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With the rapid development of online recipe sharing platforms, food recommendation is emerging as an

important application. Although recent studies have made great progress on food recommendation, they

have two shortcomings that are likely to affect the recommendation performance. (1) The relations between

ingredients are not considered, which may lead to sub-optimal representations of recipes and further result

in the neglect of the user’s personalized ingredient combination preference. (2) Existing methods do not

consider the impact of users’ preferences on calories in users’ food decision-making process. In this article,

we propose a Self-supervised Calorie-aware Heterogeneous Graph Network (SCHGN) to model the relations

between ingredients and incorporate calories of food simultaneously. Specifically, we first incorporate users,

recipes, ingredients, and calories into a heterogeneous graph and explicitly present the complex relations

among them with directed edges. Then, we explore the co-occurrence relation of ingredients in different

recipes via self-supervised ingredient prediction. To capture users’ dynamic preferences on calories of food,

we learn calorie-aware user representations by hierarchical message passing and compute a comprehensive

user-guided recipe representation by attention mechanism. The final food recommendation is accomplished

based on the similarity between a user’s calorie-aware representation and the user-guided representation of

a recipe. Extensive experiment results on benchmark datasets demonstrate the effectiveness of the proposed

method.
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1 INTRODUCTION

Food plays an essential role in everyone’s life. With the rapid development of online sharing plat-
forms such as yummly1 and social media, people tend to share their daily lives including their diets.
In the meantime, compared with the past, people nowadays have more choices on their daily diets.
To provide suitable food or diets for people, food recommendation [42] is emerging as an important
application, which attracts increasing attention in both industry and academia.

The task of recommendation has been widely studied in the literature [1, 24, 26, 32, 46, 66, 71],
which generally utilizes the past interaction records to infer the user’s preference and recommend
items. Compared with the general recommendation [23, 24], which largely focuses on the domains
of E-commerce products or movies, food recommendation has its special characteristics [13, 42].
Specifically, food content information such as ingredients, cooking methods, and visual appearance
greatly influence whether a user will choose a recipe or not [11, 13, 36, 39, 53]. These features
make it difficult to infer the user’s complex preferences purely from the user-recipe interactions.
Typically, recent studies on food recommendation begin to focus on modeling the impact of various
characteristics of food on the user’s decision-making process [13, 39]. Gao et al. [13] propose a food
recommender system incorporating user-recipe interaction history, ingredients, and food images
to model the user’s preference and contribute a large-scale food recommendation dataset. This
food recommender system adopts neural networks and attention mechanism to jointly model the
user’s preference on different ingredients and aspects of food in a hierarchical manner. Following
Reference [13], to model the user’s personalized visual preference, Meng et al. [39] propose a
new food recommendation framework based on multi-task learning paradigm to learn the visual
features of food images that can fuse both the semantic and personalized visual information.

Although the existing methods have taken various factors of food into account in the recom-
mendation process and achieved promising results, there are two major shortcomings that are
likely to affect the recommendation performance: (1) The relations (e.g., co-occurrence) between
ingredients are not considered, which may lead to sub-optimal representations of recipes. More
importantly, users’ preferences for different combinations of ingredients will not be well captured
due to the neglect of the relations between ingredients. For example, as illustrated in Figure 1, some
ingredients often appear together in recipes selected by User A (denoted by boxes with solid line),
which reflects the user’s personalized ingredient combination preference. Since ingredients are the
building blocks of a recipe, it is important to emphasize the interactions among the ingredients in
learning an effective representation of the recipe and modeling the user’s preference for ingredient
combinations. (2) The existing methods do not consider the impact of users’ preference on calo-
ries of food in users’ food decision-making process. Although previous studies [9, 15, 56, 61, 68] on
health-aware food recommendation have considered nutrition information such as calories during
recommendation, most of them utilize calories as rules or conditions to recommend healthier food.
Different from them, we believe that calories is one of the aspects that has influence on the user’s
food preference and we also need to consider it for more effective recommendation. We present
an example in Figure 1, where we sample two users and show their recent food choices. The same

1https://www.yummly.com/.
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Fig. 1. Illustration of users’ preference on ingredient combinations (i.e., some ingredients, such as “dried

oregano”+“chicken breast halves”+“butter,” appear together in different recipes selected by User A) and users’
preference on calories of recipes (i.e., the recipes chosen by User A are usually low calorie, while User B is
more likely to choose recipes with higher calories).

ingredients are marked with the same colors. It can be seen that there are overlapping ingredi-
ents in the two users’ interacted recipes, which also makes the appearance of dishes look similar.
However, the recipes chosen by User A are usually low-calorie, while User B is more likely to
choose recipes with higher calories, which shows the calorie preferences of two users. Therefore,
not only the user’s taste or visual preference of recipes but also the user’s preference on calories
play a critical role in the user’s food decision-making process. The taste of food is related to both
the combination of ingredients and the cooking method. In this article, the “taste” mainly depends
on the combination of ingredients.

The above issues that seem easy to solve are not trivial. (1) To capture the relations between
ingredients, we can simply utilize graph neural networks [30, 35] or self-attention methods [8,
59], which are widely adopted for modeling structured data. However, the scarcity of supervised
signals of user-item pairs in the food recommendation task is likely to lead to the ineffectiveness
of modeling the relations between ingredients. (2) For the calorie issue, we can easily infer a user’s
personalized awareness from the user’s historical data and define a calorie-related user profile.
However, such a solution ignores the dynamic impacts of calorie and other factors on the user’s
diet choice. For example, a user may prefer low-calorie food in general, but when a recipe with
high calories contains his/her favorite ingredients, he/she may still choose it.

To comprehensively explore the impact of the user’s preference on combinations of ingredients
and calorie information, in this article, we propose a Self-supervised Calorie-aware Hetero-

geneous Graph Network (SCHGN) where we aim to recommend suitable food for the target
user, given the user-recipe interactions, ingredients, images, and calories of food. Specifically, we
first incorporate users, recipes, ingredients, and calories into a heterogeneous graph and use di-
rected edges to explicitly present the complex relations among them. Then, to effectively model
the relations between ingredients to help capture the user’s personalized ingredient combination
preference, we adopt the idea of self-supervised learning [8, 25, 27, 43, 50], which is a newly
emerging paradigm aiming to let the model learn from the intrinsic structure of the raw data and
explore the co-occurrence of ingredients in different recipes via self-supervised ingredient predic-
tion. Meanwhile, to capture users’ awareness of calories based on historical recipes, the proposed
method learns calorie-aware user representations by hierarchically aggregating useful signals from
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representations of ingredient, calorie, and recipe nodes in the heterogeneous graph. Next, to dy-
namically explore a user’s preference for ingredients, appearance, or calories of a specific recipe,
we learn a comprehensive user-guided recipe representation through attention networks based on
both the calorie-aware user representation and the multi-modal information of the recipe. Finally,
the food recommendation is accomplished based on the similarity between a user’s calorie-aware
representation and the user-guided representation of a recipe.

Our contributions are summarized as follows:

• We propose a Self-supervised Calorie-aware Heterogeneous Graph Network

(SCHGN) for food recommendation, which can model the relations of ingredients and cap-
ture the user’s preference on food calories simultaneously.
• To effectively model the complex relations between ingredients, we adopt the idea of self-

supervised learning and explore the co-occurrence of ingredients in different recipes via
self-supervised ingredient prediction.
• We highlight the significance of the user’s preference on calories in food decision-making

process and propose to explicitly integrate calories of food with hierarchical message passing
to dynamically explore a user’s preference of taste and calories for a specific recipe.
• We validate the effectiveness of our proposed model on the benchmark dataset [13]. Exten-

sive experimental results demonstrate that our model achieves superior performance against
the existing methods.

We organize the remainder of this article as follows: In Section 2, we review the related work.
Section 3 describes the details of our proposed method. In Section 4, the experimental results and
analysis are given on the benchmark dataset. The conclusion and future work are presented in
Section 5.

2 RELATED WORK

In this section, we review the most related work to our method in food recommendation, graph
neural networks, and self-supervised learning.

2.1 Food Recommendation

Food recommendation has received more and more attention in recent years. In general, food
recommendation aims to provide a list of ranked food items for users to meet their personalized
needs [42, 55, 58, 61].

Some of the existing studies adopt the user’s ratings of recipes or past interactions to build
food recommender systems [11, 14, 19, 56] based on collaborative filtering framework, which is
widely adopted in recommendation [23, 33, 45, 51, 72]. Harvey et al. [19] utilize SVD for rating
matrix factorization and obtain better performance than baselines in Reference [11]. Ge et al. [14]
propose a matrix factorization method that leverages latent factors and user supplied tags for food
recommender systems to achieve significantly better accuracy than standard matrix factorization
methods. Trattner et al. [56] conduct a comprehensive experiment on testing a diverse range of
collaborative filtering methods using a large dataset and demonstrate the superiority of Latent

Dirichlet Allocation (LDA) and weighted matrix factorization.
In addition to relying solely on the user’s interaction with the recipes, the content informa-

tion of recipes, such as ingredients and dish images, is also crucial for modeling the user’s recipe
preference [11–13, 39, 53, 67, 68]. Exploiting the content information of recipes can alleviate the
problem of data sparsity as well. Early studies focus on exploiting the ingredients of the recipe to
make recommendation [11, 12, 53]. Then, some researchers [10, 67, 68] propose to utilize the image
of recipes to enhance the food recommender system. In recent years, to comprehensively model
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the user’s food preference, Gao et al. [13] propose a food recommendation framework, exploiting
a neural network to model the interaction between users and recipes, the images of recipes, and
the ingredients simultaneously. This method adopts a pre-trained recipe classification model to
extract image features, which only contain semantic information such as ingredients, and cannot
capture user’s personalized visual preferences. Hence, Meng et al. [39] propose a visually aware
food recommendation framework that jointly optimizes the image feature extractor with the rec-
ommendation task and the recipe ingredient classification task making the learned image features
contain both the semantic information and the personalized visual information. It is worth noting
that this method adopts a different setting from ours, where only users’ interactions and recipe
images are taken as input and the pre-processed ingredients are used as the supervision infor-
mation. For the knowledge graph-based food recommendation method [5], Chen et al. propose to
formulate the personalized food recommendation as a constrained question answering over a food
knowledge graph named FoodKG.2 Besides the user query, they take the dietary preferences and
nutrition information as additional constraints to retrieve recipe from the food knowledge graph.
To sum up, none of the these methods consider the user’s preference on calories of food, and the
relations of ingredients are not well exploited, which limits the recommendation performance.

Health-aware food recommendation, as a special domain of food recommendation, has also
been explored with efforts [2, 42, 52, 54, 61], since diet itself is closely related to people’s health.
In fact, some previous studies on health-aware food recommendation have incorporated calorie
information into the recommendation process [9, 15, 56, 68], but most of them aim to build a health-
driven recommender system, which balances the user’s preference and nutrition factors of recipes
from the perspective of tradeoff. Haussmann et al. [20] build a food knowledge graph, including
recipes, ingredients, and nutrition information as entities and propose a knowledge-based question
answering application. Different from the existing methods, we model the impact of calorie factor
on the user’s decision-making implicitly utilizing the user’s interaction records and the calories of
food. The goal of our work is to make the recommendation results more accurate. We think the
proposed calorie-aware food recommendation system is useful and necessary on a recipe-sharing
platform where the users always rationally choose food. If a user has chosen many high-calorie
foods on the platform, then he might be thin or suffering from malnutrition and want to gain
weight. In this case, the system needs to recommend foods with high calories rather than low-
calorie ones. If a user is on a diet, then the system can capture the user’s calorie preference and
recommend low-calorie food.

2.2 GNN for Recommendation

Graph neural network (GNN) can capture the dependence of nodes in graphs via message pass-
ing. The main idea of GNN is to distill useful information from neighbors and combine the ag-
gregated information to update the node representation. In recent years, GNNs have attracted
much attention and have been widely applied in many fields due to the great expressive power.
Early studies on graph convolution aim to define the convolution kernel in spectral domain [3, 6],
which is computationally expensive and lacks generalization. Kipf et al. [30] propose a simplified
and widely used paradigm of graph convolutional networks (GCNs). GraphSage [18] designs a
permutation-invariant aggregator for message passing in spatial domain. Veličković et al. [60] in-
troduce the multi-head attention mechanism into the message passing between nodes of the graph.
Motivated by the strength of graph neural networks, recent studies [35, 62, 63, 69, 74] adapt GCN to
model the complex relationships between users, items, and other properties for recommendation.
Li et al. [35] propose a hierarchical graph to model the relationship among users, items, and outfits

2https://foodkg.github.io/index.html.
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and adopt GNNs to obtain more expressive representations for outfit recommendation. Zheng et al.
[74] propose a graph-based solution to unify the influence of item price and category, where graph
neural networks are utilized to learn price-aware and category-dependent user representations. In
this article, for the first time, we apply GNNs to personalized food recommendation and build a
calorie-aware heterogeneous graph to explicitly explore the complex relationships among users,
recipes, ingredients, and calories. We utilize message propagation in GNNs to learn calorie-aware
user representations and dynamically explore users’ preference of taste and calorie for recipes.

2.3 Self-Supervised Learning

Self-Supervised Learning (SSL) has gained increasing attention [8, 25, 41] recently, which aims
at learning representations on an auxiliary objective where the supervision information is obtained
from the raw data. Self-supervised learning has been employed for learning representations in
multiple areas.

In natural language processing, self-supervised learning tasks have been widely explored for
predicting the adjacent words [41] or predicting the next sentence [8] given the previous se-
quences. Several self-supervised objectives have been introduced in computer vision community
[31] as well, including: (i) predicting image rotations [16]; (ii) predicting relative path locations
[44]; (iii) predicting next video frames [49]; (iv) minimizing the similarity of images with augmen-
tations [4], and so on.

In recommendation, Zhou et al. [75] propose a self-supervised learning method based on mutual
information maximization [25] for sequential recommendation and design four self-supervision
tasks for pre-training. Ma et al. [37] extract additional supervision signals by investigating the
longer-term future instead of just the next immediate behavior and perform the self-supervision
in latent space. Xin et al. [64] show that combining SSL with reinforcement learning is effective to
capture long-term user interest in sequential recommendation.

In food computing, Lee et al. [17] introduce an online recipe generation system for cooking
recipe generation, where the generator comprises a generative pre-trained language model GPT-2
fine-tuned on a large cooking recipe dataset. The recipe generation system can generate cooking
instructions according to given recipe title and ingredient texts and generate ingredients given
recipe title and cooking instruction texts. Li et al. [34] propose a joint approach to learn pretrained
recipe representations by considering the alignment of ingredients and cooking instructions in
latent space as the supervision. At present, existing methods in personalized food recommenda-
tion do not consider the co-occurrence of ingredients in different recipes. In this work, we apply
self-supervised learning to food recommendation and aim to model the relations between ingredi-
ents by reconstructing the masked ingredients given the other ingredients of the recipe. Tsukuda
et al. [57] propose a method for recipe search by adding and removing ingredients based on the
co-occurrence probability of ingredient pairs. Yokoi et al. [70] focus on arrangement of ingredients
and propose a framework for typicality analysis of the combination of ingredients. Although they
take the relation between ingredients into consideration, they focus on recipe retrieval rather than
personalized food recommendation. Marin et al. [38] introduce Recipe1M+, a large-scale recipe
dataset, and propose a multimodal recipe retrieval method based on joint neural embedding with
semantic regularization. They adopt word2vec [40] to encode the ingredient texts and then use
LSTM to obtain the final representation of combined ingredients. However, the word2vec is pre-
trained on public text corpora. Therefore, this method can only capture the word co-occurrence in
semantic space. Compared with their method, we explicitly consider the co-occurrence of ingredi-
ents by performing self-supervised ingredient prediction on recipe data, which can not only reflect
the semantic co-occurrence of different ingredients but also reflect the common cooking styles or
eating habits. Although Salvador et al. [48] also adopt self-supervised learning, the purpose is to
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model the relation between ingredients and cooking instructions of the recipe, rather than the re-
lation between ingredients. Besides, the above two methods focus on cross-modal recipe retrieval
rather than personalized food recommendation.

3 METHODOLOGY

3.1 Problem Formulation

The aim of food recommendation is to predict the user’s preference over recipes. In this article,
we contribute to incorporating the calorie factor of recipes to improve the performance of food
recommendation. Therefore, we reformulate the food recommendation task as follows:

Before giving the formal problem definition, we first introduce the following important nota-
tions: We use U and I to denote a set of users and a set of recipes, respectively. The user-recipe
interaction matrix is denoted as Y ∈ RNU ×NI , whereNU andNI are the number of users and recipes.
For a user u and recipe i , an entry yui = 1 means that the user has interacted with the recipe. Be-
sides, the recipe i is equipped with an image feature vi ∈ R2048, a set of ingredients gi ∈ RNK , and
a calorie factor ci . gi is a multi-hot encoding vector with дk

i = 1 denoting that the recipe i contains

the ingredient k . NK is the total number of ingredients occurred in I . The calorie factor ci ∈ RNC

is a one-hot vector denoting the calorie level of the recipe i , where NC is the number of calorie
levels. Based on the above notations, the food recommendation task is formally defined as:

Input: User-recipe interaction matrix Y, recipe ingredients [g1, . . . , gNI
], recipe image features

[v1, . . . , vNI
], and recipe calories [c1, . . . , cNI

].
Output: An interaction functionyui = f (u, i, gi , vi , ci ), which predicts the estimated probability

that user u would interact with recipe i .

3.2 Overview

In this article, we propose a self-supervised calorie-aware heterogeneous graph network

(SCHGN) for food recommendation. Figure 2(a) shows the overview architecture of the proposed
SCHGN. Given a user-recipe pair (u, i ) where the recipe has ingredients gi , image feature vi , and
calorie factor ci , the model aims to predict the probability that the user u will interact with the
recipe i . The proposed SCHGN consists of five main modules. (1) We build a heterogeneous graph
to explicitly explore the complex relationships of users, recipes, ingredients, and calories. (2) We
use the self-supervised ingredient prediction module (details are shown in Figure 2(b)) to model the
relationships between ingredients by predicting the masked ingredients given the ingredient set
gi of recipe i . (3) We learn calorie-aware user representations through message propagation from
graph neural networks. (4) To dynamically explore the user’s preference of taste and calories for the
recipe, we learn a comprehensive user-guided recipe representation through attention networks.
(5) We utilize the calorie-aware user representation and the user-guided recipe representation to
accomplish the food recommendation task. The overall framework of our method can be jointly
optimized with the self-supervised ingredient prediction loss and the food recommendation loss
in an end-to-end manner. More details of the five main modules will be illustrated as follows.

3.3 Heterogeneous Graph

Given the user-recipe interactions where each recipe has ingredients and calorie factor, it is chal-
lenging to explicitly model the complex relations among users, recipes, ingredients, and calories,
and further capture users’ calorie awareness, since users are not directly related to the calories
of recipes. To address this challenge, we organize users, recipes, ingredients, and calories into a
heterogeneous graph. For example, if a recipe i contains the ingredient д and its calorie attribute
is c , then an ingredient node and a calorie node will be connected to the recipe node. Similarly, if

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1s, Article 27. Publication date: January 2023.



27:8 Y. Song et al.

Fig. 2. Overview of the proposed self-supervised calorie-aware heterogeneous graph network (a) and the
self-supervised ingredient prediction module (b). To predict whether a user u will interact with a recipe i ,
we first build a heterogeneous graph consisting of users, recipes, ingredients, and calories. Then, the self-
supervised ingredient prediction is adopted to model the relationships between ingredients. Next, we learn
a calorie-aware user representation êu by hierarchically aggregating useful signals from representations of
ingredient, calorie, and recipe nodes. Finally, we learn a comprehensive user-guided recipe representation
ẽi through attention networks for the final prediction ŷui . For the self-supervised ingredient prediction, we
aim to recover the masked ingredients given the surrounding context ingredients Cĝi

with a multi-head
self-attention architecture.

a user u has chosen recipe i , then there is an edge from the recipe node to the user node. Then, we
can leverage the connectivity of graph nodes to explore underlying relationships by propagating
embedding vectors from calories to users with recipes as the bridge.

To be more specific, there are four types of nodes—users, recipes, ingredients, and calories,
which basically can be divided into three levels—users, recipes, and recipe attributes (i.e., ingredi-
ents and calories). For edges, we connect the attribute nodes to the recipes if the recipe i includes
the ingredient д or belongs to the calorie level c . Existing work [28, 32] has shown that a user’s
preference can be reflected by personal history directly, and similar users would have similar pref-
erences on recipes. Therefore, we connect the recipes to the users if user u has interacted with
recipe i . Figure 2(a) shows an example of the built heterogeneous graph. Such a heterogeneous
graph highlights the connections cross levels.

Embedding Initialization. Since the user ID, recipe ID, ingredient ID, and calorie ID are
encoded as one-hot vectors, to characterize the latent features, we represent each user/recipe/
ingredient/calorie ID with an embedding representation. That is, we represent each node with a
separate embedding e∗ ∈ Rd where ∗ refers to the node and d is the embedding size. We adopt
the same embedding method as in Reference [13]. For example, given the one-hot encoding of a
specific user u, denoted as Ou ∈ RNU , we can project it into an embedding as follows:

eu = ET
UOu , (1)

where the eu ∈ Rd is the embedding of user u. EU ∈ RNU ×d is a learnable embedding matrix
of all users. We can obtain other node embeddings in a similar way. As a result, we maintain an

embedding matrix for all the nodes denoted as E ∈ R(NU +NI+NK+NC )×d , which is composed of the
embeddings of users, recipes, ingredients, and calories. Here, NU , NI , NK , and NC are the number
of the users, recipes, ingredients, and calorie levels, respectively.
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3.4 Self-supervised Ingredient Prediction

The relations between ingredients (e.g., co-occurrence) are not considered in previous studies on
food recommendation, which easily leads to sub-optimal representations of recipes and further
results in the neglect of the personalized ingredient combination preference. Due to the scarcity
of supervision information, inspired by the masked language model such as BERT [8], we propose
to model the relationship between ingredients in a self-supervised learning manner as a Cloze
task. The Cloze setting is described as below: Given the ingredient set of a recipe, at each training
step, a proportion of ingredients in the set is randomly masked (i.e., replaced with “[mask]” token).
Then, we predict the masked ingredients based on the other ingredients of the recipe with self-
attention [59, 60], which has shown its power on quantifying the interdependence among the
inputs.

More specifically, as illustrated in Figure 2(b), given the original ingredient set gi of a recipe
i with L ingredients and their corresponding representations collected from E denoted as Xgi

∈
R

L×d , we randomly mask M ingredients ĝi by replacing them with the “mask” token and treat
the obtained set as the surrounding context set Cĝi

. We obtain the embedding Xt ∈ RL×d of Cĝi

by collecting the representations of ingredients from the embedding matrix E and utilizing a spe-
cific embedding for the “mask” token, which is randomly initialized. To capture the co-occurrence
information of ingredients, we first apply a multi-head self-attention layer to Xt :

Z = MultiHead(Xt ) = Concat(Z1,Z2, . . . ,Zh )WO

where Zr = Att
(
Xt W

Q
r ,Xt WK

r ,Xt WV
r

)
.

(2)

Here, W
Q
r , WK

r , WV
r are the corresponding learnable parameters for each attention head. WO

is the parameter of the projection layer applied to the concatenated matrix. h denotes the
number of heads. For the multi-head self-attention, we adopt the same architecture proposed
in Reference [59], which adopts multiple scaled dot-product operations with unshared learnable
transformation matrices to process the input data and capture interactive relation information in
multiple projection spaces. Att denotes a function that computes the attention scores using scaled
dot-product:

Att(Q,K,V) = softmax

(
QKT

√
dt

)
V, (3)

where
√
dt is the scale factor to avoid large values of the inner product. We denote the output of

the multi-head self-attention layer as Z ∈ RL×d .
In addition to the multi-head self-attention layer, following Reference [59], we adopt a point-

wise feed forward network consisting of two linear transformations with a ReLU activation in
between, applied to each position of the input set, which is formally defined as:

Z′ = [FFN(Z[1, :]); . . . ; FFN(Z[L, :])],

FFN(x ) =
(
ReLU(xWf 1 + bf 1)

)
Wf 2 + bf 2,

(4)

where Z′ ∈ RL×d is the output of one self-attention layer and feed forward network, and Wf 1, bf 1,
Wf 2, bf 2 are trainable parameters.

We can stack more multi-head self-attention and feed forward layers. Then, we obtain the final
output representation denoted as Ht ∈ RL×d , which encodes the context information (i.e., co-
occurrence) of the given ingredients. To constrain the model, we adopt a self-supervised learning
loss based on mutual information maximization [25] to maximize the similarity between the origi-
nal embeddings of masked ingredients collected from Xgi

and the corresponding predicted context
embeddings collected from Ht . More details of the self-supervised learning loss will be introduced
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in Section 3.8. With the self-supervised ingredient prediction, the ingredient embeddings in E will
be continuously updated and the relations between ingredients can be well captured, which will
lead to more effective recipe representations.

3.5 Calorie-aware User Representation Learning

In recent years, graph neural networks [30] have made rapid progress and have been applied in
many tasks. Several recent studies on graph networks [60, 65] have shown that the information
propagation over graph structure is able to effectively extract useful information from multi-hop
neighbors and encode the connection information into the node representation. Upon our het-
erogeneous graph, to capture users’ awareness of calories based on historical recipes, we learn
calorie-aware user representations by hierarchically aggregating useful signals from representa-
tions of ingredient, calorie, and recipe nodes.

3.5.1 Message Propagation. Specifically, suppose the node ni and its neighboring node nj are
two connected nodes in our heterogeneous graph. The information being propagated from the
neighboring node nj to the node ni is formalized as:

mnj→ni
=

1

|Nni
| (Wenj

), (5)

where W ∈ Rd×d is a trainable matrix to perform transformation,Nni
denotes the set of neighbors

of node ni and is adopted for normalization, and enj
is the embedding of node nj collected from

the embedding matrix E.

3.5.2 Neighbor Aggregation. Next, we update the representation of a node by aggregating the
propagated embeddings of its neighbors. Specifically, we utilize the sum aggregation and a non-
linear activation function. Formally, let eu and ei denote the representations for user u and recipe
i . The updating rule can be formulated as follows:

êi = tanh
��
�
ei +

∑
o∈Ni

mo→i
��
�
,

êu = tanh
��
�
eu +

∑
o∈Nu

mo→u
��
�
,

(6)

where êu and êi are the updated embeddings of user nodeu and recipe node i ,Ni denotes the set of
nodes that consists of the ingredient nodes of the recipe i and its calorie node, andNu denotes the
set of recipes that the useru has interacted with. Here, only the sum aggregation is applied, leaving
the exploration of other aggregators, such as attention networks, in future work. Since a user’s
calorie awareness can be reflected by his/her interacted recipes, the recipe nodes can collect calorie
information from the calorie nodes through embedding propagation and aggregation, where the
recipes work as the bridge between users and calories.

3.6 User-guided Comprehensive Recipe Representation Learning

So far, we have obtained the calorie-aware user representation êu . To predict the probability that
the user u will choose the recipe i and accomplish the food recommendation task, we also need to
learn the comprehensive recipe representation. Although the recipe embedding êi has already ag-
gregated information from ingredients and calories through the graph neural networks, the user’s
dynamic preference of taste and calories is not considered in the recipe representation. Therefore,
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following Reference [13], we learn a comprehensive user-guided recipe representation through
attention networks based on both the calorie-aware user representation and the multi-modal in-
formation of the recipe.

3.6.1 Personalized Ingredient Representation. Considering that there are different numbers of
ingredients in different recipes, we need to aggregate the ingredient embeddings into a single
compact representation. Given that users have their personalized preferences over different ingre-
dients and some ingredients contribute more to the taste of the recipe than other ingredients, we
employ a user-guided attention to obtain the compressed ingredient representation.

Specifically, given the calorie-aware user representation êu , the imaged feature vi of the recipe
extracted by pretrained networks and the embedding of the target ingredient eдk

i
, we first adopt

a mapping layer to transform the image feature into a embedding with dimension d , which is
formulated as:

pi =Wpvi + bp . (7)

Here, the image embedding is denoted as pi ∈ Rd , Wp ∈ Rd×2048 and bp are the parameters of
the mapping layer. Then, we adopt a feed forward network to compute the attention weights of
ingredients:

ak
i (u) = hT

1 tanh(W1u êu +W1v pi +W1дeдk
i
+ b1),

αk
i (u) =

exp(ak
i (u))∑

k exp(ak
i (u))

, where дk
i = 1,

(8)

where W1∗ ∈ Rd×d , b1 ∈ Rd , and h1 ∈ Rd are the parameters to be learned. We adopt tanh as
the non-linear activation function. Finally, the embeddings of the ingredients can be fused by the
attention weights and we can obtain the personalized ingredient representation êgi

:

êgi
=

∑
k

αk
i (u)eдk

i
, where дk

i = 1. (9)

3.6.2 User-guided Recipe Representation. After considering the user’s preference over different
ingredients and obtaining the fused ingredient representation êgi

, we now have representations
(êi , êgi

, pi , ec ) corresponding to different components of the recipes. In the meantime, considering
that a user may choose a recipe for its appearance, the taste, or the calories of the recipe, similar to
personalized ingredient attention, we employ a component-level attention to aggregate represen-
tations of different components into a comprehensive recipe representation. Specifically, we adopt
a feed forward network to compute the attention weights of different components:

bq (u) = hT
2 tanh(W2u êu +W2qq + b2),

βq (u) =
exp(bq (u))∑

q∈{êi , êgi
,pi ,eci

} exp(bq (u))
,

(10)

where W2∗ ∈ Rd×d , b2 ∈ Rd , and h2 ∈ Rd are the parameters to be learned. Note that we use q to
represent one of the component representations to simplify the illustration.

Then, different component representations can be fused by the attention weights and we obtain
the user-guided comprehensive recipe representation ẽi :

ẽi =
∑

q∈{êi , êgi
,pi ,eci

}
βq (u) · q. (11)
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3.7 Personalized Food Recommendation

Given the user representation êu and the recipe representation ẽi , following Reference [24], we
concatenate them with their element-wise product (êu� ẽi ). To predict how likely the useru would
interact with recipe i , a multi-layer perceptron (MLP) is adopted to process the concatenated
representation. Formally, the food recommendation prediction output can be formulated as:

ŷui = hT
3 f

��
�
W3

⎡⎢⎢⎢⎢⎢⎣

êu

ẽi

êu � ẽi

⎤⎥⎥⎥⎥⎥⎦
+ b3

��
�
, (12)

where W3 ∈ Rd×3d , b3 ∈ Rd , and h3 ∈ Rd denote the learnable parameters of the output layer, and
f (·) denotes the non-linear activation function, i.e., ReLU.

3.8 Model Training

The proposed SCHGN can be optimized in an end-to-end manner with the overall objective func-
tion as follows:

L = Lrec + αmulti · Lssip, (13)

whereαmulti is a balance coefficient,Lssip andLrec are loss functions for the self-supervised masked
ingredient prediction and the food recommendation, respectively, which will be introduced with
more details as follows.

3.8.1 Self-supervised Ingredient Prediction Loss. Given the predicted context representation Ht

obtained from Section 3.4 and masked ingredients ĝi , we define the self-supervised learning loss
for masked ingredient prediction as follows:

Lssip =

M∑
m=1

− lnσ ( f (hm ,дm ) − f (hm , д̄m )), (14)

where M denotes the number of masked ingredients, дm is a masked ingredient in ĝi , hm ∈ Rd

denotes the corresponding predicted embedding of дm collected from Ht , д̄m denotes the ingre-
dient randomly sampled from the overall ingredient set excluding the masked ingredients, and σ
represents the Sigmoid function. We implement the f (·, ·) as follows:

f (hm ,дm ) = hmWmeT
дm
, (15)

where Wm ∈ Rd×d denotes parameters of the linear transform, and eдm
∈ Rd is the original

representation of дm collected from Xgi
.

3.8.2 Recommendation Loss. To learn user’s preferences on different recipes, we adopt
Bayesian Personalized Ranking (BPR) as our loss function for food recommendation, which
has been widely used in recommendation tasks [23, 47]. BPR assumes that the observed interaction
has higher prediction scores than unobserved ones. The objective function can be formulated as:

Lrec =
∑

(u,i, j )∈O
− ln(σ (ŷui − ŷuj )) + λ‖θ ‖2, (16)

where σ represents the Sigmoid function and λ is a hyper-parameter for model regularization, θ
denotes all learnable parameters in our model, and O denotes the set of positive-negative sam-
ple pairs that consists of triples in the form (u, i, j ), where u denotes the user together with an
interacted recipe i and a non-observed recipe j.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1s, Article 27. Publication date: January 2023.



Self-supervised Calorie-aware Heterogeneous Graph Networks for Food Recommendation 27:13

Table 1. Example of the Calorie Information in Allrecipes Dataset

Recipe Calorie Information

Potato Bacon Pizza
“calories”: {“hasCompleteData”: True, “name”: “Calories,” “amount”: 162.6685,

“percentDailyValue”: 8, “displayValue”: 163, “unit”: “kcal”}

4 EXPERIMENTS

In this section, we first introduce the dataset and experimental settings. We then report the per-
formance of our proposed method compared with baselines and adopt an ablation study to inves-
tigate the effectiveness of the calorie factor and the self-supervised ingredient prediction. At last,
we conduct experiments to compare different methods on recipes of different popularity levels
and explore the impact of hyper-parameters of our method. We make the source code publicly
available.3

4.1 Dataset

To demonstrate the effectiveness of our proposed method, we conduct experiments on a real-world
dataset for food recommendation. In this article, the input of our food recommendation model
includes users, recipes, ingredients, recipe images, and calories of the recipes. To train the rec-
ommendation model, we also need the user-recipe interactions for the training data. Allrecipes,4

built by Gao et al. [13], is the only available large-scale dataset that meets our requirements, which
is crawled from a recipe-sharing platform Allrecipes.com. There are 68,768 users, 45,630 recipes
with 33,147 ingredients, and 1,093,845 interactions. For each recipe in Allrecipes, there is a corre-
sponding nutritional fact column, which provides the calorie information. We provide an example
of calorie information in Table 1. Since Allrecipes does not explain how to calculate the calorie
information of each recipe, we are not sure whether there is missing nutrition information of in-
gredients. However, each recipe in the dataset has its corresponding calorie information provided
by the Allrecipes, and we only use the recipe-level calorie information in our experiment. We
follow the data partition defined in Reference [13], where the test set includes the latest 30% of
interaction history and the remaining data are split into training (60%) and validation (10%) sets.

4.2 Experimental Settings

4.2.1 Evaluation Metrics. We employ three popular evaluation metrics to evaluate the perfor-
mance of food recommendation including Area Under the Roc Curve (AUC), Normalized Dis-

counted Cumulative Gain (NDCG), and Recall. Given a user u and a pair of positive-negative
recipes (i, j ), AUC measures the probability that a recommender will rank a positive recipe i higher
than a negative j. NDCG@k is a widely used measure to evaluate the quality of the ranked list.
Recall@K measures the proportion that positive recipes are ranked in top-K recommended recipes.
Since the recipe set is too large, it is time-consuming to rank all recipes when testing. Following
the evaluation strategy adopted in Reference [13], there are 500 sampled negative recipe instances
for one user and the interacted recipes in the test set. To ensure the robustness of the experimental
results, we repeat each evaluation 10 times and report the mean value as the final performance.

4.2.2 Implementation Details. Given the raw images of recipes, we extract the image features
by ResNet-50 [21] and use the output of pool5 layer as the input image feature, which is a 2,048
dimension vector. The ResNet-50 is pre-trained on ImageNet [7] and fine-tuned via classifying raw

3https://github.com/TAEYOUNG-SYG/SCHGN.
4https://www.kaggle.com/elisaxxygao/foodrecsysv1.
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recipe images into their associated categories (e.g., chicken rice) as in Reference [13]. We select
the optimal hyper-parameters of our model according to the metric of AUC on the validation
set. Dimension of the embedding for users, recipes, ingredients, and calories is 64. For the self-
supervised masked ingredient prediction, we set the probability of masking as 0.2 and the weight
(i.e., the balance coefficient in Equation (13)) for the self-supervised loss as 0.008. The number
of the multi-head self-attention, feed forward layers, and attention heads are set to 2. For the
calories of recipes, we transform the continuous value of calorie into separate levels using uniform
quantization. Specifically, the calories of recipes range from 50 to 4,700 and we divide them into
10 calorie levels. For example, for a certain recipe with the calories of 1,000, its calorie level is

	 1,000−50
4,700−50 × 10
 = 2. For the training of our model, we use Adam optimizer [29] with a learning

rate of 0.0005 and train the model for 30 epochs with the batch size of 512. The weight decay is set
to 0.01, 0.1, 0.5, and 0.01 for embeddings (users, recipes, ingredients, and calories), weights of the
image mapping layer, weights of the MLP, and weights of the GNNs, respectively.

4.2.3 Comparison Methods. To verify the effectiveness of our proposed method, we compare
the performance with the following baselines:

• LDA [56]: This method adopts a classical probabilistic factorization model, Latent Dirichlet

Allocation (LDA), where users are regarded as documents and recipes as words.
• MF-BPR [47]: This is a standard matrix factorization method optimized by Bayesian Per-

sonalized Ranking (BPR) loss. It uses the ID embeddings for recipes without considering
content information.
• FM [46]: The Factorization Machine (FM) is a competitive model that applies a sum of

pairwise inner products of user and item features to obtain the prediction score.
• VBPR [22]: This method considers the visual feature of the recipe item and incorporates the

pre-trained image feature into MF-BPR.
• FM-VBPR [13]: This method incorporates visual features into factorization machines.
• PUP [73, 74]: This method is a graph-based solution for general recommendation, which

incorporates the price and category of items into the user-item graph and explicitly captures
the user’s preference on price with GCNs. For food recommendation, we replace the price
and category nodes in the graph with calorie and ingredient nodes.
• HAFR [13]: Given the user-recipe interactions, recipe ingredients, and recipe images, this

method adopts a neural network solution equipped with hierarchical attention mechanism
to fully investigate the impact of different factors on user’s food decision-making process.
Considering the definition of our task, HAFR is the only food recommendation method that
meets the requirements.
• Cal-HAFR: This method incorporates the calorie factor to HAFR, where the calories are used

as a component of the recipe to learn the recipe representation with hierarchical attention.
We term this method as Cal-HAFR. We design this method to show whether the calorie-
aware food recommendation can be simply accomplished by the state-of-the-art method.

We add a summary of different methods in Table 2. As shown, we not only compare our
method with existing state-of-the-art food recommendation methods (e.g., FM-VBPR and HAFR),
but also compare with popularly used recommendation methods in other domains, e.g., movies and
E-commerce.

4.3 Performance Comparison

We first compare the proposed method with all the baselines on Allrecipes dataset with respect to
the metric of AUC, NDCG@10, and Recall@10. Table 3 reports the results on personalized food
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Table 2. Summary of the Compared Methods in Our Experiment

Method Recipe Image Ingredient Calorie Method Type Domain

LDA [56] × × × LDA Text

MF [47]-BPR × × × MF Movies

FM [46] ×
√

× FM Movies

VBPR [22]
√

× × MF E-commerce

FM-VBPR [13]
√ √

× FM Food

PUP [73, 74]
√ √ √

GNN E-commerce

HAFR [13]
√ √

× NN Food

Cal-HAFR
√ √ √

NN Food

Ours
√ √ √

GNN Food

“LDA” denotes “Latent Dirichlet Allocation.” “MF” denotes “Matrix Factorization.” “FM” denotes “Factorization

Machine.” “GNN” denotes “Graph Neural Network.” “NN” denotes “Neural Network.” “Domain” represents the field in

which the method was first used.

Table 3. Performances of Different Methods for Personalized
Food Recommendation on the Allrecipes Dataset

Methods
Allrecipes

AUC NDCG@10 Recall@10

LDA 0.5154 0.0376 0.0601

MF-BPR 0.5622 0.0376 0.0567

FM 0.5710 0.0396 0.0607

VBPR 0.5808 0.0296 0.0431

FM-VBPR 0.5840 0.0372 0.0580

PUP 0.6526 0.0441 0.0676

HAFR 0.6435 0.0455 0.0674

Cal-HAFR 0.6562 0.0482 0.0708

Ours 0.7212∗ 0.0569∗ 0.0883∗

Improvement% 9.91% 18.05% 24.72%

Higher is better for all metrics. *denotes the statistical significance

for p < 0.05.

recommendation. It is worth noting that we show the experimental results of LDA, MF-BPR, FM,
VBPR, FM-VBPR, HAFR reported in Reference [13]. To compare with PUP [73, 74], we reproduce
the method based on the article and report the performance on Allrecipes dataset. From the results,
we have the following observations:

• MF and LDA perform worse than other baselines. Both of the two methods predict the user
preference on one recipe only based on user-recipe interactions, which justifies the benefit
of modeling the recipe content.
• Among the baselines, Cal-HAFR performs the best, which verifies the advantage of jointly

modeling the user-recipe interactions and the recipe contents. Besides, compared with
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Fig. 3. Performances of HAFR, Cal-HAFR, and our method in Top-K recipe recommendation with different
settings of K on NDCG@K and Recall@K metrics.

Table 4. Ablation Study on the Importance of the Self-supervised Ingredient
Prediction and the Modeling of the Calorie Factor

Method AUC NDCG@10 Recall@10 NDCG@20 Recall@20 NDCG@50 Recall@50

Ours w/o ssip 0.6982 0.0464 0.0710 0.0643 0.1312 0.1004 0.2752

Ours w/o cal 0.6860 0.0472 0.0714 0.0658 0.1339 0.0995 0.2692

Ours 0.7212 0.0569 0.0883 0.0774 0.1570 0.1165 0.3129

Ours w/o cal represents the method without considering calorie information. Ours w/o ssip represents the method

without using the self-supervised ingredient prediction.

HAFR, Cal-HAFR achieves a superior performance, which demonstrates the effectiveness
of incorporating calorie factor of the recipe in food recommendation.
• By comparing our method with all the baselines, it is clear to see that Ours performs con-

sistently better than others by a large margin over all metrics. Specifically, Ours achieves
relative improvements of 9.91%, 18.05%, 24.72% over the strongest baseline (i.e., Cal-HAFR),
regarding to AUC, NDCG@10, and Recall@10. The results justify the effectiveness of our
framework, where we build a heterogeneous graph to explicitly capture users’ calorie aware-
ness and model the complex relationships between ingredients with self-supervised learn-
ing.

As illustrated in Figure 3, we present the performance of Top-K recipe recommendation where
the ranking position K ranges from 10 to 50. It can be seen that our method consistently performs
better than HAFR and Cal-HAFR on both NDCG and Recall metrics. The results demonstrate the
robustness of our method.

4.4 Ablation Study

To better understand the proposed method, we further evaluate its key contributions, i.e., the self-
supervised ingredient prediction module and the incorporated calorie factor. Specifically, we com-
pare two variants of Ours by removing the self-supervised ingredient prediction (Ours w/o ssip)
and the calorie information of the recipe (Ours w/o cal). We present the performance of Ours and
its variants in Table 4. From the results, we have the following observations:

• By applying the self-supervised ingredient prediction, the full method outperforms Ours
w/o ssip. The good performance verifies that adopting the masked ingredient prediction is
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Table 5. Ablation Study on Calorie Information of Different User Groups

User Groups Method AUC NDCG@10 Recall@10

A
Ours 0.6925 0.0462 0.0713

Ours w/o cal 0.6473 0.0390 0.0607

B
Ours 0.6615 0.0406 0.0393

Ours w/o cal 0.6589 0.0418 0.0383

Users with biased calorie preference belong to group A. Users with unbiased

calorie preference belong to group B.

beneficial for the food recommendation. It also indicates the effectiveness of modeling the
relationship between ingredients, which further enhances recipe representations.
• Compared with Ours w/o cal, the full method achieves a superior performance. The good

performance demonstrates that it is necessary and crucial to incorporate the calorie factor
of recipes into the food recommendation.

Besides, we further conduct an experiment based on different user groups to directly demon-
strate the effectiveness of the proposed method in considering the user’s preference on calories.
We first divide users into two groups, those with biased calorie preference (Group A) and those
with unbiased calorie preference (Group B). The division standard is that, for a user, if the differ-
ence between the maximum and minimum calorie level of the foods he has chosen is less than or
equal to a fixed threshold (set to 1 in the experiment), the user belongs to the group with biased
calorie preference. Otherwise, the user belongs to the other group. Then, we build the training,
validation, and test datasets for each user group. We independently conduct the ablation study on
different user groups. We report the results in Table 5. We can see that if we remove the calorie
data from a group of users with biased calorie preference (A), then the performance of our model
decreases a lot. For the group of users with unbiased calorie preference (B), considering calorie
information has relatively less impact on the performance. The experimental results demonstrate
the effectiveness of the proposed method. In addition, although the food calorie depends on the
content and amounts of the ingredients, the results demonstrate that it is not easy to directly infer
the calorie information from the ingredients to help the recommendation model without explicit
calorie annotations.

4.5 Performances over Recipes of Different Popularity Levels

As we all know, there is a big difference in the popularity of different recipes, which will signifi-
cantly affect the recommendation performance of the target recipe. To investigate the robustness
of different methods on this problem, we evaluate the performance over recipes with different pop-
ularity levels. Specifically, we divide the test set into four groups based on the number of ratings
of each recipe, which is denoted as N . Then, we evaluate different methods over the four groups
under the metric of AUC. The performance of different methods is presented in Figure 4. We have
the following observations:

• The proposed method outperforms two strong baselines (HAFR and Cal-HAFR) in all the
groups consistently, which demonstrates the effectiveness and robustness of our method.
Modeling the relations between ingredients leads to better recipe representations. Besides,
Cal-HAFR achieves better results than HAFR, which again verifies the necessity of consid-
ering users’ calorie preference for food recommendation.
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Fig. 4. Performances over recipes with different popularity levels. N denotes the number of ratings of each
recipe.

• In general, the performance of models increases with more ratings for each recipe, espe-
cially for the group with N > 50, where all methods have significant improvements. The
results show that users’ preference is more easy to be captured with more historical user-
recipe interactions. The improvement of our method is more obvious, which again shows
the superiority of our method in user preference modeling with sufficient data.

4.6 Evaluation of Calorie Preference Modeling

We add an evaluation metric based on ground-truth calories, which is named as Calorie Error

Ratio (CER). The CER can be computed as follows:

CER =
1

NU

NU∑
u

|Calupred − Calugt |
Calugt

, (17)

where Calupred denotes the calorie of the recipe with the highest recommendation score, Calugt de-

notes the ground-truth calorie, and NU denotes the number of users.
Table 6 reports the CER results of our model and the existing state-of-the-art food recommenda-

tion method HAFR. As shown, our model achieves better results than HAFR, which demonstrates
the effectiveness our model in modeling the users’ preference of calories.

4.7 Hyper-parameter Study

We study the effect of two important hyper-parameters on the performance of our proposed
method.

4.7.1 Fineness of the Calorie Factor. Calories of the recipe collected from food-sharing plat-
forms are generally continuous. In our work, we discretize the calorie information into separate
levels using uniform quantization, as illustrated in Section 4.2.2. The number of calorie levels is a
crucial hyper-parameter, which decides the fineness of the calorie factor in our proposed method.
We conduct experiments on different calorie levels to study how the granularity of the calorie
factor influences the food recommendation performance. We present the results with different
calorie levels in Figure 5. The number of calorie levels ranges from 2 to 100, and we adopt AUC,
NDCG@10, and Recall@10 as the metrics. It can be seen that the proposed method achieves the
best performance when the number of calorie level is set as 10. When we set the number of calorie
levels as 2 or 5, the calorie factor is not properly incorporated, hence the overall performance is
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Table 6. Comparison of
Ours and HAFR on CER

Method CER

HAFR 0.7824

Ours 0.7206

Fig. 5. Performances of our method with different number of calorie levels.

Fig. 6. Performances of our method with different settings of the balance coefficient αmulti defined in the
objective function.

inferior to the best model. However, if we raise the number of calorie levels too high, then the
overall trend is declining, because too many calorie levels will lead to long-tailed classes that are
difficult to correctly recognize. The model with 50 levels performs slightly worse than that with
100 because some calorie levels may have too large intra-class variation.

4.7.2 Effect of the Coefficient αmulti in Equation (13). The coefficient αmulti in Equation (13)
balances the importance of the self-supervised ingredient prediction loss and the recommenda-
tion loss. To explore the impact, we investigate the model performance by adjusting the coefficient
αmulti during training. We present the performance of our method with different values of the co-
efficient αmulti in Figure 6. It can be seen that our model achieves the best performance when we
set the coefficient as 0.008. When the coefficient has smaller value, the model’s performance de-
creases, since the self-supervised ingredient prediction is not properly trained. When we increase
the coefficient larger than the optimal setting, the performance also decreases, since focusing too
much on self-supervised ingredient prediction will definitely hurt the final recommendation.

4.8 Time Efficiency Analysis

We provide the time efficiency of our method and Cal-HAFR, which performs the best among
the baselines. As shown in Table 7, it takes more time for our model in the training phase due
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Table 7. Comparison of Ours and Cal-HAFR
on Time Efficiency

Method Train Inference

Cal-HAFR 0.03 sec/batch 0.01 sec/user

Ours 0.10 sec/batch 0.01 sec/user

to the graph structure and self-supervised ingredient prediction. During the inference, our model
achieves better results while maintaining the same time cost as the baseline method.

5 CONCLUSION

In this article, we propose a Self-supervised Calorie-aware Heterogeneous Graph Network

(SCHGN) to solve the task of food recommendation, which can better model the relations of in-
gredients and capture the user’s preference on food calories simultaneously. To be specific, we
build a heterogeneous graph to explicitly present the complex relations among users, recipes, in-
gredients, and calories. We explore the co-occurrence relation of ingredients in different recipes
via self-supervised ingredient prediction. Meanwhile, we highlight the significance of the user’s
preference on calories in food decision-making process and learn calorie-aware user represen-
tations with hierarchical message passing to dynamically explore user’s preference of taste and
calories. Extensive experiments have been conducted by comparing our method with other com-
peting methods on a benchmark dataset Allrecipes. The experimental results demonstrate that
our method consistently outperforms the state-of-the-art models. Besides, ablation experiments
verify the usefulness of the proposed self-supervised ingredient prediction and the incorporated
calorie factor. In the future, we will (1) investigate how to make full use of multimodal informa-
tion of recipe to learn better recipe representations with self-supervised learning; (2) incorporate
the side information of users (e.g., age and health) and other nutrition factors of food into the
recommendation framework.
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