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Abstract—This paper provides a dual-mode real-time lip-sync
system for a bionic dinosaur robot. Different from traditional
mono-modality control systems, our system is constructed with
different controllers and classifiers in both time domain and
frequency domain. Specially, a classifier in time domain is de-
signed to extract the sound features including pitch and intensity.
Meanwhile, a nonlinear mapping relationship between time-
domain feature parameters and mouth open angles is particularly
designed. In time domain, an efficient algorithm consisting of
original and modified short-term average amplitude difference
function (AMDF) is applied for frequency measurement. With
the goal of predicting the curve of mouth open, we train the
audio data of dinosaurs to get a frequency classifier by Support
Vector Machine with racial basis function (RBF-SVM), which has
a relatively high accuracy. Finally, extensive experiments validate
the effectiveness of this proposed system on a real bionic dinosaur
robot.

Index Terms—lip-sync, classifier, SVM, bionic dinosaur robot

I. INTRODUCTION

With the in-depth study of artificial intelligence, the research

of robots is deepened gradually and towards more intelligent

development. According to the statistical data, the demand for

robots that can interact deeply with humans, such as communi-

cation and even emotional communication, has greatly grown.

Compared with industrial robots with poor mobility and poor

human-computer interaction, service robots that are closer to

human life, education, medical care, and companionship have

greater market prospects in the future [1]. Generally, in the

process of face to face communication, people usually focus

their attention on the face, especially in the eyes and mouth.

Therefore, to produce a convincing and versatile mouth-shaped

change can allow people to have a near-real conversation with

the machine, which can not only be a promising application

in games and animations, but also become one of the key

technologies for the natural interaction between humans and

bionics.

Recently, many effective methods have been proposed to

match lip (mouth) and human pronunciation. For instance,

David Hanson produced a human-like robot named Jules with

remarkably vivid emotion and lip-sync system in 2008 [2];

Wu et al. updated a head robot to pursue ability of lip-sync

while talking with people [3]; AIST presented a new girl robot

HRP-4C which can perform at least 6 kinds of expressions and

give a speech almost like a real Japanese girl [4]; During 2013

to 2015, USTC continued to provide new effective algorithms

on robot face control and achieved many graceful results on

human-like robot named Kejia [5]; Engineered Arts developed

a robot named Robo Thespian, which did well in talking

with people in over 30 languages, and even performed some

difficult songs with its mouth perfectly matched with the

music [6]. In the field of algorithm, Tan et al. completed

three-dimensional (3D) face and mouth modeling and data-

driven text-to-visual speech conversion system [7]; Taylor et
al. proposed a method for automatic redubbing of video that

exploits the many-to-many mapping of phoneme sequences

to lip movements modelled as dynamic visemes [8]; Fan and

Yang provided a method that predefines a set of basic mouth

movements, and then allows the designer to design mouth

animation corresponding to different phonemes by defining

the weight change curve of the elements in the set [9]; Xia

et al. presents a text-speech-driven face animation generation

method for redirecting two-dimensional (2D) face feature point

vectors to a 3D head model [10]. These existing researches

always focus on the lip-sync of human-like robots, but few take

simpler mouth models of bionic animal robots into account.

For the human face and lip synchronization system, the oral

visual state can be divided into at least 6 basic expression

states, but the classification result of animals is far less than

that of humans. Therefore, the complex classification will

greatly reduce the efficiency of real-time matching between

lip and speech. Moreover, the animal’s audio signal is entirely

different from the vocal signal (whether in English or other

languages), which is likely to provide many fault classification

on states of animal audio signal.

Considering these problems mentioned, this paper provides

a dual-mode real-time lip-sync system for a bionic dinosaur

robot. Different from traditional mono-modality control sys-

tems, the proposed lip-sync system designs distinct controllers

and classifiers in both time domain and frequency domain.
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Specially, in time domain, a classifier is modeled for extraction

of sound intensity and pitch. An improved frequency extraction

method named multiple short-term average amplitude differ-

ence function is presented to pursue a better and preciser

measurement of frequency. Meanwhile, in control of intensity,

the intensity curve is interpolated and the nonlinear mapping is

applied to make the curve of output more stable and smooth. In

frequency domain, in order to obtain a fast system response

with a high accuracy, some dinosaur sounds are employed

to train the classifier in frequency domain in advance, which

helps this system produce an extremely vivid and precise

output of mouth open angle combining with the time-domain

control. Experiments are carried out to verify the effectiveness

of the proposed lip-sync system. Besides, our system is not

only working for a dinosaur robot, but also appropriate for

nearly most kinds of animals barking with their mouths or

beaks through training the different audio signals for a new

classifier.

The remainder of the paper is organized as follows. The de-

sign of integrated lip-sync system is overviewed in Section II.

Section III introduces the pre-processing, the Multiple AMDF

and Support Vector Machine with radial basis function (RBF-

SVM) classifier in detail. Experimental results are described

in Section IV. Finally, Section V concludes the paper and

describes an outline of future work.

II. LIP-SYNC SYSTEM DESIGN

The general sound is made up of a series of complex

vibrations with different frequencies and amplitudes. One of

the lowest frequencies of these vibrations is called the pitch

and the rest is overtone. Classified from subjective feelings, the

sound consists of four basic elements: pitch, length, intensity,

and tone [11]. As for the lip-sync system developed in this

work, three elements of a dinosaur sound signal including

intensity, pitch and tone are mainly analyzed.

For a lip-sync system, the first important work is feature

extraction. For any audio signal input in time domain, it should

judge the voiced and unvoiced sounds in a long audio via

setting some key threshold values, e.g., the short-time zero-

crossing rate and short-time energy. In phonetics, voiced sound

means the sound of the vocal cord vibration at the time of

pronunciation and unvoiced sound is the one that the vocal

cord does not vibrate. Generally, the consonants could be

unvoiced or voiced, while the vowels in most languages are

voiced, and the nasal, side as well as semi-vowels are voiced.

After sound judgement, some effective segments are divided to

extract parameters of time-domain features. Fig. 1 illustrates

the developed lip-sync system. Specially, in the process of

sound feature extraction, we directly extract the relevant fea-

tures such as Loudness (intensity), Frequency (pitch), and Mel

Frequency Cepstral Coefficents (MFCC) (tone) by invoking

a targeted algorithm. Then, the first two parameters, e.g.,

Loudness and Frequency, are input into the model controlled

by pitch and intensity. Meanwhile, the MFCC is used as the

input of the SVM trained classifier. Finally, the outputs of the

Fig. 1. Illustration of the proposed lip-sync system

Fig. 2. Three shapes of dinosaur’s mouth

two models are combined to obtain an array of the dinosaur

mouth opening angle.

In fact, the model in time domain is working as either a

classifier or a prime controller. As a classifier, we know that

it divides the input audio signal into unvoiced and voiced

sounds. For animal sounds, most are voiced sounds, and only

the silent segments between two separated audio signals and

the low-noise portions are unvoiced. The dinosaur sounds in

this work have the similar feature. Enlightened by the previous

on dinosaur classification and modern animal vocal researches,

we divide the dinosaur’s voices into three categories in the time

domain: low-pitched, roaring, and screaming. Fig. 2 presents

the shapes of dinosaur’s mouth with three sounds. As a prime

controller, it employs intensity as a key factor to affect the

output of dinosaurs mouth opening angles. Some interpolation

algorithms are involved to optimize final output.

With regard to the frequency domain classifier, it is origi-

nally decided to improve the accuracy of the predicted mouth-

engagement angles in this system. The output gained only by

time-domain controller has a relatively enormous deviation

compared with actual values. Therefore, a trained classifier

can play an important role in this system. Taking into account

only two categories of outputs we can get and the efficiency of

the whole system, this frequency-domain classifier is trained

in a SVM method. Besides, the RBF is also used as the kernel

function of this classifier.

For the convenience of the experiment, the dinosaur sound
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used in this system has a special file type, e.g., a mono wave

file with a sampling frequency of 44.1 kHz. Meanwhile, in

order to test the accuracy and real-time of this method, all

experiments included in this system are on a dinosaur robot.

III. SOFTWARE IMPLEMENTATION

In time domain, audio signals are pre-processed with several

methods, such as central clipping, windowing operations and

framing operations. The windowed and framed audio infor-

mation is separately subjected to a short-time zero-crossing

rate and a short-time average amplitude difference function

(AMDF). The short-time zero-crossing rate curve directly

divides the effective segment in the central-clipped audio

signal, and then obtains a short-time energy curve, which is

the sound intensity of the audio signal. Based on the AMDF,

the modified short-term average amplitude difference function

(MAMDF), and the cyclic short-term average amplitude differ-

ence function (CAMDF), we can obtain the pitch information

of the audio signal [12]. Meanwhile, an appropriate threshold

is set to form a time domain classifier. After sorting by

the classifier, we can divide the mouth opening angle into

three presets in the previous section: low-pitched, roaring, and

screaming. According to the sound intensity, the final opening

angle data array corresponding to the time is output. Fig. 3

shows the flowchart of time-domain controller.

A. Audio Signal Pretreatment

In order to ensure feature parameters got from this time-

domain controller more reasonable, it is necessary to do some

pre-processing work at first. Due to the short-term stability of

audio signals, there are generally four steps in pretreatment,

such as pre-emphasising, framing, windowing and central

clipping [11]. In the model of radiation during the production

of a piece of sound, the average power spectrum of the speech

signal x(n) is affected by the nose and mouth radiation and

the glottal excitation, which causes the speech signal to have a

6 dB/Oct (octave) attenuation in the frequency domain above

800 Hz [11]. So we should pre-emphasize the input of audio

signal. The formula is built as follows,

H(z) = 1− αZ−1 (1)

where α is usually 0.95, 0.97 or 0.98. In this system, it is 0.97.

To some degree, the whole experiment in this system is

based on a principle of short-time stability. The dinosaur

sounds indeed have this obvious feature. Therefore, it is easier

for us to obtain feature parameters in time domain after

framing and windowing the audio signals. Generally, there is

always a situation that signal will reveal somehow, which is

cut into pieces and applied to calculation. In this situation,

we use a window function with finite length to transform and

calculate the short segments of audio signal as follows [11],

Qn =

∞∑
m=−∞

T [x (m)]w (n−m) (2)

where x(m) denotes the original audio signal input sequence;

w(n) is a moving window; T denotes a certain transformation

Fig. 3. Flowchart of the system design

of the speech signal, which can be linear or nonlinear; Qn

is the time series obtained after the transformation of each

segment.

For w(n), there are many forms of window functions.

Rectangular window, Hamming window and Harming window

are the three most commonly used in speech recognition.

Taking into account that the width of the window function will

affect the smoothness of the audio signal, we finally choose

Hamming window.

w (n) =

{
0.54− 0.46 (2πn/ (N − 1)) 0 < n ≤ N − 1

0 others
(3)

After the speech signal is windowed, the slope of the start and

end of each frame will be reduced. Meanwhile, the edges of

the window will not change rapidly. The intercepted speech

waveform will transit slowly to zero at both ends, which

effectively reduces the truncation effect of the speech pause.

The low amplitude part of the sound signal contains a lot of

formant information, while the high amplitude part contains

a lot of pitch information. The central clipping method uses

a central clipping function to remove the low amplitude part

of the signal. It is a nonlinear processing method [13]. The
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function is defined as follows,

y (n) = C [x (n)] =

⎧⎨⎩x (n)− CL x (n) > CL

0 |x (n)| ≤ CL

x (n) + CL x (n) < −CL

(4)

where CL is generally 60%− 70% of the maximum of signal

amplitude.

B. Endpoint Detection and Pitch Estimation

For the lip-sync system, endpoint detection is very impor-

tant, which has a great impact on the performance of the sys-

tem. A correct goal point can remove redundant information,

reduce the amount of computation, and improve the efficiency

of the system. Thus, we employ a short-time zero-crossing

rate function and a short-time energy function to calculate the

starting and ending points of the input audio signal.

For narrowband signals, when the signal is a sine wave with

a frequency of F0, the sampling frequency is FS , the number

of samples in each cycle is FS

F0
, and the zero-crossing number

in each sine period is 2, then the average zero-crossing rate

of the signal can be obtained,

Z = 2g
F0

FS
(5)

The short-time average zero-crossing rate of speech signals

is defined as follows,

Zn =

∞∑
m=−∞

|sgn [x (m)]− sgn [x (m− 1)]|w (n−m) (6)

The short-time energy of speech signals is definited as

follows,

En =

∞∑
−∞

[x (m)w (n−m)]2 (7)

where w(n) is exactly Hamming window as mentioned.

As the most important parameter in time domain, pitch

frequency needs to be extremely precise. Thus, we employ

a kind of innovative and efficient algorithm, which includes a

AMDF, a MAMDF and a CAMDF [12] [15].

Similar to ACF method, the AMDF is employed to enlarge

periodic points. Through finding the distance between the first

local minimum point and the starting point, AMDF can obtain

the pitch period. This function is defined as follows,

D (k) =
1

N

∑
n

|s (n)− s (n− k)| (8)

We can obtain the peak point in AMDF curve, which is

(nmax, Rmax). By connecting this point with each point (k, 0),
for k from 0 to N (except nmax), we can get N lines. Every

line is subtracted from the AMDF curve, and the absolute

value of the difference is averaged. Finally, the maximum five

values are obtained by comparison. The formula is defined as

follows,

L(n) = Rmax

|nmax−k| × n n = 0, 1, 2, ..., |nmax − k| (9)

M(k) =

{
1

|nmax−k|
∑|nmax−k|

n=0 |L(n)−R(k + n)| k < nmax

1
|nmax−k|

∑|nmax−k|
n=0 |L(n)−R(k − n)| k > nmax

(10)

where L(n) denotes each line function connecting

(nmax, Rmax) and (k, 0); M(k) denotes an array of

MAMDF values; R(n) denotes the values of AMDF for each

point.

After the last step, we input the top 7 values of k into

CAMDF, and regard the minimum value as the accurate pitch

frequency by comparison. The CAMDF is defined as follows,

D (k) = 1
N

∑N
n=1 |sω (mod (n+ k,N))− sω (n)|
k = 1, 2, ..., N

(11)

C. SVM Classifier

Because of the complexity of the audio input, the real-

time performance of the time domain controller and the

accuracy of the time domain classifier are not perfect. For

an accurate classification, we adopt the frequency domain

feature parameters to train the SVM classifier with the RBF

kernel function, which can effectively assist the time domain

controller [14]. On the other hand, in most researches on

speech recognition, MFCC is widely used as the input in

different sorts of classifier-training. Mel scale is a nonlinear

frequency scale based on the human ear’s sensory judgment

of pitch changes. The relationship with the frequency is as

follows,

m = 2595 log10

(
1 +

f

700

)
(12)

Based on SVM with a linear kernel function, we enter 3289
groups of datasets, where each dataset is a 20-dimensional

MFCC feature vector, corresponding to a certain 1 or −1 label.

In this paper, a cross-validation method of 80% training set

and 20% test set is used. After 5000 cycles of training, the

effect is good with the conditions that the penalty coefficient

is 0.01 and the learning rate is 0.1.

IV. EXPERIMENTS AND RESULTS

In order to test the proposed lip-sync system, extensive

experiments were carried out.

A. Classification Effects of Linear-SVM and RBF-SVM

The first experiment focuses on the classification effects of

linear-SVM and RBF-SVM. Fig. 4 shows the experimental

results about the mouth openshut prediction based on these

two different SVM classifiers. Firstly, we separaetly trained

and tested SVM classifiers with different kernel function by

effective audio signals of dinosaurs, as shown in Figs. 4(a) and

4(b). For the linear-SVM, the accuracy of the classification of

test set is steadily at 80%, and the convergence of loss function

is relatively steady. Due to a large number of input feature

vectors, the trained classifier with the linear kernel function

dose not perform as well as we predicted. By contrast, the

RBF-SVM mode improves the classification accuracy of the

test set. Specially, the average value is about 87%, and the

highest is 92.7%. It is obvious that for high-latitude vector
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(a) Classification results of dinosaur audio data by the linear-SVM

(b) Classification results of dinosaur audio data by the RBF-SVM

(c) Comparison result of classification of a random audio between
linear-SVM and RBF-SVM

Fig. 4. Experimental results in SVM classifier with linear and RBF kernel
function.

input, a nonlinear classifier can generally achieve better results

than a linear one. Then we captured a piece of dinosaur audio

signal from a database as the input of these two classifiers,

Fig. 5. Experimental results on the time-domain controller

Fig. 6. Experimental resluts on the dual-domain controller

as shown in Fig. 4(c). The two figures at the bottom of Fig.

4(c) represent separately the classification results of linear-

SVM and RBF-SVM. As for the linear-SVM, we can see that

some large deviation appears when t = 155 s to 155 s and

t = 210 s to 280 s. By contrast, the RBF-SVM has a great

improvement in accuracy, although some disagreement also

appears owing to some unavoidable deviation of training data.

However, it is sure that RBF-SVM classifier works better on

high dimensional input. Finally, the prediction accuracy of the

system among the 16454 groups of data reached 92.1%.

B. Experiments on Different Controllers

The second experiments were carried out to explore the

performance of two different controllers for a random sound

of dinosaurs, i.e., a time-domain controller and a dual-mode

controller. As show in Figs. 5 and 6, the mouth-open curves

can effectively respond to the sound of dinosaurs under the

control of these two controllers. Obviously, the dual-mode

controller has a better performance. For example, it success-

fully identifies two fragments belonging to the low pitch type,

benefiting from the detection of RBF-SVM classifier, see the
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Experimental snapshots of the dinosaur robot

short black lines in Fig. 6. In experiments, 95.2% of 189
volunteers thought the dinosaur mouth animation controlled

by this dual-mode lip-sync system was reasonable, realistic

and natural enough, although 2.6% thought the animation was

stiff and 2.2% thought it was totally fake.

C. Experiments on a Dinosaur Robot

The last experiment was performed based on a dinosaur

robot. Two types of audio files were adopted, including a low

pitch sound and a roaring one. In experiment, we can find

that the dinosaur robot can show different mouth shapes with

the audio files. As show in Figs. 7(a), 7(c) and 7(e) the robot

slightly opened its mouth when a low pitch sound was played.

By contrast, a large mouth was opened when a roaring sound

was heard, see Figs. 7(b), 7(d) and 7(f).

V. CONCLUSION AND FUTURE WORK

This paper has proposed a dual-mode real-time lip-sync sys-

tem for a dinosaur robot, which consists of different controllers

and classifiers in both time and frequency domains. In time

domain, a classifier is designed to extract the sound features in-

cluding pitch and intensity. Meanwhile, considering the direct

influence of input, a nonlinear mapping relationship between

time-domain feature parameters and mouth open angles is de-

signed instead of a common linear one. In frequency domain,

an improved AMDF is employed in frequency measurement

to obtain a real-time and high accuracy output of mouth

open angles. Furthermore, in order to ensure the precision of

classification, the SVM with RBF kernel function is adopted to

train audio data and generate a frequency classifier with high

accuracy in testing. Combining these two models together, the

proposed lip-sync system realizes an efficient and real-like

curve of mouth open control.

The future work will focus on improving the precision of

angles of simulating animal robots’ mouth open by changing

complexity of labels. Furthermore, this system can be extended

to other bionic animal robots in ways of trained by different

kinds of animal audio data, which will be necessary in social

public education, child accompany and other fields requesting

bionic service robots.
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