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ABSTRACT
Image-based Vehicle ReID methods have suffered from limited in-
formation caused by viewpoints, illumination, and occlusion as they
usually use a single image as input. Graph convolutional methods
(GCN) can alleviate the aforementioned problem by aggregating
neighbor samples’ information to enhance the feature representa-
tion. However, it’s uneconomical and computational for the infer-
ence processes of GCN-based methods since they need to iterate
over all samples for searching the neighbor nodes. In this paper,
we propose the first Pseudo-GCN Vehicle ReID method (PGVR)
which enables a CNN-based module to performs competitively to
GCN-based methods and has a faster and lightweight inference
process. To enable the Pseudo-GCN mechanism, a two-branch net-
work and a graph-based knowledge distillation are proposed. The
two-branch network consists of a CNN-based student branch and a
GCN-based teacher branch. The GCN-based teacher branch adopts
a ReID-based GCN to learn the topological optimization ability
under the supervision of ReID tasks during training time. Moreover,
the graph-based knowledge distillation explicitly transfers the topo-
logical optimization ability from the teacher branch to the student
branch which acknowledges all nodes. We evaluate our proposed
method PGVR on three mainstream Vehicle ReID benchmarks and
demonstrate that PGVR achieves state-of-the-art performance.

CCS CONCEPTS
•Computingmethodologies→Computer vision;Neural net-
works; • Information systems→ Retrieval models and rank-
ing.
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1 INTRODUCTION
Most existing Vehicle ReID methods employ a single image as input
which provides limited information due to viewpoints, illumination,
and occlusion [2, 5, 11], and results in performance loss. As shown
in Fig. 1(a), two single images of the same vehicle with different
views have a large difference in appearance which leads to a large
margin between their final feature representations (image-based
feature representation). Graph convolutional network [9, 21] can
strengthen the representation ability of the image-based feature
by aggregating the information from neighbor nodes. Such graph-
based information is more suitable for alleviating the aforemen-
tioned limitations in Vehicle ReID than image-based representation.

Some researchers employ a graph convolutional networks (GCN)
to cooperate with ReID methods [3, 16, 41], and show that the com-
bination of GCN and ReID tasks can achieve better performance.
Despite the encouraging progress, existing GCN-based ReID meth-
ods need to cooperate with neighbors’ information during both the
training time and inference time, and here comes two limitations
for deploying GCN-based methods in real-life scenarios: for the first
one, we can’t obtain valid neighbor information in some real-life
scenarios such as the urban traffic escape scenario which usually
only has a snapshot; for the other one, large-scale ReID scenarios
usually have a large gallery set and the iteration process over them
for searching neighbor nodes costs much time.

In this paper, the Pseudo-GCN Vehicle ReID method (PGVR)
is proposed to capacitate a pure CNN-based module to perform
like a GCN-based module during the inference time. Our proposed
PGVR consists of a two-branch network that contains a GCN-based
teacher branch and a CNN-based student branch, and a graph-based
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Figure 1: A comparison between the image-based method and the Pseudo-GCN-based method which shows Pseudo-GCN per-
forms better with a lightweight inference process. The training and inference processes of the image-based method are the
same while the Pseudo-GCN-based method has different training and inference processes.

knowledge distillation for information transferring. The teacher
branch aims to learn a robust feature representation with a stripe-
based specification and a ReID-based GCNmodule. The stripe-based
specification is inspired by PCB [38], which proves that a coarse lo-
cal specification can lead to considerable boosting in performance.
Moreover, the student branch mainly focuses on the global fea-
tures with a pure CNN-based module. The kernel of our method is
graph-based distillation which transfers the topological optimiza-
tion ability from the teacher branch (GCN-based module) to the
student branch (CNN-based module). By graph-based knowledge
distillation shown in Fig. 1, the CNN-based student branch has a
pseudo-graph associate ability which drives the CNN-based module
to perform competitively to the teacher module and thus is named
as the Pseudo-GCN-based module.

For accommodating the GCNmodule in the teacher branch to Ve-
hicle ReID, the GCN module works under the supervision of the Ve-
hicle ReID losses. The Vehicle ReID losses optimize our ReID-based
GCN (RGCN) in both classifier-space and metric-space, and a more
precise topological relation can be provided for the student branch
to learn from. Specifically, we construct an anchor-based subgraph
(AS) that holds two-level neighbors for a more comprehensive rela-
tionship in RGCN. Different from traditional knowledge distillation,
our proposed graph-based knowledge distillation (Graph-KD) aims
to transfer graph and logic information which is consistent with
classifier-space and metric-space information learned by RGCN.
Given the anchor-based subgraphs constructed from the teacher
and the student branch, we argue that they only emphasize neigh-
bor nodes while neglect that the student and teacher branch tends
to have different neighbor nodes. The inconsistency between the
node set may lead to negative knowledge transfer. To address the
aforementioned limitation, we enlarge the AS to a broaden anchor-
based subgraph (BAS) by taking all nodes into the node-set.

We evaluate the performance of Pseudo-GCNVehicle ReID (PGVR)
on three popular Vehicle ReID benchmarks i.e., VeRi776 [26], Ve-
hicleID [27], and VERI-WILD [28], and propose a new evaluation
metric to evaluate the performance gain from distillation methods.
Experiments show that our method achieves the best performance

among all the compared Vehicle ReID methods, and Pseudo-GCN-
based methods can be widely used in many real senses by driving
CNN-based methods to perform like GCN-based methods.

The contributions of this paper are:
• We introduce the first Pseudo-GCN Vehicle ReID method

(PGVR) by which a CNN-based module obtains competitive per-
formance to GCN-based module. PGVR alleviates the cost of time
and computation for searching the neighbor nodes in GCN-based
methods during inference.

• A graph-based knowledge distillation (Graph-KD) is proposed
to provide a ReID style knowledge transfer from both classifier-
space and metric-space which takes all nodes for aligning the gaps
between student and teacher branches.

• Our PGVR has been evaluated on three popular benchmarks
and outperforms all other methods consistently. Specifically, we
further propose a distillation evaluation metric, and Graph-KD
performs better than other distillation methods based on this metric.

2 RELATEDWORK
2.1 Vehicle ReID
Although Vehicle ReID has achieved great progress [4, 13, 38], there
still exists challenges such as the inter-class similarity and the inner-
class difference. Several Vehicle ReID methods are proposed to
solve these problems, and can be classified as local-based methods,
attribute-based methods, and viewpoint-aware methods.

Firstly, the local-based methods attempt to specify some im-
portant regions which can cooperate well with existing Vehicle
ReID methods. Unsupervised specification methods usually adopt
a multi-branch structure to extract coarse local information by
dividing the shared feature into multiple parts [2, 4, 58]. The super-
vised specification methods [11, 53] detect the locations of specific
parts (lights, license plates, logos). Secondly, the attribute-based
methods use the semantic and identifiable information contained in
attributes [17, 22, 25, 36, 37, 48] to boost the performance of Vehicle
ReID. In [24], researchers intend to train the attribute classification
task and the Vehicle Re-ID task simultaneously by a joint learn-
ing approach. Finally, viewpoint changes can cause a large variety
of intra-class differences in vehicle Re-ID, and many methods are
proposed and focus on solving this problem [5, 29].



2.2 Graph Neural Networks
The concept of graph neural network (GNN) [34] was firstly pro-
posed before 2010, and has been proved to be an effective model for
non-grid data which is usually represented by a set of nodes along
with a graph that denotes the relationship among nodes [21, 45, 54].
As one of the most influential GNN models, Graph Convolutional
Network (GCN) [6, 7, 9, 21] targets graph-structured data through
layer-wise propagation of node features. Many GCN-based methods
are proposed: GAT [40] employs the attention mechanism to coop-
erate with GCN, and makes it possible to learn the weight for each
neighbor automatically; GraphSAGE [10] samples the neighbors
rather than using all of them which makes the GCN model scalable
for huge graph; researchers adopt an instance pivot subgraph algo-
rithm to find its 1-hop and 2-hop neighbors which leads to a more
reasonable GCN model [43]. Many other works incorporate tradi-
tional prediction mechanisms, i.e., label propagation to improve the
performance of GNN. UniMP [35] uses a shared message-passing
network to fuse feature aggregation and label propagation.

2.3 Knowledge Distillation
Knowledge distillation is first proposed by Hinton in [15] which
transfers knowledge from a teacher model to a student model
and thus the student model can obtain a similar performance as
the teacher model. Besides the soft-predictions from the teacher
model, the intermediate activation [49, 57], the relation between
samples [30, 31, 44] in a graph can also be utilized for knowledge
transfer. Researchers transfer the attention instead of the feature
itself to get a better distillation performance in [49]; Wu et al. pro-
pose to transfer a similarity matrix and provide a Re-ID model
integration system that can be incrementally learned [44]. Here are
also a few works combining knowledge distillation with GNN, and
their network structure andmotivation are quite different from ours.
Yang et al. propose to use distillation in GCN for compressing a large
GCN model to a shallow one with fewer parameters [47]; Reliable
Data Distillation (RDD) [8, 50] trains multiple GCN students with
the same architecture and then concentrates them for better perfor-
mance; Graph Markov Neural Networks (GMNN) [33] employs two
GCNs with different reception sizes to learn from each other which
can be viewed as a knowledge distillation method. Compared with
the aforementioned methods, the graph-based knowledge distil-
lation in our method aims to distill from graph-based branch to
CNN-based branch and enable the CNN-based student branch to
perform competitively to the GCN-based branch.

3 METHODOLOGY
In this section, we will start by introducing the notations and for-
malizing the adopted ReID-based graph convolutional network
used in the Pseudo-GCN Vehicle ReID method (PGVR). Then we
will propose the architecture of PGVR which consists of a GCN-
based teacher branch and a CNN-based student branch. Afterward,
we propose graph-based knowledge distillation (Graph-KD) which
provides a ReID style knowledge transfer from both classification-
space and metric-space and aligns the node-sets between student
and teacher branches.
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Figure 2: The construction of anchor-based subgraph for a
given sample batch: a) the original batch of samples have 4
vehicles and 8 samples for each vehicle; b) search AS nodes
and set the 1-level node number as 8 and 2-level node num-
ber as 4; c) normalizing the node feature and removing the
no-neighbor nodes; d) assigning edges to the 4-NN nodes in
AS nodes.

3.1 ReID-based Graph Convolutional Network
3.1.1 Notations. Assuming that we have a collection of vehicle
features 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁 ]𝑇 ∈ 𝑅𝑁×𝐷 in a batch, where N is the
number of vehicles, D is the dimension of the features, and each
feature 𝑥 is treated as a node 𝑣 in our ReID-based graph convolu-
tional network (RGCN). For generality, we use 𝐺 (𝑉 , 𝐸) to describe
the graph of our network, where 𝑉 and 𝐸 represent the node-set
and edge-set respectively. The corresponding node feature can be
represent as 𝐹 = 𝑥𝑞 |𝑞 ∈ 𝑉 and 𝐹 ∈ 𝑅𝑀×𝐷 , where 𝑀 = 𝑙𝑒𝑛(𝑉 )
represents the number of nodes in 𝑉 .

3.1.2 Anchor-based Subgraph. ReID tasks usually employ a triplet
loss to optimize the features from metric space and organize the
samples at a 𝑏 × 𝑐 mode which means that 𝑏 vehicles each with 𝑐
samples in a batch. The above sample mechanism enables for each
anchor sample, there exist 𝑐 − 1 samples with the same Vehicle-ID
in a batch. We build an anchor-based subgraph (AS) to describe the
relationship among nodes, which is used to estimate the linkage
possibility between the anchor node and its neighbor nodes. Given
the vehicle features 𝑋 , we generate the AS follow the next steps:
firstly, the two-level nearest neighbor node-sets of each anchor
node are located; then we normalize the node features and add
edges among nodes. An illustration of anchor-based subgraph (AS)
can be seen in Fig. 2.

Step 1: Nodes searching. For each node 𝑝 in vehicle features
𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁 ]𝑇 ∈ 𝑅𝑁×𝐷 , we search for its two-level nearest
neighbors. The number of the picked neighbor number 𝑘𝑖 , 𝑖 = 1, 2 in
each level are vary and set followed the description in Sec.4.2.2. For
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Figure 3: The network architecture of our proposed Pseudo-GCNVehicle ReID (PGVR). The student branch and teacher branch
have a shared backbone for base feature extraction. And both branches need to calculate the broaden anchor-based subgraph
for knowledge transfer in Graph-KD.

example in VeRi-776 (16 vehicles, 8 samples for each vehicle), the
node set𝑉𝑝 with 𝑘1 = 8 and 𝑘2 = 4 consists 8 nearest neighbors of 𝑝 ,
4 nearest neighbors of each 1st level node. The intention is to let the
high-order neighbors in𝑉𝑝 can provide auxiliary information of the
context between an anchor and its closest neighbor. Even though
the first level neighbors can describe the most important neighbor
nodes of an anchor ideally, we still employ the second-level nodes
as a supplementary since sometimes a node 𝑞 with the same vehicle
of 𝑝 will be classified outside the first-level nodes.

Step 2: Normalization and Edge-Connection. After obtaining
the AS node-set 𝑉𝑝 of an anchor node 𝑝 and their node features
𝑋𝑝 : {𝑥𝑖 |𝑖 ∈ 𝑉𝑝 }, we conduct a subtract operation for encoding the
anchor node feature into the node features of AS:

𝐹𝑝 = [..., 𝑥𝑝 − 𝑥𝑞, ...]𝑇 , 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑞 ∈ 𝑉𝑝 , (1)

where 𝐹𝑝 ∈ 𝑅 |𝑉𝑝×𝐷 | represents the normalized node features.
Then, we add edge connection among the node-set 𝑉𝑝 . For each

node 𝑞 in 𝑉𝑝 , we find the top𝑚 nearest neighbors among all 128
samples in a batch firstly. If a node 𝑟 of𝑚NNs appears in 𝑉𝑝 , an
edge connection 𝐴𝑝 (𝑞, 𝑟 ) = 1 is added to the edge set 𝐸𝑝 . Finally,
the topological structure of AS can be represented by an adjacency
matrix 𝐴𝑝 ∈ 𝑅 |𝑉𝑝 |× |𝑉𝑝 | and the node feature matrix 𝐹𝑝 .

3.1.3 Graph Convolution Network for Vehicle ReID. We propose
a ReID-based graph convolution network (RGCN) modified from
GCN[2] under the supervision of the ReID task (triplet loss and
Vehicle-ID loss). Moreover, the aforementioned anchor-based sub-
graph contains the context 𝐴𝑝 and 𝐹𝑝 of the anchor node which is
highly valuable for determining whether the nodes belong to the
same vehicle-ID. So the GCN layers in RGCN take the node feature
matrix 𝐹𝑝 ∈ 𝑅𝑁×𝑑𝑖𝑛 and the adjacency matrix 𝐴𝑝 as input, and out-
put an aggregated feature matrix 𝑌𝑝 ∈ 𝑅𝑁×𝑑𝑜𝑢𝑡 , where N denotes
the number of nodes in 𝑉𝑝 , 𝑑𝑖𝑛 , 𝑑𝑜𝑢𝑡 are the dimension of 𝐹𝑝 and
𝑌𝑝 . Formally, the graph convolution layers can be formulated as
following:

𝑌𝑝 = 𝜎 ( [𝐹𝑝 | |𝐺𝐹𝑝 ]𝑊 )
𝐺 = 𝑔(𝐹𝑝 , 𝐴𝑝 ),

(2)

where 𝜎 (·) is the non-linear activation function. The aggregation
matrix 𝐺 ∈ 𝑅𝑁×𝑁 sums each row up to 1, and 𝑔(·) is a function
of 𝐹𝑝 and 𝐴𝑝 such as mean aggregation, weighted aggregation, or
attention aggregation. Operator | | represents matrix concatenation
along the feature dimension, andW of size is 2𝑑𝑖𝑛 ×𝑑𝑜𝑢𝑡 is a weight
matrix of the GNN layer which can be learned.

Our ReID-basedGraph convolutionNetwork employs four RGCN
layers with the output dimension of these RGCN layers drops from
2048 to 512 and then rises from 512 to 2048 to keep the output fea-
ture the same dimension as the ReID feature. Previous GCN-based
methods are only supervised by a two-class classification task that
neglects the node-relation in the anchor-based subgraph. Moreover,
we use ReID losses, i.e., triplet loss and Vehicle-ID loss as the su-
pervisions for the training process of RGCN which provide more
difficult samples for both classification-space and metric-space.
Specifically, the employment of triplet loss on 𝑉𝑝 which only takes
the neighbor nodes (the most similar nodes) into consideration
pushes the RGCN model to perform better on Vehicle ReID tasks,
since the most similar nodes 𝑉𝑝 is difficult to distinguish in feature
metric space.

3.2 Pseudo-GCN Vehicle ReID Method
In this subsection, we first introduce the network architecture of
the Pseudo-GCN Vehicle ReID method (PGVR). Then we introduce
the graph-based knowledge distillation which is specified for graph-
based ReID scenes. Finally, we introduce the training details of our
network.

3.2.1 Network . For an effective Pseudo-GCNVehicle ReIDmethod,
we employ a two-branch network architecture including a GCN-
based teacher branch and a CNN-based student branch. In this part,
we will introduce the motivations and the design for these two
branches, which can be seen in Fig. 1 and Fig. 3.

The teacher branch employs a local-specification mechanism
for mining more local information which is a classic mode first
proposed in [38]. The combination of local-specificationmechanism
and GCN can lead to a performance-boosting in the teacher branch,
and more knowledge can be transferred to the student branch. For
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a given sample 𝐺 , we firstly extract a basic feature representation
𝑔 by ResNet50 [12], and then the basic feature representation 𝑔
will be divided horizontally into two parts: the upper one 𝑔𝑢 and
the lower one 𝑔𝑏 . This kind of division matches the architecture
of vehicles well since the upper one usually contains information
such as windows or drivers while the lower one usually focuses
more on the plates or the wheels. The divided features 𝑔𝑢 and
𝑔𝑏 will be pooled by global average pooling and then get local
specification features 𝑥𝑢 and 𝑥𝑏 . On the one hand, both the local
specification features 𝑥𝑢 and 𝑥𝑏 are supervised by triplet loss and
vehicle-ID loss at the common ReID mode respectively; on the other
hand, the local specification features 𝑥𝑢 and 𝑥𝑏 are concentrated
as 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁 ]𝑇 ∈ 𝑅𝑁×𝐷 and then be used as the input
of ReID-based graph convolution network (RGCN). It needs to be
claimed that the ReID losses adopted for RGCN are operating under
a stricter sample pair and can reach a more precise performance.

The student branch is organized at the mode of common ReID
methods which employs a ResNet to extract the base feature. Then
the global feature will be obtained under the operation of global
average pooling which is supervised by the losses of ReID tasks.

3.2.2 Graph-based Knowledge Distillation. As aforementioned, we
propose a ReID-based graph neural network strengthen the fea-
ture representation in the teacher branch through aggregating
neighbor nodes’ information, and drive the CNN-based student
model to have a competitive performance through efficient graph-
based knowledge transfer (Graph-KD). Unlike some previous meth-
ods [46] which distills knowledge from a large GCN module to a
small GCN module, Graph-KD distills knowledge from GCN-based
module to CNN-based module. Moreover, Graph-KD works under
the guidance of Vehicle ReID tasks which transfers two kinds of
information including classification information and feature metric
information.

Assuming that the output vehicle feature from student branch
and teacher branch as𝑋𝑠 = [𝑥𝑠1, 𝑥

𝑠
2, ..., 𝑥

𝑠
𝑁
]𝑇 and𝑋 𝑡 = [𝑥𝑡1, 𝑥

𝑡
2, ..., 𝑥

𝑡
𝑁
]𝑇 .

Then we need to generate the corresponding subgraphs 𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 )
and𝐺𝑠 (𝑉𝑠 , 𝐸𝑠 ) for the student branch and the teacher branch based
on the input of 𝑋𝑠 and 𝑋 𝑡 . Finally, we can get a corresponding
feature set 𝐹 = [𝑓1, 𝑓2, ..., 𝑓𝑀 ]𝑇 for each anchor node, where𝑀 de-
notes the number of nodes contained in𝑉 . Two prediction score 𝑆𝑠
and 𝑆𝑡 are obtained from the corresponding classifier layer during
the training period, where 𝑆𝑠 is directly obtained from 𝑋𝑠 . Before
obtaining the teacher prediction score 𝑆𝑡 , we need to pick out the
center feature in each 𝐹 and concentrate them as the input of the

classifier layer. The first item in Graph-KD is Kullback-Leibler Di-
vergence distillation proposed by Hinton, and we use it to distill
the classifier prediction score 𝑆𝑠 and 𝑆𝑡 :

𝐾𝐿(𝑆𝑠 | |𝑆𝑡 ) =
∑

𝑆𝑠𝑙𝑜𝑔
𝑆𝑠

𝑆𝑡
. (3)

As it’s known to all, the most important capacity of GCN is the
feature aggregation ability come from topological optimization (the
teacher branch), and we aim to enable the CNN-based model (the
student branch) to have a competitive performance in topologi-
cal optimization through graph-based knowledge distillation. So
another item of Graph-KD is GCN-CNN distillation which aims
to transfer the graph information from the teacher branch to the
student branch. We obtain the corresponding subgraphs 𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 )
and 𝐺𝑠 (𝑉𝑠 , 𝐸𝑠 ) in both branches to describe the nodes relationship.
However, we find that the node-set 𝑉𝑡 and 𝑉𝑠 tend to be different
since different states and architectures of two branches, and di-
rectly distill on𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ) and𝐺𝑠 (𝑉𝑠 , 𝐸𝑠 ) may do harm to the ReID
performance. To align the node-set in two branches, we propose a
broaden anchor-based subgraph as shown in Fig. 4. The broaden
anchor-based subgraph (BAS) takes all nodes into consideration.
The non-neighbor nodes outside 𝑉 in the sample batch are termed
as pseudo-node and we add pseudo-edges among the pseudo-nodes
and the 𝑢NN closest nodes. The formula for GCN-CNN distillation
is:

𝐿1(𝐺𝐵𝑠 | |𝐺𝐵𝑡 ) =
𝑁∑

𝑖=1, 𝑗=1
|𝐺𝐵𝑠 (𝑖, 𝑗) −𝐺𝐵𝑡 (𝑖, 𝑗) | (4)

where𝐺𝐵𝑠 and𝐺𝐵𝑡 denote the broaden anchor-based subgraph, 𝑖 and
𝑗 represent for each element in the corresponding broaden anchor-
based subgraph, and N is the batch-size. The edge connections
we used in𝐺 (𝑉 , 𝐸) are binary, so 𝐿1 or 𝐿2 loss works at the same
procedure.

We have to point out that the real feature aggregation or topo-
logical optimization should all rely on neighbor nodes, so an image-
based CNN module can only be named as Pseudo-GCN which
works in a quite different mode. The information transferred in
Pseudo-GCN indeed is a fine-grained ReID ability and a feature
alignment ability that can be learned from a GCN-based teacher
module. Finally, the equation for structural graph-based knowledge
distillation can be described as:

𝐿𝐺𝑟𝑎𝑝ℎ−𝐾𝐷 = 𝐾𝐿(𝑆𝑠 | |𝑆𝑡 ) + 𝐿1(𝐺𝐵𝑠 | |𝐺𝐵𝑡 ) (5)

3.2.3 Training Details. Our proposed PGVR can be separated into
two parts during training time: a GCN-part and a CNN-part, and
both the two parts are trained at an end-to-end mode. For a given
sample batch, we first calculate corresponding feature representa-
tions 𝑋𝑠 and 𝑋 𝑡 in both student branch and teacher branch, and a
classifier layer is used to calculate prediction scores 𝑆𝑠 and 𝑆𝑡 . And
then we obtain anchor-based subgraph (AS) 𝐺𝑠 and 𝐺𝑡 , broaden
anchor-based subgraph (BAS) 𝐺𝐵𝑠 and 𝐺𝐵𝑡 , RGCN’s output features
𝑋𝑂
𝑇
, RGCN’s output prediction 𝑆𝑂

𝑇
from vehicle features 𝑋 𝑡 and 𝑋 𝑡 .

Firstly, we calculate GCN loss with RGCN’s output 𝑋𝑂
𝑇

and 𝑆𝑂
𝑇
:

𝐿𝑔𝑐𝑛 = 𝑇𝑟𝑖𝑝𝑙𝑒𝑡 (𝑋𝑂𝑇 , 𝐿) + 𝐼𝐷 (𝑆𝑐𝑜𝑟𝑒𝑂𝑇 , 𝐿), (6)

where 𝐿 represents for the original labels of the input sample batch.



Table 1: Comparison with state-of-the-arts. It includes mAP and CMC@1 on VeRi-776; CMC@1 on three test sets of small,
medium, and large on VehicleID; mAP on three test sets of small, medium, and large on VERI-WILD. For the three test sets
on VehicleID and VERI-WILD, they are represented by S, M, and L respectively. Finally, "/" indicates missing parts of the
experiments, ".n.d" represents the methods without distillation.

Method VeRi-776 VehicleID VERI-WILD
(%) mAP CMC@1 CMC@1 (S) CMC@1 (M) CMC@1 (L) mAP (S) mAP (M) mAP (L)

Part-based PGAN [51] 79.3 96.5 77.8 / / 74.1 / /
PRN [11] 74.3 94.3 78.4 75.0 74.2 / / /
PVEN [29] 79.5 95.6 84.7 80.6 77.8 82.5 77.0 69.7
GLAMOR [39] 80.3 96.5 78.6 / / 77.2 / /

Attribute-based AGNet-ASL [42] 71.59 95.61 71.15 69.23 65.74 / / /
DJDL [24] / / 78.6 74.7 72.0 / / /
XG-6-sub-multi [53] / / 76.1 73.1 71.2 / / /
SAN [32] 72.5 93.3 79.7 78.4 75.6 / / /

Attention-based AAVER [18] 61.2 89.0 74.7 68.6 63.5 / / /
SEVER [19] 79.6 96.4 79.9 77.6 75.3 83.4 78.7 71.3

Others GSTE [1] 59.4 / 87.1 82.1 79.8 / / /
VAMI [56] 61.3 89.5 63.1 52.9 47.3 / / /
DCDLearn [59] 70.4 92.8 82.9 78.7 75.9 / / /

Ours Baseline (PGVR.n.d) 80.8 96.7 82.9 80.1 78.3 83.5 79.0 74.6
PGVR 83.8 97.3 87.0 82.6 80.5 84.6 80.2 75.0

After we optimize the GCN-part of PGVR by 𝐿𝑔𝑐𝑛 , we can calcu-
late the CNN-based losses:

𝐿𝑐𝑛𝑛 =
∑

𝑖=𝑠 𝑜𝑟 𝑡

𝑇𝑟𝑖𝑝𝑙𝑒𝑡 (𝑋𝑖 , 𝐿) + 𝐼𝐷 (𝑆𝑖 , 𝐿) + 𝐿𝐺𝑟𝑎𝑝ℎ−𝐾𝐷 , (7)

and 𝐿𝑐𝑛𝑛 is used to optimize the CNN-part of PGVR.

4 EXPERIMENTS
We detail the implementation and evaluation of PGVR in this sec-
tion. The datasets and evaluation metrics are introduced in sec-
tion 4.1; the implementation details are introduced in section 4.2;
the comparisons with State-of-the-Arts and other distillation meth-
ods are introduced in section 4.3; the ablation study and evaluation
based on PGVR are introduced in section 4.4 finally.

4.1 Datasets and Evaluation Metrics
Dataset We evaluate our Pseudo-GCN Vehicle ReID method on
three popular Vehicle ReID benchmarks: VeRi776 [26], VehicleID [27],
and VERI-WILD [28]. VeRi776 [26] is a classic Vehicle ReID bench-
mark, which contains 776 identities collected by 20 cameras in a
real-world environment. The whole dataset is split into 576 vehicles
for training and 200 vehicles for testing. VehicleID [27] is a large-
scale dataset collected by multiple cameras during the daytime on
the open road, which contains 26,267 vehicles and 221,763 images in
total. VERI-WILD [28] is another large-scale dataset, and it consists
of 40,671 vehicles and 416,314 images. Moreover, VERI-WILD [28]
is collected by 174 cameras during a month which is a long period.

EvaluationMetrics For the ReID task, we follow the same eval-
uation protocols which are used in previousworks [27, 52, 55]. Mean
Average Precision (mAP) and the cumulative matching characteris-
tics at Rank1 (CMC@1) are employed to evaluate the performance
of PGVR. The value of CMC@1 represents the chance of the correct
match appearing in the top 1 of the ranked candidate list. Moreover,

it should be noticed that the VehicleID [27] benchmark pays more
attention to CMC@1 for its unique test sets.

For the distillation task, we propose Student-Teacher Transfer Ef-
ficiency (STTE) to measure the efficiency of knowledge distillation
among teacher model and student model:

𝑆𝑇𝑇𝐸 =
𝑆𝑚𝐴𝑃 .𝑛.𝑑 −𝑇𝑚𝐴𝑃
𝑆𝑚𝐴𝑃 −𝑇𝑚𝐴𝑃

, (8)

where 𝑆𝑚𝐴𝑃 .𝑛.𝑑 represents the mAP of student model without
knowledge distillation, 𝑆𝑚𝐴𝑃 and𝑇𝑚𝐴𝑃 represent the mAP of mod-
els with distillation. The 𝑆𝑇𝑇𝐸 quantifies the improvements in the
student model brought from knowledge distillation, and𝑚𝐴𝑃 can
be replaced by other accuracy metrics. A perfect knowledge distil-
lation can reduce the gap between the student model and teacher
model corresponds to 𝑆𝑇𝑇𝐸 equal to 1.

4.2 Implementation Details
4.2.1 Experimental Setting. We perform our experiments in Py-
Torch on a machine with 8 NVIDIA Titan Xp GPU. The visible
images are resized to 256× 256× 3 for both model training and test-
ing, and a common erasing and a flipping operation are employed
for data augmentation. The CNN-part and GCN-part of PGVR are
trained together at an end-to-end mode. We employ two indepen-
dent optimizers which use the same parameters to optimize the
CNN-part and GCN-part respectively. The optimizers used in our
method is Adam with the weight decay factor of 0.0001, and the
learning rate is initialized to 1e-4 and decreased by a factor of 0.1
after the 40𝑡ℎ and 70𝑡ℎ epoch.

4.2.2 Parameter Selection. Several hyper-parameters need to be
chosen for the construction process of AS and BAS: the number
of picked nearest nodes 𝑘𝑖 , 𝑖 = 1, 2 in the first and second level,
the number of 𝑚NN nodes for edge connection in AS, and the



Table 2: Comparison with other knowledge distillation
methods on VeRi-776.

Approaches (%) Distillation method SMAP.n.d SMAP TMAP STTE

KD [15] Soft Lables 80.7 82.8 83.2 84.0
GKD [23] Soft Lables 80.7 82.2 83.2 60.0
CKD [57] Attention 80.7 81.3 83.2 24.0
AKD [49] Attention 80.7 81.9 83.2 48.0
FTKD [20] Attention 80.7 82.0 83.2 52.0
ABKD [14] Attention 80.7 82.2 83.2 60.0
RKD [30] Relation 80.7 81.5 83.2 32.0
CCKD [31] Relation 80.7 82.4 83.2 68.0
Our Graph-KD Graph 80.7 83.8 84.0 94.0

number of 𝑢NN nodes for edge construction of pseudo-nodes. As
we claimed in the previous section: 𝑘1 should be set consistently
with the instance number for each vehicle during training, i.e., 8 for
VeRi-776 and 4 for VehicleID and VERI-WILD. Different values of 𝑘2
have experimented while we find that 𝑘2 > 𝑘1 does not bring any
performance gain, so 𝑘2 = 4 is set for all datasets. Then we explore
the impact of different values of𝑚 and 𝑢 and find that𝑚 > 𝑢 can
achieve a good performance and we set𝑚 and 𝑢 as 4 and 2.

4.3 Comparisons with Other Works
4.3.1 Comparisons with State-of-the-Arts. We compare PGVR with
a wide range of state-of-the-arts Vehicle ReID methods, including
(1) part-based approaches: PGAN [51], PRN [11], PVEN [29], and
GLAMOR [39]; (2) attribute-based approaches: AGNet-ASL [42],
DJDL [24], XG-6-sub-multi [53], and SAN [32]; (3) attention-based
approaches: AAVER [18] and SEVER [19]; (4) other interesting
approaches: GSTE [1], VAMI [56], and DCDLearn [59].

The comparisons are shown in Table 1, and all our experiment
results shown in Table 1 are all tested on the student branch:

1) Our baseline already achieves state-of-the-art performance on
most benchmarks by adopting a shared backbone which can also
be improved by the GCN-based teacher. PGVR still achieves new
gains and outperforms other competitors by a larger margin.

2) Compared to the part-based and attribute-based methods [11,
29, 32, 53], PGVR achieves significant improvement, e.g. up to 3.5%
mAP on VeRi-776, 3.3% mAP on VehicleID, and 2.1% mAP on VERI-
WILD, which validates that the student in PGVR can learn better
fine-grained information than these methods.

3) Compared to the attention-based methods [17, 18], PGVR
achieves significant improvement, e.g. up to 4.2%mAP on VeRi-776,
7.1% mAP on VehicleID, and 1.2% mAP on VERI-WILD.

4.3.2 Comparison with other distillation methods. Although we
claim that our Graph-KD enables the CNN-based student branch
to perform competitively to the teacher branch. There also exists
many previous knowledge distillation methods such as knowledge
distillation (KD) [15], guided knowledge distillation (GKD) [23], re-
lational knowledge distillation (RKD) [30], Channel-Wise attention
for knowledge distillation (CKD) [57], correlation congruence for
knowledge distillation (CCKD) [31], factor transfer (FTKD) [20],
Paying More Attention to Attention (AKD) [49] and activation
boundaries knowledge distillation (ABKD) [14]. We compare our
graph-based knowledge distillation with these distillation methods

Table 3: Ablation study of different picked number 𝑘1, 𝑘2,
and𝑚 in PGVR (VeRi-776)

Scheme Method k1 k2 m MAP (%) CMC@1 (%)

a baseline / / / 80.7 95.6
b PGVR 4 4 4 83.3 96.9
c PGVR 8 4 4 83.8 97.3
d PGVR 12 4 4 82.7 96.6
e PGVR 8 2 4 83.2 96.9
f PGVR 8 6 4 82.3 96.3
g PGVR 8 8 4 81.5 95.8
h PGVR 8 4 2 81.9 96.1
i PGVR 8 4 6 83.4 97.0

Table 4: Ablation study on the number of layers in
RGCN(VeRi-776)

Scheme Method Layer Number MAP (%) CMC@1 (%)

a baseline / 80.7 95.6
b PGVR 2 83.3 96.9
c PGVR 4 83.8 97.3
d PGVR 8 84.2 97.2

on the ReID task (VeRi-776) as shown in Table 2. Experiments show
that our method achieves 94% in STTE and 83.8% in mAP which
both outperform all other distillation methods.

4.4 Ablation Study and Evaluation
4.4.1 The impact of picked number 𝑘1, 𝑘2, and 𝑚 in AS. Table 3
shows the influence of the picked nodes number 𝑘1, 𝑘2, and𝑚 in
AS on VeRi-776. We conduct 8 schemes of experiments on these
three parameters, and get the following conclusions:

1) FromTable 3 (b)(c)(d), we find that when𝑘1 is set as the number
of instance in the benchmark, i.e., set as 8 on VeRi-776 , it works
better. If 𝑘1 is smaller than 8, the GCNmodule can’t iterate all nodes
with the same Vehicle-ID which will lead to a slight performance
decrease (As shown in Table 3 (b)), but when 𝑘1 is larger than 8,
the anchor node will aggregate some false information and nodes
belong to different Vehicle-ID will become hard to distinguish (As
shown in Table 3 (d)).

2) From Table 3 (c)(e)(f)(g), we experiment on how many nodes
should be picked for 𝑘2 in the second level and get the conclusion
that 𝑘2 = 4 performs better finally. When we set 𝑘2 = 8, too many
connections are added among nodes in AS which introduces many
interference information to the original feature; and 𝑘2 = 2 results
in a smaller anchor-based subgraph which leads to a weaker triplet
loss since too few nodes are contained.

3) From Table 3 (c)(h)(i), we also find 𝑚 = 4 performs better
and drives the nodes in the final graph distinguishable. When we
increase the final connection node from𝑚 = 4 to𝑚 = 6, only a
few extra nodes are added and the mAP does not drop too much.
Another reason is that we only take 𝑘2 = 4 second-level nodes into
consideration and those nodes outside the anchor-based subgraph
will not be considered even𝑚 is set to 6.

4.4.2 The impacts of graph layer number. Table 4 shows the influ-
ence of layer number in the RGCN module on VeRi-776. Benefiting



Table 5: Ablation study of the components in PGVR(VeRi-
776)

Scheme (%) C-cut RGCN Graph-KD S-MAP S-CMC@1 T-MAP T-CMC@1

a × × × 80.7 95.6 80.7 95.6
b ✓ × × 81.3 95.8 82.0 96.3
c ✓ ✓ × 82.1 96.5 83.5 96.9
d ✓ × ✓ 82.3 96.5 82.2 96.4
e ✓ ✓ ✓ 83.8 97.3 84.0 97.3

Table 6: The average time costing, number of parameters,
number of flops of our method.

Time-Costing (s) Paras (M) Flops (M)

Training 6.2 102.4 10210
Inferencne 0.4 54.7 8270

from the residual connection, we can extend the RGCN network
deeper to obtain more powerful node representations. We compare
the results from shallow to deep networks (layers=2, 4, 8), and ex-
periments show the mAP improves from 83.3% to 84.2% in mAP
with the growth of layer numbers.

4.4.3 The impact of components in PGVR. The most important
components of our Pseudo-GCN Vehicle ReID method (PGVR) can
be described as the coarse local-part specification mechanism (C-
cut), the ReID-based graph convolutional network (RGCN), and
the graph-based knowledge distillation (Graph-KD). We ablate the
performance improvement brought by these parts on the VeRi-776
benchmark, and Table 5 reports the ablation results where 𝑆- and
𝑇 - represent the results on the student branch and teacher branch.

1) With the employment of the coarse local-part specification
mechanism (C-cut) in Table 5 (b), we find the teacher branch achieves
a 1.3% gain in mAP and the student branch also achieves a 0.6%
gain in mAP. We conclude that the shared backbone between two
branches can also lead to some improvements by joint training.

2) In Table 5 (c), we employ the combination of the C-cut and
the ReID-based graph convolutional network (RGCN), and obtain
1.4% and 2.8% gain in mAP on the student and teacher branches.
This process shows that our RGCN can bring an extra improvement
with no knowledge distillation, and validates its effectiveness.

3) In Table 5 (e), we examine the performance of graph-based
knowledge distillation (Graph-KD), and the experiment shows that
the combination of Graph-KD and RGCN can lead to a 3.1% gain in
mAP on the student branch. Moreover, when we conduct Graph-KD
operation without RGCN as shown in Table 5 (d), we can find that
the student branch performs worse than the one with RGCN which
shows Graph-KD needs to cooperate with RGCN.

4.4.4 Analysis of the Improvements in Student Branch. As can be
seen in Table 1 and Table 2, we find that our Pseudo-GCN Vehicle
ReID method can drive a CNN-based network to perform com-
petitively to traditional GCN-based networks, and we attempt to
explain this phenomenon in this part.

Firstly, as shown in Fig. 1, we claim that the graph-based knowl-
edge distillation can give the student model a pseudo-graph as-
sociate ability which indeed represents the ability to understand

the structure of vehicles from the process of aggregating neighbor
information. So the student model can align the vehicle features
better after understanding the vehicle structure which alleviates
the misalignment caused by diverse viewpoints or occlusions and
leads to a performance improvement.

Secondly, the performance improvement can also be explained
by the fine-grained ability transferred from the teacher model. As
aforementioned, the teacher model adopts a ReID-based graph
convolutional network to enhance the feature representation by
integrating some related information and tell the teacher branch
which regions are important statistically. For example, the teacher
branch may focus more on the appearance of vehicles initially, and
it may emphasize more subtle features such as plates and windows
after aggregating the neighbor features. Moreover, this process can
be easily transferred to the student branch.

The overview of all neighbor samples with the same vehicle-ID
by a RGCN-based module can enable the network to learn a feature
alignment ability and a fine-grained feature extraction ability. We
name the combination of the feature alignment ability and the
fine-grained feature extraction ability as Pseudo-GCN in our paper.

4.4.5 Analysis of the inference speed of Pseudo-GCN-based method.
As mentioned before, we claim that the Pseudo-GCN-based method
only needs to deploy the global branch during inference time which
is faster and economical. So we experiment on the average time
costing, the number of parameters, and the number of flops for
both the training process and inference process of our method in
Table 6. Experiments show that Pseudo-GCN reduces the inference
time from 6.2 seconds per sample to 0.4 seconds per sample, while
also save 46.6% parameter costs and 20% Flops costs.

5 CONCLUSION
Given that existing GCN methods are time-costing and computa-
tional during inference, we propose a Pseudo-GCN Vehicle ReID
method (PGVR) which enables a CNN-based branch to perform
competitively to a GCN-based branch. We emphasize the impor-
tance of context in Vehicle ReID and propose a ReID-based graph
convolutional network to aggregate the neighbor nodes’ informa-
tion which employ an anchor-based subgraph mechanism (AS)
for graph construction. For transferring the topological optimiza-
tion ability from the teacher branch to the student branch better,
graph-based knowledge distillation which employs classification
information and feature metric information (graph) for transferring
is proposed. Moreover, we claim that the misalignment of the AS
information from two branches will lead to a performance damage
and adopt a broaden-anchor-based subgraph (BAS) to solve it which
accounts for all nodes. We report favorably comparable results to
state-of-the-art methods on popular Vehicle ReID benchmarks and
show our proposed PGVR can save 93.5% costing time, 46.6% pa-
rameter costs, and 20% Flops during the inference period. Finally,
we also propose an evaluation metric to evaluate the efficiency of
distillation methods by which our Graph-KD performs best.
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