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ABSTRACT

Recent years have witnessed an increasing application of deep
reinforcement learning (DRL) on video games. While deeper
and wider neural networks have played a crucial role in com-
puter vision and natural language processing, such capacity
remain under-explored in most DRL works. Under the fact
that feature propagation together with large networks con-
tributes to learning a good representation, we propose an end-
to-end Large Feature Extractor Network (LFENet) that uses
large neural networks with dense connections to train a high-
capacity encoder. Even though the increased dimensionality
of input is usually thought to result in poor performance for
RL agents, we introduce the information bottleneck to allevi-
ate the problem. Finally, we combine LFENet with Proximal
Policy Optimization (PPO) algorithm. Through numerical ex-
periments on Atari 2600 video games, we demonstrate our
method matches or outperforms state-of-the-art algorithms.

Index Terms— Representation Learning, Reinforcement
Learning, Video Game

1. INTRODUCTION

Recently, DRL has achieved remarkable successes on
various sequential decision-making problems, especially on
video games such as Atari 2600 [1], StarCraft II [2] and so
on. It’s a convenient and inexpensive way for RL agents to
learn complex control policy directly from high-dimensional
raw images. However, under sparse reward signals, a large
amount of training data is required to learn good representa-
tions. For example, model-free methods on Atari games need
to take tens of millions of steps to converge to the optimal
policy. These problems cause enormous computing resource
consumption and time cost, which severely limit DRL algo-
rithms for real-world applications. One natural approach is to
learn good representations for pixels to improve sample effi-
ciency.

For the state-input setting, state representation learning
(SRL) [3] generally tends to learn a low-dimensional repre-
sentation, because the proprioceptive states for lots of phys-
ical systems are relatively few. Such a representation is ex-
pected to contain sufficient statistics for the current obser-

0 2 4 6 8 10
Time Steps(million)

500

1000

1500

2000

A
ve

ra
ge

 R
et

ur
n

1-layers
2-layers
4-layers
8-layers
16-layers

0 2 4 6 8 10
Time Steps(million)

500

1000

1500

A
ve

ra
ge

 R
et

ur
n

64-units
128-units
256-units
512-units
1024-units
2048-units

Fig. 1. Training curves of PPO agents with different num-
ber of layers (left) and different number of units (right) on
AlienNoFrameskip-v4.

vation, and ideally discards all redundant information [4].
Prior work has attempted to learn state representations from
image-based observation with auxiliary task, adding an self-
supervised objective that provide the reconstruction signal to
the feature extractor [5]. But it may lead to suboptimal pol-
icy. An interesting question is whether RL agents can benefit
from high-dimensional features by using a proper end-to-end
architecture?

Modern computer vision research has a simple intuition
that deep and wide neural networks help learn better repre-
sentations because they increase the search space of possible
solutions [6]. In a striking contrast, this intuition may not
apply to DRL. Recently reported research [7–9] have shown
that DRL algorithms will suffer from unstable training when
training with large networks and require more training data.
As an example, Fig.1 shows the result of a PPO agent when
we fix its unit size to 256 by increasing the number of layers
from 1 to 16 layers. Likewise, in Fig.1, we show the effect of
increasing dimensionality of representation while the number
of layers is fixed to N layer = 2. We can see that using deeper
networks naively leads to poor performance, and the mono-
tonic improvement with the increase of the dimensionality of
representation, until a threshold is reached.

Our contributions are as follows. Firstly, we investi-
gate the problem with deeper and wider network architec-
ture used to learn representations and empirically show that,
naively increasing network capacity will decrease perfor-
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mance. Secondly, we propose the Large Feature Extractor
Network (LFENet) framework, where we train a large net-
work for high-dimensional represtentaions by modified dense
connections. Besides, in LFENet, we introduce the informa-
tion bottleneck, which is used to constrain the mutual infor-
mation between the representation variables and observations.
Finally, we extend LEFNet to the popular on-policy algo-
rithm PPO. We evaluate it on Atari games, which shows that
LEFNet not only outperforms the state-of-the-art algorithms,
but also improves the training efficiency.

2. RELATED WORK

Learning Efficient Representations. Generally, we
can’t obtain the proprioceptive states of video games and must
rely on the high-dimensional raw sensory image as observa-
tion, so it is key to learn a good representation. One ap-
proach to alleviate this problem is incorporating unsupervised
or self-supervised auxiliary tasks [5]. Prior research [10–12]
utilized autoencoder to learn various constrained representa-
tions. Other work had attempted to learn a forward model
[13], utilizing a two-step training procedure, where the first
encoding from state to representation and using the model that
predicts the next state from representation and action, then
minimizing the error of prediction and true state. Recently,
CPC [14] applied contrastive losses over multiple time steps
as an auxiliary task for the convolutional and recurrent lay-
ers of RL agents, and it has been extended with future action-
conditioning. PBL [15] surpassed these methods with an aux-
iliary loss of forward and backward predictions in the recur-
rent latent space using partial agent histories. Where the trend
is of increasing complexity in auxiliary networks, these works
are also revealed to be correspondingly brittle to hyperparam-
eter settings compared with end-to-end methods.

Learning Very Deep Networks. Deep neural networks
achieve great advancements in extracting features from im-
ages. However, naively increasing the depth of a feed-forward
neural network leads to instability in training due to issues
such as vanishing or exploding gradients [16]. To address
this problem, ResNet [17] proposes skip connections, which
involve an alternate path between layers. DenseNet [18] in-
troduces densely connected block that directly connects each
layer to all subsequent layers. Skip-VAEs [19] solve a simi-
lar problem of posterior collapse in typical VAE training by
adding skip connections to the architecture of the VAE de-
coder. In the context of DRL, some studies investigate the
effect of making networks larger for Atari games using CNN
and report that larger networks tend to perform better, but they
also become more unstable [20]. To build a large network,
OFENet [21] proposes an online feature extractor with in-
tentionally increased input dimensions and demonstrates that
larger feature sizes can improve RL performance. Inspired by
it, we explore to use larger input for RL agents, while using
skip connections for efficient learning.

3. PRELIMINARIES

3.1. Markov Decision Process

We consider the problem of finding the optimal policy for
RL agents, which is formalized as a Markov Decision Process
(MDP). MDP can be described by a tuple (S,A, T ,R, ρ0, γ).
S is a finite set of states; A is a finite set of actions;
T : S × A × S → R is a transition probability distribu-
tion p(st+1|st, at), specifying the probability of transitioning
from state st to st+1 under the action at; R : S × A → R
is the reward function; γ ∈ (0, 1) is the discount factor. Ev-
ery episode, the RL agent starts with an initial state s0 ∼ ρ0,
receives the state and performs an action according to current
policy π at certain time steps, then the agent receives a re-
ward from the environment and transitions to the next state
st+1 until the episode terminates. The goal is to find an op-
timal policy which maximizes the discounted expected return
Eτπ [

∑∞
t=0 γ

tr (st, st)], where τ is a trajectory.

3.2. Proximal Policy Optimization

Proximal Policy Optimization (PPO) [22] is an on-policy
reinforcement learning algorithm that has shown remarkable
performance on many tasks. It utilizes a clipped surrogate
objective to constrain the updating step in a trust region [23],
as:

Lclip = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
, (1)

where rt(θ) = πθ(at|st)
πθld(at|st) and Ât is an estimator of the ad-

vantage function at time step t. The clip term prevents rt(θ)
from moving the outside range[1 − ϵ, 1 + ϵ], which makes
the training process more stable. The overall minimization
objective is :

Lt(θ) = Lclip + λV L
V − λHH [πθ] , (2)

where LV is the loss of value function, H[·] denotes an en-
tropy bonus to encourage exploration.

4. METHOD

Our method is based on two key ideas: adopting well-
designed large network architectures for better feature repre-
sentation learning and introducing the information bottleneck
to compress information. In the following, we describe in de-
tail two elements we use to learn better representations for
states, then we extend them to PPO.

4.1. Network Architecture

It is well known that deep networks have advantages in ex-
tracting features and optimizing representation [6], so we em-
ploy them in our network structure. Numerous computer vi-
sion reports have provided advanced experience in designing
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Fig. 2. The overview of LFENet architecture. The inputs are passed to each layer of the neural network through identity
mappings and connected with information bottleneck layer to achieve a compressed representation from end-to-end training.

large network structures [17, 18, 24]. Inspired by DenseNet,
we propose a slightly modified version of the densely con-
nected mechanism. For the output y of each hidden Multi-
layer Perceptron layer (MLP), we concatenate the state x to it
except the last output linear layer, defined as:

yi = α(Wi[yi−1, h(x)]), (3)

where [x1, x2] means concatenation, Wi is the weight matrix,
α is the activation function, h(·) is an identity mapping, yi
is the output of the the ith layer. To simplify notation, the
biases are omitted. If RL agents are directly learning from
raw images, we consider the input x to be the output of the
convolutional neural network.

The raw sensory observation is mapped as ϕ0 through
above structure, then a bottleneck layer defined in section 4.2
receives the mapping ϕ0, discards redundant information and
generates observation representation z ultimately. The whole
process is depicted in Fig.2. RL algorithms take the learned
representation as input and compute the optimal policy. Note
that our method can be trained end-to-end, it learns state rep-
resentations and trains RL algorithms simultaneously.

4.2. Joint Representation Learning with Information
Bottleneck

Several studies have reported that there is a large per-
formance gap when RL agent learns from high-dimensional
raw sensory inputs rather than low-dimensional propriocep-
tive states [11]. It shows that learning a compact representa-
tion is crucial to improving RL agent’s performance. To in-
centivize more compressed features, we explore to minimize
mutual information between the input and its latent represen-
tation. In a Markov process S → Z → A, where S is the
input, Z is the learned latent representation of S and A is the

predicted actions from S. According to the information bot-
tleneck (IB) principle [25] , we hopes to learn an embedding
distribution parameterized as P (Z|S, θ), such that:

P (Z|S; θ) = arg max
P (Z|S;θ)

I(Z;A)− βI(S;Z), (4)

where I(·; ·) is mutual information (MI) and β ≥ 0 is a hy-
perparameter. Eq.4 ensures the predictive power of its latent
representation Z on actions A, while omitting task-irrelevant
information. However, IB is intractable in general. We ap-
proximate estimate it by a variational approximation(VIB),
which is applicable to supervised learning tasks. For more
details, interested readers are referred to [26]. The VIB can
derive variational lower bounds of the two MI terms in the IB
objective. We will examine each of these expressions in turn.
For the first term I(Z;A):

I(Z;A) =

∫
p(a, z) log

p(a|z)
p(a)

dadz

≥
∫

p(a, z) log
q(a|z)
p(a)

dadz

= Ez,a[log q(a|z)] +H(A),

(5)

where q(a|z) is a variational approximation of p(a|z).
It is our policy network, which we will take to com-
pute the optimal policy. The inequality holds because
KL[p(A|Z)∥q(A|Z)] ≥ 0. The entropy of H(A) can be ig-
nored since it is independent of the optimization procedure.
For the second term βI(S;Z):

I(S;Z) =

∫
p(z, s) log

p(z|s)
p(z)

dzds

≤
∫

p(z, s) log
p(z|s)
r(z)

dzds

= KL [p(Z|S)||q(Z)]] ,

(6)
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Fig. 3. Learning curves for A2C, PPO, LFENet on 12 Atari games over 10 million time steps. The solid curves show represent
the average return across seeds and the shaded regions around each curve represent the standard deviation in measured return.

where r(z) means a variational approximation of the
marginal distribution p(z) and the inequality holds because
KL[p(Z|S)∥r(Z)] ≥ 0.

Now we will introduce how to extend the lower bound L
to PPO. The encoder pθ(z|s) is trained to map the observation
s into a Gaussian distribution: pθ(z|s) = N (µθ(s), σθ(s)),
where µθ(s) is the mean and σθ(s) is the variance, we use the
reparameterization trick to write pθ(z|s) = µθ(s) + ϵσθ(s)
with ϵ ∼ N (0, I). We set the variational prior q(z) =
N (0, I). Hence a tractable variational approximation to the
IB can be defined as:

LIB = E [− log qϕ(a|z) + βKL [pθ(z|s)∥r(z)]] , (7)

In practice, We find that the latent representation z generated
by the mean µθ(s) performs better than generated by random
sample from the distribution, so we take the gradient:

∇LVIB = −Eπθ(a|s) [∇ log qϕ (a|µθ(s))A
π(s, a)]

+∇βDKL [pθ(z|s)∥q(z)]
= ∇θ

(
LVIB + βLKL

)
,

(8)

Consequently, the overall loss function of the LFENet is:

LVIB
t (θ, ϕ) = LVIB + λV L

V − λHHVIB [πθ] + βLKL, (9)

where HVIB [πθ] =
∫
pθ(s, z)H [qϕ(a|z)] dsdz and KL =

1
2

∑d
i=1 µ

2
θ(s) + σ2

θ(s)− log σ2
θ(x)− 1.

5. EXPERIMENTS

In this section, we combine LFENet with on-policy algo-
rithm PPO [22] on some popular Atari games. Through the
experiments, we try to answer the following questions:

• How does LFENet perform compared with the base-
lines in terms of performance and efficiency?

• Can LFENet learn a compact representation?

• What leads to the performance gain obtained by
LFENet?
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5.1. Evaluation on Atari Games

To enable fair comparison between the standard baselines
and LFENet, We evaluate all agents on 12 challenging Atari
games. In LFENet, we use the 2-layer convolution encoder
from [11] and 2-layer modified dense block as feature extrac-
tor, the dimensionality increments of z from their observa-
tions are 1024 in all experiments and the regularization coef-
ficient β takes 1e-6. In our experiments, except for the new
parameters introduced by LFENet, the other hyperparameters
all follow OpenAI-Baselines. Each agent is trained for 10
million.

In Atari games, We compare the proposed LFENet with
A2C [27] and vanilla PPO. For a reliable comparison,
we run 3 random seeds and eight agents work simultaneously
for each seed. The solid curves represent the average return
across seeds and the shaded regions around each curve repre-
sent the standard deviation in measured return. Fig.3 shows
LFENet converges to the highest average return in most en-
vironments. Note that PPO with LFENet outperforms vanilla
PPO on all environments in terms of final performance and
sampling efficiency.

5.2. Visualization of Mutual Information

The Mutual Information Neural Estimator (MINE) [28]
proposed a method to estimate the MI by introducing a statis-
tics network to transform the calculation of MI to an optimiza-
tion problem. In light of this, we visualize the MI between
input state s and the learned representation z to figure out
whether the information bottleneck contributes to learning a
compact representation. We use the authors’ implementation
and the MINE is defined as:

I(S;Z) ≥ IΘ(S;Z)

= sup
θ∈Θ

EPSZ
[Tθ]− log

(
EPS⊗PZ

[
eTθ

])
, (10)

where PSZ means the joint probability distribution and PS ⊗
PZ means the product of the marginals, the optimal functions
take the form EP [T

∗] = I(X;Z). Please refer to [28] for
more details.

Fig.4 shows the mutual information estimation between s
and z on the AlienNoFrameskip-v4. We can see that the fea-
ture extractor network first stores lots of feature information
by increasing the MI, then compresses the input to efficient
representation. Note that the architecture with IB is proved
to have better information extraction capability due to their
smaller MI.

5.3. Ablation Study

In order to verify that the proposed LFENet can learn a
compact, high-dimensional representation to improve perfor-
mance. We perform an ablation study by comparing the per-
formance while gradually removing two key components of

0 2 4 6 8 10
Time Steps(million)

0.0

0.5

1.0

1.5

2.0

M
ut

ua
l I

nf
o 

Lo
ss

LFENet
PPO

Fig. 4. Visualizing the Mutual Information(MI) during the
training on AlienNoFrameskip-v4.

LFENet, namely: modified DenseNet and IB to show what
component contributes to the improvement. In addition to
this, we compare the result with modified ResNet [17], which
has skip connections: yi = f res

i (yi−1) + yi−1, where yi
means the output of the the ith layer, and f res

i is a residual
module architecture. Fig.5 shows the training curves of aver-
age return on AlienNoFrameskip-v4 environment.

Only IB replaces the modified DenseNet defined in
Sec.4.1 with standard MLP architecture. As dense connec-
tions enable information propagation in large networks, we
believe that using a large network with modified DenseNet
to learn a high-dimensional representation contributes to im-
proving performance.

Only MD removes information bottleneck. The much
lower return shows that utilizing information bottleneck is es-
sential to achieve high performance. Since the learned repre-
sentation contains lots of redundant information. Information
bottleneck effectively contributes to learn a compressive rep-
resentation.

Add Res experiments with a ResNet-like MLP, and the re-
sult shows that the modified DenseNet achieves higher scores
than other connectivity architectures.
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Fig. 5. Training curves of the derived methods of PPO on
AlienNoFrameskip-v4. This shows that each element does
contribute to the performance gain.
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6. CONCLUSION

For DRL to be effective on video games, we need to
learn good state representations from image-based observa-
tions. Prior work usually prioritizes representation learning
where learned features are in low dimension. In this paper,
we present an end-to-end Large Feature Extractor Network
(LFENet), exploring to learn effective higher-dimensional
representation for raw sensory input. In LFENet, we leverage
information propagation in the hidden layer, thus improving
the performance and sample efficiency. Besides, we introduce
the information bottleneck to discard redundant information.
We combine LFENet with PPO and conduct experiments on
Atari 2600 games. Our experimental results demonstrate that
LEFNet can achieve state-of-the-art performance in most en-
vironments.
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