
Robot Navigation among External
Autonomous Agents through Deep

Reinforcement Learning using Graph
Attention Network

Tianle Zhang ∗,∗∗ Tenghai Qiu ∗,∗∗ Zhiqiang Pu ∗,∗∗

Zhen Liu ∗,∗∗ Jianqiang Yi ∗,∗∗

∗ School of Artificial Intelligence, University of Chinese Academy of
Sciences, Beijing 100049, China (e-mail: tianle-zhang@outlook.com,

tenghai.qiu@ia.ac.cn, zhiqiang.pu@ia.ac.cn, liuzhen@ia.ac.cn,
jianqiang.yi@ia.ac.cn).

∗∗ Institute of Automation, Chinese Academy of Sciences, Beijing,
100190, China

Abstract: Finding collision-free and efficient paths in an uncertain dynamic environment is a
challenge for robot navigation tasks, especially when there are external autonomous agents that
also have decision-making abilities in the same environment. This paper develops a novel method
based on DRL with graph attention network (GAT) to solve the problem of robot navigation
among external autonomous agents (other agents). Specifically, GAT is adopted to describe the
robot and other agents as a specific graph, and extract the spatial structural influence features of
other agents on the robot from the graph. Multi-head attention mechanism is utilized to calculate
the weights of interactions between the robot and other agents. This GAT uses observations
of an arbitrary number of other agents in dynamic environments. Furthermore, the proposed
method is combined with optimal reciprocal collision avoidance to improve its safety in new
environments. Various simulations demonstrate that our method has good performance and
robustness in different environments.

Keywords: Robot navigation, deep reinforcement learning (DRL), graph attention network.

1. INTRODUCTION

With rapid developments in recent decades, robots play an
increasingly important role in life, such as service robots
and logistics robots. In a common mobile robot appli-
cation scenario, a robot faces the challenge of avoiding
collisions among pedestrians. The pedestrians not only
are taken as moving obstacles, but also make autonomous
decisions constantly. Since neither the robot nor pedes-
trians know the intents of the other, the trajectory of
the robot may easily oscillate. This phenomenon causes
the collision avoidance problem as a robot navigating in
a world of external autonomous agents (regarded as other
agents). In addition, when the robot have local observation
in uncertain dynamic environments and the communica-
tions among agents are limited, in order to reach the goal
efficiently and safely, the robot needs to perceive and an-
ticipate the policies and intents of other agents. These can
not be measured directly, but can be inferred indirectly.
Hence, robot navigation with safety and efficiency among
external autonomous agents with decision-making abilities
remains challenging.

In existing works, the research of robot navigation can
be roughly classified into two categories, i.e. non-learning
based and learning based methods. The non-learning based
methods are further divided into reaction based and tra-

jectory based methods. The former (van den Berg et al.
(2011); Fiorini and Shiller (1998)) only considers one-step
interactions with obstacles about the surrounding environ-
ment. For instance, optimal reciprocal collision avoidance
(ORCA)(van den Berg et al. (2011)) provides sufficient
conditions to avoid collisions in short term, which is an
valuable property. However, the reaction based methods
are short-sighted as they do not consider the future states
of other agents. These methods can lead agents to gen-
erate oscillatory and unnatural behaviors. In contrast,
the trajectory based method (Kuderer et al. (2012)) can
anticipate the future states of other agents. But, they need
to infer the intents of other agents (e.g. initial states and
goals) through planning feasible paths for all neighboring
agents in the environment. It is computationally expen-
sive and requires more information about the surrounding
environment.

Recent studies on robotic navigation have focused on
learning based methods that develop an effective and effi-
cient interaction rule by learning a value or policy function
that implicitly encodes cooperation behaviors (Chen et al.
(2017b)). Moreover, deep reinforcement learning (DRL)
is used to optimize behavior policy through maximizing
cumulative reward. The learning based methods on robot
navigation are also divided into two categories: sensor-
level and agent-level. The sensor-level methods (Long et al.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9600

(2018); Fan et al. (2018)) directly map the raw sensor
readings (2D laser scans or images) to desired, collision-
free steering commands with end-to-end training (Long
et al. (2017)). In the sensor-level methods, static and
dynamic obstacles are processed as the same. However,
dynamic obstacles have different characteristics from static
obstacles in practical environments. In contrast, the agent-
level methods map the observable states (e.g. shapes,
velocities, and position) of other agents to steering com-
mands (Everett et al. (2018); Chen et al. (2017b); Chen
et al. (2017a)). Agent-level representations of the world ex-
tracted from multiple sensors (e.g. cameras and lidar) can
express different motion characteristics of other agents.
Moreover, the policies and intents of other agents are in-
directly inferred with agent-level representations through
DRL. However, in most existing agent-level methods, the
robot receives information about the surrounding environ-
ment (e.g. the observable states of other agents) in the
form of a lumped vector with everything stacked together,
without utilizing the natural spatial structure of other
agents in the real environment.

In reality, a multi-agent system can be naturally described
as a graph structure. Meanwhile, since graph neural net-
work (GNN) can be implemented to extract features of
graph-structured data, it is widely used and deeply re-
searched in non-Euclidean space. Among GNN, graph at-
tention network (GAT)(Velickovic et al. (2017)) is a novel
GNN architecture that operates on graph-structured data,
leveraging masked self-attentional layers to address the
interactions of nodes in a graph. Therefore, it is a natural
idea that the graph-structure data of multiple agents can
also be operated through GNN.

In this paper, we propose a novel method based on
DRL with GAT to solve the problem of robot naviga-
tion among external autonomous agents that also have
decision-making abilities. Specifically, GAT is used to de-
scribe the robot and other agents as a special graph, and
extract the influence features of other agents on the robot
from the graph. In GAT, multi-head attention mechanism
is implemented to calculate the weights of interactions
between the robot and other agents. Furthermore, ORCA
is combined to improve the safety of the robot in new
environments. Simulation results demonstrate the benefits
of the proposed method.

2. PRELIMINARIES

In this section, the problem formulation of robot navi-
gation will be described in details, and then, the ORCA
method will be recapped briefly.

2.1 Problem Formulation

As shown in Fig. 1, a navigation task where one robot
(blue circle) need to find a collision-free path among n
external autonomous agents (blank circles) is investigated
in this paper. The red arrows represent their direction.
The robot with local observations can not communicate
with other agents. This can be expressed as a sequen-
tial decision-making problem in the framework of RL
(Chen et al. (2017b); Everett et al. (2018); Chen et al.
(2019)). For simplicity, we assume that the geometry

Fig. 1. Robot navigation among external autonomous
agents (other agents).

of the robot and other agents are modeled as a disc
with an actual shape radius. For the robot and other
agents, the position pi(t) = [pix(t), piy(t)], velocity vi(t) =
[vix(t), viy(t)] and radius ri can be observed by the others
(i = 0 represents the robot, i = 1, ..., n represents other
agents), and the goal position pg = [pgx, pgy], preferred
speed vpref and its direction Θ(t) is unobservable by
the others. Its own state of the robot is represented as
sself (t) = so0(t) + [pgx, pgy, vpref ,Θ(t)] in which so0(t) =
[p0x(t), p0y(t), v0x(t), v0y(t), r0] can be observed by other
agents. The states of other agents that can be observed
by the robot are so1(t), s

o
2(t), ..., s

o
n(t). We define sall(t) =

[sself (t), so(t)], where so(t) = [so0(t), s
o
1(t), s

o
2(t), ..., s

o
n(t)].

The action of the robot is defined as a(t) = v0(t).

Deep V-learning method defined in Chen et al. (2019)
is used to learn an approximate optimal value function,
V ∗(sall(t)). The value function implicitly encodes the
estimated time of the robot to its goal. Meanwhile, an
optimal policy, V ∗(sall(t)) is used to generate π∗(sall(t))
which is a function of state mapping optimal action,
sall(t) → a(t):

π∗(sall(t)) = argmax
a(t)

Rt(s
all(t),a(t)) + γ∆t·vpref

sall(t+∆t)

P (sall(t+∆t)|sall(t),a(t))

V ∗(sall(t+∆t))dsall(t+∆t)

(1)

where γ ∈ (0, 1) is a discount factor, ∆t is the time
step, P (sall(t+∆t)|sall(t),a(t)) is the probability of state
transition from time t to time t+∆t, and Rt(s

all(t),a(t))
is the reward received by taking actions in current state.
we improve the formulation of the sparse reward function
defined in Chen et al. (2017b) and Everett et al. (2018),

Rt(s
all
t ,at) =

1 if p0(t) = pg

−0.25 elseif dt < 0
(dt −D) ∗ 0.5∆t elseif dt < D
0 otherwise

(2)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9601

where D is the threshold of an uncomfortable distance
between the robot and other agents, and dt is the minimum
distance between the robot and other agents.

2.2 A Recap Of ORCA

In a nutshell, ORCA requires two steps to determine a
collision-free velocity v+

A for a robot A. Firstly, it computes
a set of velocities that form a permitted velocity space for
the robot. If the robot selects a velocity in the permitted
velocity space, it will not collide with other agents in a
time horizon τ . The permitted velocity space is denoted
as ORCAτ

A. Next, among these permitted velocities, the
robot selects the collision-free velocity as a velocity that
locates inside the permitted velocity space and is closest

to its current preferred velocity vpref
A , i.e.,

v+
A = argmin

v∈ORCAτ
A

||v − vpref
A ||. (3)

where vpref
A is the preferred velocity used to guide toward

its goal pg. Generally, for good performance, the param-
eters of ORCA need to be tuned carefully for different
scenarios.

3. APPROACH

In this section, we propose a new method to solve the
problem of robot navigation among external autonomous
agents (other agents). The method involves a two-stage
design, including DRL stage and DRL combined with
ORCA stage. In the first stage, a DRL with GAT method
is designed. Specifically, GAT is adopted to extract the
influence features of other agents on the robot, and then,
concatenating the influence features and the its own state
of the robot inputs to a value network which estimates the
value function. Finally, the DRL velocity of the robot is
obtained by (1). In the second stage, the velocity obtained
in the first stage is regarded as the preferred velocity of
ORCA, and the final velocity performed of the robot is
acquired through the ORCA method.

In the following, GAT is firstly introduced, and then, a
navigation network architecture is presented. Finally, the
combined framework of DRL and ORCA is given.

3.1 Graph Attention Network

In existing works, the information of an environment is
mostly stacked together, which does not make full use
of the spatial graph structure of the environment. In
this work, GAT is adopted to describe the environment
(the robot and other agents) as a special graph and
extract features from the graph. Meanwhile, multi-head
attention mechanism is adopted to compute the weights of
interactions between the robot and other agents. Finally,
the influence features of other agents on the robot are
obtained. The policies and intentions of other agents are
encoded implicitly by the influence features.

we define a graph G := (V,E), where each node v ∈ V is
either other agent or the robot, and there exists an edge
e ∈ E between two nodes if the nodes can detect each
other through their own sensors (e.g. laser or camera).

!"#!$#

!%#

!&# !'#

!(#

!)"#

*+,

*+-

*+.
*+/

*+0

*++

�������

Fig. 2. Graph Attention Network with Multi-Head Atten-
tion Mechanism.

Static obstacles can be regarded as agents with speed
of 0. Meanwhile, in order to make states more obvious,
the observation states of the robot and other agents are
transformed into:

soi = [pix, piy, vix, viy, ri, di, ri + r0], i = 0, 1, ..., n (4)

where so0 is the state of the robot that can be observed by
other agents, so1, s

o
2, ..., s

o
n are the states of other agents

that can be observed by the robot, r0 is the radius of
the robot, r1, r2, ..., rn are the radius of other agents, and
d1, ..., dn are the distance between other agent 1, ..., n and
the robot respectively. Moreover, d0 = 0 represents the
distance between the robot and itself.

Each node vi has its own feature vector soi . Meanwhile,
Each edge has a corresponding attention weight. Attention
weights matrix α = {αij} can be obtained through two
steps. First of all, attention correlation coefficients are
calculated as:

cij =

LeakyReLU(aT [soiW ||sojW]) if Aij = 1
0 otherwise

(5)

where A = {Aij} is the adjacency matrix of the graph, ||
is the concatenation operation, LeakyReLU is a nonlinear
activation function, W is a learnable parameter matrix
of the corresponding input linear transformation and aT

is a learnable parameter vector. It should be noted that
both W and aT are obtained through DRL which will be
addressed later. We only compute cij for nodes j ∈ Ni,
where Ni is some neighborhood of node vi in the graph.
Next, the attention weights computed by the attention
mechanism can be expressed as:

αij =
exp(cij)

k∈Ni
exp(cik)

(6)

According to the above, the features of each node and at-
tention weights between nodes have been obtained. Hence,
we can calculate the influence features of other nodes on
the node i, i.e.,

s̃oi = σ(

j∈Ni

αijs
o
jW) (7)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9602

where σ is a nonlinear activation function. Since one-
head attention mechanism is unstable in learning process,
multi-head attention mechanism can be used to improve
stability in training. Specifically, K independent attention
mechanisms execute the transformation of (7), and then
their features are averaged, leading to the following output
features representation:

s̃oi =
1

K

K

k=1

σ(

j∈Ni

αk
ijs

o
jW

k) (8)

where K is the head number of attention mechanism (i.e.
K-head attention mechanism). In this work, we only need
to obtain the influence features (i.e. s̃o0) of other agents
on the robot in the set of GAT output s̃oi . For example,
the graph attention network with three-head attention
mechanism and 5 other agents is shown in Fig. 2. The
blue circles represent 5 other agents, and the green circle
represents the robot. so1, s

o
2, s

o
3, s

o
4, s

o
5 are the observation

states of other agents, and so0 is the observation state of
the robot. The influence features of 5 other agents on the
robot, s̃o0, are obtained through GAT.

3.2 Navigation Network Architecture

In this work, the proposed DRL network framework is
an end-to-end network architecture. In the process of
the robot navigation, the intentions and policies of other
agents are unknown. Particularly, the number of other
agents in the environment is uncertain. In each step,
actions of other agents will affect the behavior of the robot.
Hence, it is important to process all observation states of
other agents.

To solve these problems, as described in Section 3.1,
GAT is adopted to describe the robot and other agents
as a specific graph and extract the influence features of
other agents on the robot from the graph. The influence
features implicitly encode the intentions and policies of
other agents. Meanwhile, since the parameters of GAT are
shared and independent of the number of nodes, it can
accept the inputs of the observation states of any number
of other agents.

Based on the GAT module, the navigation network archi-
tecture is designed as Fig. 3. Inputing the observation state
of other agents and the robot, soi , into GAT, the influence
features of other agents on the robot, s̃o0, are obtained in
the output of GAT. s̃o0 is fed into a fully-connected layer
which outputs the feature vector, sg, which represents the
features extracted from the environment around the robot.
Then, se is formed through concatenating sg with its own
state of the robot, s̃self , which is expressed as:

s̃self = transform(sself) = [dg, vpref ,Θ, v0x, v0y, r0] (9)

where dg = ||pg − p0(t)|| represents the distance between
the robot and its goal position. The feature vector se

contains information about the robot and the environment
around it. Then, se is fed into a value network consisting
of three fully-connected layers. Finally, the value network
outputs the estimated value of current state. Under the

���

��

��

���

���

��

���
��

!"
��

!#$

!%$!&$

!'$!($

!)$

!*%$!*&$

!*'$!*($

!*)$

!*#$

!+

!*,+-.

����

Fig. 3. Network architecture of the proposed method.

�
� 	
��

�����

!"#$% ������

���� �����

����
������� ��������

���������
������

!"(')

Fig. 4. Illustration of the combined framework of DRL and
ORCA

condition of getting the value, the DRL velocity vDRL
0 (t)

of the robot is obtained by (1).

In the training phase, it is difficult to train the value
network from absolute random parameters. Therefore, this
paper proposes a two-stage training method which in-
cludes imitation learning and RL. In the first stage, ORCA
is used as a model-guidance method that performs in the
environment and generates the demonstration trajectories.
Then, the value network is trained by imitation learning
on the state-value pairs generated from the demonstration
trajectories. After that, RL is implemented based on the
first stage work. A behavior policy will be gradually opti-
mized in this stage.

3.3 Combined Framework of DRL and ORCA

The instability of DRL in practical application is in-
evitable. On the contrary, the ORCA method provides
sufficient conditions for collision avoidance in navigation
tasks, and it is relatively safe for robot navigation in
practical application. Hence, we can combine DRL with
ORCA to improve the safety of the robot navigation.
The most important benefit of the combination of DRL
and ORCA is the combination of short-term benefits
and longer-term returns. Since the DRL method can be
used to maximize the cumulative reward of the current
state, the robot navigating through DRL receives long-
term benefits. Meanwhile, ORCA provides the guarantee
of collision avoidance in a reaction-based mode when DRL
does not work in reality. Metaphorically, DRL is more like
a long-term planner, while ORCA is a short-term executor.
Therefore, The method combining DRL with ORCA is
effective and efficient.

The proposed combined framework of DRL and ORCA
is shown in Fig. 4. In each step, first of all, the velocity
vDRL
0 (t) is obtained through the DRL method proposed

in Section 3.2 at time t. After that, vDRL
0 (t) is considered

as the preferred velocity of ORCA. The robot selects

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9603

the collision avoidance velocity as the velocity within the
permitted velocity space and closest to vDRL

0 (t), i.e.,

v0(t) = argmin
v∈ORCAτ

A

||v − vDRL
0 (t)||. (10)

where v0(t) is the final velocity performed of the robot.
Therefore, considering the long-term benefits and short-
term collision avoidance, the robot finally chooses the
suitable velocity v0(t).

4. SIMULATIONS

4.1 Simulation Settings

The navigation network in this work is implemented with
Pytorch in Python. Meanwhile, a simulation environment
for robot navigation among external autonomous agents
is established in Python. ORCA is used as the policy
method of other agents in the simulation environment,
and the policy of the robot is our proposed method. In
the beginning, other agents are randomly positioned on
circle of radius 4 m. Their goals and starting positions are
symmetrical about the original point. That is, the simu-
lation environment of training is circle crossing scenarios.
The other agents and the robot have holonomic kinematic
constraints, which means they can move in any direction.

Two state-of-the-art methods, ORCA (van den Berg et al.
(2011)) and LSTM-RL (Everett et al. (2018)), are imple-
mented as baseline methods. In the LSTM-RL method,
the states of other agents are fed in reverse order of
distance to a LSTM network, meaning that the closest
other agent should have the biggest effect on the robot.
The main difference between our method and the basic
methods is that the features of the environment states
are extracted with GAT and the combination of DRL and
ORCA is implemented. We refer to the method with GAT
as GATRL and the method combining GATRL and ORCA
as GATRL-ORCA for the experiment.

4.2 Implementation Specifications

We set that the sizes of the learnable parameters W and
a are (7,100) and (200,1) respectively. The GAT inputs
the 7-dim states of the agent (4), and outputs a 100-
dim feature (s̃oi in Fig. 3). There is six-head attention in
attention mechanism (K = 6). The activation functions
used in value networks are RELU. The time interval of
each step is ∆t = 0.25. The threshold of uncomfortable
distance is D = 0.2. The elements in adjacency matrix
A are all one. Meanwhile, in the process of training,
when one of the following three conditions is satisfied, the
episode will be terminated, i.e.: successful arrival at the
goal, collision with other agents and timeout (T = 25)
respectively.

4.3 Simulation Results

In order to train a better generalization model, in the
training phase, a training simulation experiment is de-
signed to make the robot navigate among five external
autonomous agents with decision-making ability in circle

crossing scenarios. To fully evaluate the effectiveness and
efficiency of the proposed method, we test our proposed
method and compare it with baseline methods. The test
results are shown in Table 1.

As expected, the GATRL-ORCA method shows good
performance in most metrics (success rate, safety level
and cumulative return). This is because it not only has
the long-term benefits of DRL, but also has the guarantee
of short-term collision avoidance through ORCA. On the
contrary, both GATRL and LSTMRL have higher failure
rate than GATRL-ORCA due to the instability of the DRL
method in the new environment and there is no guarantee
of collision avoidance. Since they consider the long-term
situation, their cumulative returns are relatively high.
Then, the ORCA method provides a collision avoidance
guarantee in the short term but does not consider the
long-term situation, so the cumulative return is relatively
low. Meanwhile, Since the safety distance between the
robot and other agents is not considered, the duration of
discomfort is longer than other methods, and the average
minimum distance is also very small. In addition, GATRL
is superior to LSTMRL in terms of navigation time and
cumulative returns performance. Our analysis shows that
the LSTMRL method considers that the closest agent to
the robot has the greatest impact on the robot, but does
not consider the relationship between the robot and other
agents. In contrast, since GATRL uses GAT to extract
the influence features of other agents on the robot, the
robot can have a deeper understanding of the environment
around it. Meanwhile, GATRL-ORCA is outperforming
the GATRL in terms of both the cumulative reward and
the success rate. Though not by a large margin, this
improvement indicate the benefits of combining GATRL
with ORCA.

In order to verify the stability and generalization of our
method, our method was performed in square crossing
scenarios, where the number of other agents increases from
5 to 10. The results are shown in Table 2. The data shows
that our method has no failure cases when the number of
other agents is 5 in our simulation, and the robot can reach
the goal fast and get a high cumulative reward. Meanwhile,
there are no collision cases in a more complex environment
where the number of other agents is 10. Therefore, our
method has good robustness in dynamic and complex
environments.

What is more, the proposed method can also be extended
to a decentralized multi-agent system without communica-
tion. A multi-agent system simulation environment where
each agent with local observation uses a common policy
is established. Agents share all the learnable parameters
including those of graph attention network and value net-
work. At each step, since each agent receives different
observations, sharing parameters does not prevent them
from behaving differently. Then, agents can avoid collision
with each other and reach their respective goals. The test
results of simulation is shown in Table. 3. As the number
of agents increases, the method also shows a high success
rate. Meanwhile, from the analysis of average minimum
distance and discomfort frequency data, we can see that
they took more cautious actions. Thence, our method
framework can be successfully applied to decentralized
multi-agent systems without communication.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9604

Table 1. Performance of baseline methods and our method in circle crossing scenarios with five
other agents. Discomfort frequency means duration where the robot is too close to other agents.
”Average min dis” refers to as average minimum distance between the robot and other agents.
Extra time to goal is computed on successful cases. ’Reward’ refers to as the average cumulative

reward of the robot

Methods Extra time to goal (s) (Avg /
75th / 90th percentile)

% Discomfort frequency /
Average min dis (m) / Reward

% failures(% collisions / %
timeout)

ORCA 9.97/10.50/11.00 28/0.07/0.2601 0.0 (0.0 / 0.0)

LSTMRL 11.65/12.25/13.50 6/0.11/0.2662 6.0 (6.0 / 0.0)

GATRL (Ours) 9.83/10.75/11.50 11/0.11/0.3096 6.0 (6.0 / 0.0)

GATRL-ORCA (ours) 10.72/11.50/12.75 10/0.11/0.3127 0.0 (0.0 / 0.0)

Table 2. The test performance of the GATRL-ORCA method (ours) in square crossing scenarios

Number of other agents Extra time to goal (s) (Avg /
75th / 90th percentile)

% Discomfort frequency /
Average min dis (m) / Reward

% failures(% collisions / %
timeout)

5 10.07/10.75/12.25 12/0.11/0.3317 0.0 (0.0 / 0.0)

10 11.20/12.25/14.75 25/0.11/0.2457 3.0 (0.0 / 3.0)

Table 3. Navigation performance in decentralized, non-communicating multi-agent system
through the GATRL-ORCA method (ours)

Number of agents Extra time to goal (s) (Avg /
75th / 90th percentile)

% Discomfort frequency /
Average min dis (m) / Reward

% failures(% collisions / %
timeout)

3 14.08/15.00/16.25 5/0.13/0.3240 7.0 (3.0 / 4.0)

4 15.33/16.50/19.00 8/0.14/0.3144 13.0 (4.0 / 9.0)

5 12.92/14.00/15.75 17/0.13/0.3457 2.0 (2.0 / 0.0)

6 16.16/18.25/19.50 20/0.13/0.3077 15.0 (2.0 / 13.0)

5. CONCLUSION

In this work, GATRL-ORCA is proposed to deal with the
problem of robot navigation among external autonomous
agents. Specifically, GAT is adopted to describe the robot
and other agents as a specific graph, and extract the influ-
ence features of other agents on the robot from the graph.
The different influence weights of other agents on the
robot are computed with multi-head attention mechanism.
Furthermore, the combined framework of DRL and ORCA
is implemented to enhance the safety of our method in new
environments. Our method shows good performance and
robustness in dynamic, changeable environments.

6. ACKNOWLEDGMENTS

This work was supported by the National Key Re-
search and Development Program of China under Grant
2018AAA0102402 and 2018AAA0101005, and Innovation
Academy for Light-duty Gas Turbine, Chinese Academy
of Sciences, No. CXYJJ19-ZD-02.

REFERENCES

Chen, C., Liu, Y., Kreiss, S., and Alahi, A. (2019). Crowd-
robot interaction: Crowd-aware robot navigation with
attention-based deep reinforcement learning. In 2019
International Conference on Robotics and Automation
(ICRA), 6015–6022.

Chen, Y.F., Everett, M., Liu, M., and How, J.P. (2017a).
Socially aware motion planning with deep reinforcement
learning. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 1343–1350.

Chen, Y.F., Liu, M., Everett, M., and How, J.P. (2017b).
Decentralized non-communicating multiagent collision
avoidance with deep reinforcement learning. In 2017

IEEE International Conference on Robotics and Au-
tomation (ICRA), 285–292.

Everett, M., Chen, Y.F., and How, J.P. (2018). Motion
planning among dynamic, decision-making agents with
deep reinforcement learning. In 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 3052–3059.

Fan, T., Long, P., Liu, W., and Pan, J. (2018). Fully
distributed multi-robot collision avoidance via deep re-
inforcement learning for safe and efficient navigation in
complex scenarios. CoRR, abs/1808.03841.

Fiorini, P. and Shiller, Z. (1998). Motion planning in
dynamic environments using velocity obstacles. The
International Journal of Robotics Research, 17(7), 760–
772.

Kuderer, M., Kretzschmar, H., Sprunk, C., and Burgard,
W. (2012). Feature-based prediction of trajectories for
socially compliant navigation.

Long, P., Fan, T., Liao, X., Liu, W., Zhang, H., and Pan,
J. (2018). Towards optimally decentralized multi-robot
collision avoidance via deep reinforcement learning. In
2018 IEEE International Conference on Robotics and
Automation (ICRA), 6252–6259.

Long, P., Liu, W., and Pan, J. (2017). Deep-learned
collision avoidance policy for distributed multiagent
navigation. IEEE Robotics and Automation Letters,
2(2), 656–663.

van den Berg, J., Guy, S.J., Lin, M., and Manocha, D.
(2011). Reciprocal n-body collision avoidance. In
C. Pradalier, R. Siegwart, and G. Hirzinger (eds.),
Robotics Research, 3–19. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. (2017). Graph attention net-
works. ArXiv, abs/1710.10903.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9605

