 Eth = $4366.10 and 1 Eth = $5.86 [63], the corresponding
payments are $96.05 and $0.13. The former is almost unac-
ceptable, while the latter can be considered in comparison to
centralized identification. The actual costs will be far less than
this maximum estimation and can be further reduced with the
future upgrade of the Ethereum platform. Also, to deal with
the concerns that the P2P identification costs increase rapidly
with the expansion of the collaboration scale, more efficient
identification workflows are expected to be introduced

94 699 × N + 57 804 × 3 × C2
N + 98 793 × N

= 86 706N2 + 10 6786N. (2)

Another collaboration costs we consider is the computa-
tional time. Besides the original model training time, the
computational time includes the contract execution time to
realize on-chain interactions. Since the contract executions
take effect only when the new block is added to the main chain,
transactions sent asynchronously by distributed participants
but packaged into the same block can be regarded as having
the same computational time, i.e., block time [64]. Therefore,
taking the private P2P identification as an example, assuming
that the time differences among all Fs to broadcast puzzles,
send messages, and broadcast TrustListFi are less than one
block time, and their transactions are immediately packaged
into the same added block without pending. Then, the addi-
tional computational time is five block times. Similarly, that
of one iteration is two block times. Referring to the existing
Ethereum, one block time is about 13 s, and the five block
times are about 65 s. Also, the average block time can be
flexibly customized in the personal blockchain.

2) Privacy: Our framework improves the privacy of FL
based on blockchain in two aspects: identification and col-
laborative training. For identification, methods of sharing
blockchain accounts off the chain and recording honest mem-
ber lists in smart contracts are conducive to reducing collab-
oration costs and managing interactive permissions. However,
malicious participants can easily launch a de-anonymous
attack to correspond the blockchain accounts with their real
identities and monitor federated members’ transactions in the
long term. To solve this problem, honest member lists in this
article are maintained locally and compared in the form of
hash digests. Thus, it is difficult for attackers to decipher
the correct plaintexts unless they actually finish the private
P2P identification. As for the training, although the interaction
records can be traced publicly, all messages are encrypted
before being transmitted, and the function names in Section III
can be independent of their functions. Therefore, in the open
blockchain network, it is difficult for outsiders to monitor the
behaviors of specific accounts purposefully. In addition, for
the members in the PuniList, their additional punishments
include the potential privacy leaks, even if outsiders can
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TABLE II

EXECUTION COSTS OF SMART CONTRACTS

hardly distinguish whether they are real federated members.
It should be noted that the privacy of this part is relative to
the federation, which only guarantees that outsiders cannot
know the real TrustListFE and ActiveListFE. Members in the
federation with identity proof can still infer the ActiveListFE.

3) Security: First, we consider the security of ModelFE.
We already discuss three malicious behaviors and their cor-
responding solutions in Section III-C. Based on our design,
the unexpected intruders will not affect the final ModelFE, and
the members who can submit RejectListFi

and affect ModelFE

will be added to PuniList and forfeited all their deposits.
Moreover, their data and models will not be accepted, and
ModelFE is not ideal for them. For better security, we can
also detect and eliminate malicious behavior in advance by
extending smart contracts to bind an evaluable and traceable
credit score for each participant. This mechanism has been
discussed and implemented in our previous works [6], [64].

Another security issue that needs to be considered is that
some members may still need to be mutually identified due
to network latency or other faults after the end of the preset
time. We discuss one case of this problem in Fig. 1(a). Here
we examine a more extreme case. Because we set that every
Fi can only maintain and broadcast one TrustListFi , Fi cannot
join two different TrustLists or ActiveLists at the same time,
nor belong to two different sub federations. However, it is
possible to have multiple completely disjoint subfederations at
the same time, such as {F1, F2, F3} and {F4, F5, F6}. At this
time, they can complete FL in the sub-training clusters, and
then fuse the obtained federated models after extending the
identification in the subsequent collaboration.

4) Decentralization: The traditional centralized identifica-
tion mode usually relies on a certification authority to issue
and manage digital certificates, while the traditional FL usually
relies on a centralized cloud or server to fuse federated
models. Once these centralized devices or organizations are
attacked, there will be the risks of single point of failures
and privacy leakage. To solve this problem, both identification
and FL modes proposed in this article are decentralized.
Specifically, all identifications are completed peer-to-peer, all
honest member lists are maintained locally, and all federated
models are fused distributedly.

V. FUTURE WORK

Our work can be extended from three aspects. First, support
the flexibility of federations. Currently, for better collaboration
security and efficiency, our framework encourages federated
members to remain active rather than join or quit halfway.
Therefore, once off-chain federations change, they need to

restart private P2P identification immediately. However, the
dynamic change of members may be a potential demand
in some application scenarios, so efficient re-identification
mechanisms are required. Second, avoid the disclosure of pre-
shared information. Since identity proofs will not be actively
disclosed is a strong assumption, our framework adopts two
strategies to reduce the probability of identity theft, includ-
ing checking the collaboration scale and punishing inactive
members. Thus, malicious participants can hardly infiltrate and
have to contribute. In the future, more incentive and behavior-
tracking mechanisms can be utilized to reduce the motivation
for evil. Finally, optimize collaboration costs and apply the
framework in practical scenarios. Our framework has broad
application scenarios, and we can further expand it in the fields
of IoT, finance, and healthcare.

VI. CONCLUSION

In this article, Artificial Identification, a novel privacy
framework for FL based on blockchain and smart contracts,
is proposed to provide complete privacy services for off-chain
federations that want to realize on-chain FL. Artificial Iden-
tification manages identification and learning process based
on scalable smart contracts, and consists of two modules:
private P2P identification and private FL. We implement and
comprehensively analyze the proposed framework based on
Ethereum and IPFS. The experiments show that our framework
with acceptable collaboration costs has advantages in privacy,
security and decentralization. Furthermore, as a preliminary
attempt, the framework has the potential to be extended with
more identification or learning mechanisms, and combined
with RFID technology to realize automatic on-chain identi-
fication and autonomous FL of machine clusters composed of
IoT devices or distributed participants.
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