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Abstract— In this paper, we propose a novel distributed
method based on attention-based deep reinforcement learn-
ing using individual reward shaping, for multiple unmanned
aerial vehicles (UAVs) cooperative short-range combat mission.
Specifically, a two-level attention distributed policy, composed of
observation-level and communication-level attention networks,
is designed to enable each UAV to selectively focus on im-
portant environmental features and messages, for enhancing
the effectiveness of the cooperative policy. Moreover, due to
the high complexity and stochasticity of the UAV combat
mission, the learning of UAVs is tricky and low efficient. To
embed knowledge to accelerate the policy learning, a potential-
based individual reward function is constructed by implicitly
translating the individual reward into the specific form of
dynamic action potentials. In addition, an actor-critic training
algorithm based on the centralized training and decentralized
execution framework is adopted to train the policy network
of UAV maneuver decision. We build a three-dimensional UAV
simulation and training platform based on Unity for multi-UAV
short-range combat missions. Simulation results demonstrate
the effectiveness of the proposed method and the superiority of
the attention policy and individual reward shaping.

I. INTRODUCTION

With the characteristics of low cost, strong mobility, high
concealment and no pilot control, unmanned aerial vehicles
(UAVs) are more and more widely used to replace manned
aircraft to perform military missions such as detection,
monitoring, and air combat [1], [2]. In recent years, UAV air
combats have been explored because of the high complexity
and uncertainty [3]. Moreover, multi-UAV cooperative air
combats have become a research hotspot due to the limita-
tions of single UAV’s battle capabilities [4]. In particular,
each UAV need to cooperate with the allies to automatically
make maneuver decisions according to the situation faced,
for realizing multi-UAV autonomous cooperative combat.
Because of the highly dynamic and uncertain maneuvers of
enemies and the complexity of UAV’s maneuver model, the
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multi-UAV cooperative combats remains a great challenge.
Furthermore, multi-UAV cooperative short-range combat
(MUSC) is one of the most challenging application direction,
because the two sides in the short-range combat perform
the most violent maneuvers, making the situation change
very rapidly. In addition, due to the lower cost and stronger
maneuver compared with fixed wing UAV, a large number
of quadrotor UAV combats will be a potential possibility
of short-range air combats in the future [5], such as urban
warfare [6].

The existing methods of autonomous maneuver decisions
for UAV air combat can be divided into two categories:
rule-based methods and learning-based methods. The former
mainly makes decisions according to the given maneuver
rules in air combat, including game theory algorithm [7], in-
ference method [8], expert system method [9], etc. However,
many of these rule-based methods require prior models and
have poor real-time performance, which are difficult to adapt
to the complex and highly dynamic air combat scenarios
requiring autonomous and intelligent decision-making.

Due to the limitation of the rule-based methods, the
learning-based methods show great potential by introducing
deep reinforcement learning (DRL) [10] to generate au-
tonomous maneuver policies for UAV air combat. Yang et al.
[11] propose an autonomous maneuver decision model based
on deep Q network for the UAV short-range air combat.
Wang et al. [12] propose an autonomous maneuver strategy
of UAV swarms in beyond visual range air combat based
on DRL. However, they only realize one-to-one or multi-to-
one UAV combats instead of multi-to-multi UAV cooperative
air combat. Fortunately, Zhang et al. [13] build a multi-
UAV cooperative air combat maneuver decision model based
on DRL, and use bidirectional recurrent neural networks
to achieve communication among UAVs. But, they make
each UAV equally treat the observations and communication
messages from neighbors, which ignores that the importance
or influence of different neighbors to the UAV is different.
For instance, each UAV should pay attention to information
from the neighbors that have the greatest impact on it. To
address this issue, one efficient way is to utilize attention
mechanisms. Through attention mechanisms, each UAV can
focus on the features of important neighbors using the
assigned weights.

Besides, due to the high complexity and stochasticity of
the Multi-UAV air combat in three-dimensional space, the
policy learning of UAVs based on DRL is often tricky
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and low efficient, especially in large-scale UAV combat
scenarios. To deal with this problem, one natural idea is
to embed available behavior knowledge about air combats
to speed up the policy learning of UAVs [14]. However,
the direct embedding of knowledge will change the original
goal of team optimization, which lead to the generation of
suboptimal policies. In particular, the direct embedding of
individual behavior knowledge will cause individual UAV
selfish behaviors, which will destroy the cooperation of the
team.

Motivated by the aforementioned discussions, we propose
a new distributed method based on attention-based DRL
using individual reward shaping, named MUSC-ADRL-IRS,
to generate autonomous maneuver policies for the MUSC
mission. In particular, a two-level attention distributed pol-
icy, composed of observation-level and communication-level
attention networks, is designed to enable each UAV to selec-
tively focus on important environmental features and mes-
sages. Moreover, to embed knowledge for accelerating the
policy learning under the guarantee of optimization-objective
invariance, a potential-based individual reward function is
built by implicitly translating the individual reward into the
specific form of dynamic action potentials. Besides, an actor-
critic training algorithm based on the centralized training and
decentralized execution (CTDE) framework is used to train
the policy of UAV maneuver decision. In this paper, the main
contributions are listed as follows:

• Differing from simply integrating multiple rule-based
algorithms, a new distributed method based on attention-
based DRL using individual reward shaping is proposed
to produce autonomous maneuver policies for MUSC.

• A observation-level and communication-level attention
policy is designed to make each UAV selectively focus
on important features and messages from its neighbors,
instead of treating these information equally.

• Differing from embedding directly individual knowl-
edge to speed up the policy training, a potential-based
individual reward function is constructed with the re-
ward shaping method.

• A three-dimensional UAV simulation and training plat-
form based on Unity for MUSC is built, and simulation
results demonstrate the effectiveness and superiority of
the proposed method.

II. PROBLEM FORMULATION

As shown in Fig. 1, a MUSC mission, where n blue
ally UAVs need to battle m red enemy UAVs in a short-
range three-dimensional space and win (i.e., all the red
enemy UAVs are destroyed), is investigated in this paper.
For simplicity, the kinematic model [11] of each UAV i
(i ∈ 1, ..., n) is based on quadrotors [15], which is defined
in the ground coordinate system by,

ẋi = uicosφisinψi,
ẏi = uicosφicosψi,
żi = uisinφi,

(1)

Blue Ally UAV

Red Enemy UAV

𝑋𝑌

𝑍
𝑣%

𝑂

𝑟(

𝑢%
𝜙%
𝜓%

𝜁 Attack
Range

Attack 
Direction

Attack 
Direction

𝜂%
.

𝜂%/

Fig. 1. Illustration of multi-UAV cooperative short-range combat mission.

where xi, yi, zi represent the position coordinates of UAV i
in the coordinate system, ui represents the speed and ẋi, ẏi, żi

represent the values of the velocity vi on the three coordinate
axes, i.e. vi = [vx

i , v
y
i , v

z
i ] = [ẋi, ẏi, żi]. The pitch angle φi

represents the angle between the velocity vector and the
horizontal plane O− X − Y . The heading angle ψi represents
the angle between the projection of the velocity vector on
the O − X − Y plane and the OX axis. The position vector
is recorded as pi = [xi, yi, zi]. Moreover, the attack range
of UAV i is defined as a geometry, which is formed by a
sector with angle ζ and radius r f rotating 360 degrees about
its central axis. The vertex position of the geometry is the
position of the UAV. Meanwhile, the attack direction can
be moved through two angle control variables, attack pitch
angle η

p
i and attack azimuth angle ηa

i . Besides, to simulate
real combat situations, each UAV i has a health point bi,
which represents the health of the UAV and indicates how
well the UAV is and how much damage the UAV can take
before crashing. If the health point of UAV i becomes 0
or less, the UAV will crash. Enemies in the attack range
of UAV i will lose their health points continuously and
vice versa. According to the above description, [ui, φi, ψi],
[ηp

i , η
a
i ] are sets of motion and attack control variables,

respectively. Thus, the action of UAV i can be denoted as
ai = [ui, φi, ψi, η

p
i , η

a
i ], which can control the maneuvering of

the UAV.
In the MUSC mission, each UAV can only observe the

positions, velocities, health points of enemy UAVs and other
ally UAVs within its visual area with radius DO, and commu-
nicate with ally UAVs within its communication range with
radius DC . In this distribution environment, the ally UAVs
need to cooperate with each other to annihilate the enemy
UAVs through controlling their respective decision variables,
ui, φi, ψi, η

p
i , η

a
i .

This MUSC task can be formulated as a partially observ-
able Markov decision process [16] in a reinforcement learn-
ing framework. At each timestep, UAV i can obtain a partial
observation set oi = {ck |k ∈ NO

i }, where ck = [pk, vk, bk],
Ni is some neighborhood (including ally and enemy UAVs)
within the visual area of UAV i. Then, the UAV based on
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its own observation interacts with neighbor ally UAVs and
selects an appropriate action ai for defeating the enemies
cooperatively. Subsequently, each UAV can obtain a team
reward R from the environment after all ally UAVs take the
action. The team rewards reflect whether the joint actions
taken are conducive to the victory of allies. This paper
aims to design an optimal policy πi : oi → ai for UAV i
that maximizes its expected accumulated discounted return
E[
∑T

t=0 γ
tR(t)], where γ ∈ [0, 1] is a discount factor and T

is the time horizon. The optimal policy enables UAV i to
complete the MUSC task and win efficiently.

III. METHOD

A. Overall Structure

The overall structure of the proposed method mainly
consists of three components as shown in Fig. 2: 1) a two-
level attention distributed policy network structure, com-
posed of observation-level and communication-level atten-
tion networks; 2) a defined potential-based individual reward
function, which embeds individual behavior knowledges to
speed up the learning of the policy under keeping the
optimization objective unchanged; 3) an actor-critic training
algorithm, which trains the policy network for completing
the MUSC mission.

B. Two-Level Attention Distributed Policy Network Structure

The distributed policy network structure is a actor-critic
structure. The actor parameterized by θ, πθi : oi × mi 7→ ai,
consists of observation-level and communication-level atten-
tion, gate recurrent unit (GRU) and policy head networks.
It takes partial observation oi and received communication
message mi of UAV i as input and outputs action values for
making decisions. The critic parameterized φ, vφi : si 7→ R,
composed of a value head network with FC layers and GRU,
takes the UAV-specific global state si = ci ∪ {ck − ci|k ∈
1, ..., n, 1, ...,m and k , i} of UAV i as inputs and outputs
a scalar value for the actor training. Especially, for the
actor, in the MUSC miscellaneous information environment,
the observation-level and communication-level attention net-
works are designed to make each UAV selectively focus on
important environmental features and teammate messages,
for improving the effectiveness of the cooperative policy.

Observation-Level Attention Network: In the complex
MUSC mission, each UAV can obtain miscellaneous partial
observation information. However, not all information needs
to be valued by the UAV. UAVs need to pay attention to the
information that can promote the completion of the mission.
Therefore, an observation-level attention network based on
Transformer [17] is designed to extract important features in
the partial observation of each UAV.

Firstly, each neighbor state in the observation oi of UAV i
is encoded as an encoding embedding, ĉk = WNck, k ∈ NO

i
and k , i; ĉi = WS ci, where WN ,WS are learnable
parameter matrices. Then, UAV k ∈ NO

i computes a key
EO

k = W O
E ĉk, query QO

k = W O
Q ĉk and VO

k = W O
V ĉk

vectors where W O
E ,W

O
Q ,W

O
V are other learnable parameter

matrices. Next, after receiving query-value pair (QO
i , E

O
k ),

UAV i assigns weights to observed neighbors,

αik = so f tmax(
(QO

i )T EO
k

dE
), (2)

where dE is the dimensionality of the key vector. Then,
according to the assigned weights, the UAV aggregates the
states of the observed neighbors and computes an aggregated
embedding, hi = W O

out
∑

k∈NO
i
αikVO

k , where W O
out is another

learnable parameter. Finally, the UAV updates the aggre-
gated embedding hi by doing a non-linear transformation
of hk

i concatenated with ĉi by using a one fully-connected
(FC) layer network. Herein, the aggregated embedding hi

implicitly encodes the important features from the observed
neighbors by selective aggregation with the assigned weights.

Communication-Level Attention Network: Communi-
cation is an common and important method to promote
the cooperation among UAVs through message transmission.
However, useless messages will interfere with the decision-
making of UAVs. UAVs need to focus on useful messages
that can facilitate the completion of the MUSC mission,
and ignore useless messages from neighbor allies. Hence,
a communication-level attention network based on Trans-
former is designed to extract useful messages from neighbor
allies for efficient cooperation.

We firstly define a communication topology graph G :=
(V,E), where each node denotes an ally UAV, and there
exists an edge between two nodes if the nodes are in their
respective communication range. The aggregated embedding
hi is used as the interactive message to be transmitted in
this graph. Hence, the received message set mi of UAV i is
defined by mi = {hl|l ∈ NC

i }, where NC
i is some neighborhood

within the communication range of UAV i. Similarly, each
UAV j ∈ V calculate a key EC

j = W C
E h j, query QC

j = W C
Q h j

and VC
j = W C

V h j vectors where W C
E ,W

C
Q ,W

C
V are learnable

parameter matrices. Then, UAV i assigns weights to each
of the incoming messages after receiving query-value pair
(QC

i , E
C
k ),

βi j = so f tmax(
(QC

i )T EC
j

dE
). (3)

It then aggregates all the messages by calculating a weighted
sum of the values of its neighbors and follows a lin-
ear transformation, yielding a interaction embedding, ĥi =

W C
out
∑

j∈NC
i
βi jVC

j , where W C
out is another learnable parame-

ter. The interaction embedding implicitly encodes the useful
messages from the communication neighbors, and is a state
representation of the surrounding environment of UAV i at
current time.

After observation-level and communication-level attention
network, GRU is used to fuse the environmental embedding
ei(t − 1) at last time t − 1 and the interaction embedding ĥi

at current time t, yielding the environmental embedding ei(t)
at current time t. Then, the environmental embedding ei(t)
is fed into a policy head network with two FC layers, which
outputs action values of UAV i.
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Fig. 2. Overall structure of MUSC-ADRL-IRS.

C. Potential-Based Individual Reward Function

In this paper, the optimization objective is to maxi-
mize the expectation of discount cumulative team return
E[
∑T

t=0 γ
tR(t)] for each ally UAV. In the MUSC mission, the

team reward R is firstly defined by, R = λ1(
∑m

j=1(b j(t) −
b j(t + 1)))/

∑m
j=1 bmax

j , which denotes the normalization of
the sum of the enemies’ health point loss at time t, where
bmax

j denotes the maximum health point of the enemy UAV
j and λ1 is a hyper parameter. Meanwhile, we define the
individual available behavior knowledge denoted as Rbk

i =

λ2(
∑

k∈NE
i

(bk(t)− bk(t + 1)))/
∑m

j=1 bmax
j , where NE

i (t) denotes
a set of enemies attacked by UAV i at time t and λ2 is another
hyper parameter.

If we directly embed the individual behavior knowledge
for the learning of each UAV, it will lead to the selfish-
ness of individual behavior and the change of the original
optimization objective of the team. Therefore, to speed up
the learning of the policy network, we indirectly embed
the individual behavior knowledge by translating it into a
potential-based individual reward function under the guaran-
tee of optimization-objective invariance [18].

Firstly, we define a potential function Φδ : si × ai 7→ R
parameterized by δ using FC layer networks. The potential
function takes the UAV-specific global state si and the action
ai of UAV i as input and outputs a state-action value about
the individual behavior knowledge, which can be regarded
as an auxiliary action-state value function for Rbk

i . Moreover,
the target value of the potential value is defined as [19]

Φ̂δ(st
i, a

t
i) = −Rbk

i (t) + γΦδ(st+1
i , at+1

i ). (4)

The potential function is updated by minimizing the loss
lΦδ = E(si,ai),t[(Φ̂

δ(si(t), ai(t)) − Φδ(si(t), ai(t)))2]. Therefore,
according to the potential function embedding individual
behavior knowledge, a potential-based individual reward

function Rp
i is defined by

Rp
i (t) = γΦδ(st+1

i , at+1
i ) − Φδ(st

i, a
t
i). (5)

The received reward of UAV i can be denoted as Ri(t) =

Rp
i (t) + R(t) for the training of the policy, which is a sum of

the team reward and the potential-based individual reward.
Individual Reward Shaping in Expectation: In order to

investigate the relationship between the individual behavior
knowledge Rbk

i and the potential-based individual reward Rp
i ,

the expectation ( w.r.t. the transition matrix and the action
a′i at next time) of Rp

i is calculated by,

E(s′i ,a
′
i )[R

p
i ] = E(s′i ,a

′
i )[γΦδ(s′i , a

′
i) − Φδ(si, ai)]

= E(s′i ,a
′
i )[γΦδ(s′i , a

′
i) + Rbk

i − γE(s′i ,a
′
i )[Φ

δ(s′i , a
′
i)]]

= Rbk
i .

(6)

Hence, Rp
i in expectation and Rbk

i are equivalent.
Optimization Objective Introducing Individual Re-

ward Shaping: The optimization objective introducing indi-
vidual reward shaping is to maximize the expected accumu-
lated discounted return about the received reward Ri,

E[
T∑

t=0

γt(R(t) + Rp
i (t))]

= E[
T∑

t=0

γt(R(t) + γΦδ(st+1
i , at+1

i ) − Φδ(st
i, a

t
i))]

= E[
T∑

t=0

γtR(t)] + E[
T∑

t=1

γtΦδ(st
i, a

t
i)] − E[

T∑
t=0

γtΦδ(st
i, a

t
i)]

= E[
T∑

t=0

γtR(t)] − Φδ(s0
i , a

0
i ).

(7)
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Thus, when the potential function is initialized to 0, the
optimization objective introducing individual reward shaping
remains unchanged.

D. Actor-Critic Training Algorithm

In this paper, we utilize the CTDE framework [20] to
learn a centralized critic to update the distributed policy
network of UAV i during training. Moreover, the proximal
policy optimization (PPO) [21] algorithm based on actor-
critic style is used to update the parameter of the policy
network composed of the actor and critic by minimizing two
loss terms,

lvφi = E[(yi − vφi (si)2],

lπθi = E[min(
πθi (·|oi)

πθold
i (·|oi)

Ai(o, a),

clip(
πθi (·|oi)

πθold
i (·|oi)

, 1 − ε, 1 + ε)Ai(o, a)],

(8)

where πθold
i (·|oi) is the actor before the update or the sampling

actor, yi = Ri +γvφi (si) is the temporal-difference (TD) target,
ε = 0.2 is a hyper parameter and Ai(o, a) is an advantage
function, which is estimated through the generalized advan-
tage estimator (GAE) method [22]. Besides, the potential
function network Φδ is trained by minimizing the loss lΦδ

simultaneously.

IV. SIMULATIONS

A. Simulation Settings

We build a three-dimensional UAV simulation and training
platform based on Unity shown in Fig. 3. This platform sim-
ulates real UAV flight environment conditions based Unity,
including terrain condition, wind interference, and UAV con-
trol model. Moreover, the training part in the platform adopts
the Pytorch structure in Python for building and training the
policy networks of UAVs. In this platform, we design a multi-
UAV cooperative combat mission environment. Specifically,
all blue and red ally UAVs are initially randomly positioned
on {600 ≤ x ≤ 650, 300 ≤ y ≤ 700, 500 ≤ z ≤ 550} and
{350 ≤ x ≤ 400, 300 ≤ y ≤ 700, 500 ≤ z ≤ 550} space
areas, respectively. This can make the red and blue sides
on one side and form a combat situation. The blue ally
UAVs are controlled by the proposed method, while the red
enemy UAVs are controlled through the traditional knowl-
edge method composed of clustering [23], target allocation
[24] and optimal reciprocal collision avoidance (ORCA) [25]
algorithms. The maximum speed umax

i of each UAV is set to
200 unit/s. The mission ends when one of the red and blue
sides is destroyed or the running time exceeds a fixed period
Tmax = 150 timesteps. The time interval of each step is 0.1.

The proposed method MUSC-ADRL-IRS and the fol-
lowing baseline methods are implemented for performance
evaluation,
• MUSC-NODRL: This is a centralized traditional knowl-

edge method, which is not DRL-based method. The
method integrates the clustering, target allocation and

Fig. 3. Multi-UAV cooperative combat platform based on Unity.

ORCA algorithm for making decisions [23], [24], [25],
which is the same as the strategy of the enemies;

• MUSC-MAPPO: The method adopts the PPO algorithm
learn a centralized critic to update the decentralized
policy network without attention mechanism [26];

• MUSC-ADRL: The method learns an observation-level
and communication-level attention policy network using
the CTDE framework, without individual reward shap-
ing.

In addition, three metrics are set to evaluate the perfor-
mance of different methods. The performance metrics of each
method are obtained by testing 500 episodes with 5 different
random seeds, 1) Win Rate (WR%): Percentage of the blue
ally UAVs won in all test episodes (the condition for the
blue side to win is that all the enemies are destroyed, and
at least one blue UAV is alive); 2) Mean Episode Reward
(MER): Mean of episode cumulative team rewards in all test
episodes; 3) Mean Episode Length (MEL): Mean of length
of winning episode the blue UAVs in all test episodes.

B. Implementation Specifications

In the observation-level and communication-level atten-
tion, the learnable parameters are set with WN ,WS ∈ R

7X64,
W O

E ,W
O
Q ,W

O
V ,W

O
out ∈ R

64X64 and W C
E ,W

C
Q ,W

C
V ,W

C
out ∈

R64X64. The hidden layer size of GRU is 64. The value head
network outputs a scalar value, while the policy head network
outputs move-level and attack-level action values.

Moreover, the action space of each UAV is divided into
move-level and attack-level action spaces. The move-level
actions are discretized into 121 move actions: stop, and 3
speeds exponentially spaced between (0, umax

i ] and 8 heading
angles evenly spaced between [0, 2π) and 5 pitch angles
evenly spaced between [−π/2, π/2]. The attach-level actions
are discretized into 40 attack actions: 8 attack azimuth angles
evenly spaced between [0, 2π) and 5 attack pitch angles
evenly spaced between [−π/2, π/2].

Beside, the visual radius DO and communication radius
DC of each UAV both are set as 90. The maximum health
point bmax

i of each UAV is set to 100. Enemies within the
allies’ attack range lose 50 health points every time step, as
do the allies within enemies’ attack range. Meanwhile, the
angle ζ = 1.0 and radius r f = 30 of the attach range are set.
λ1 = 20 and λ2 = 10.
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(b) 10 ally UAVs vs. 15 enemy UAVs
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(c) 15 ally UAVs vs. 15 enemy UAVs
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(d) 15 ally UAVs vs. 20 enemy UAVs

Fig. 4. Training results of various methods in the MUSC mission: (a-d) are the training curves of average win rates vs. training steps.

TABLE I
Test results of our method and baseline methods in theMUSC mission

Methods 10 vs. 10 10 vs. 15 15 vs. 15 15 vs. 20
WR(%) / MER / MEL WR(%) / MER / MEL WR(%) / MER / MEL WR(%) / MER / MEL

MUSC-NODRL 27.5±1.50/15.7±0.03/23.6±0.16 0.0±0.00/9.8±0.35/– 27.0±1.00/15.9±0.23/26.1±0.17 0.5±0.50/11.3±0.08/29.0±0.00

MUSC-MAPPO 98.5±0.50/19.8±0.01/49.7±0.29 81.0±2.00/18.3±0.14/88.8±2.08 87.0±1.00/18.9±0.01/57.4±1.19 47.5±5.50/15.7±0.40/80.5±1.55

MUSC-ADRL 99.5±0.50/19.9±0.04/30.8±0.47 99.5±0.50/19.9±0.03/38.2±0.47 99.0±1.00/19.8±0.07/29.1±0.34 90.0±1.00/19.4±0.04/53.2±4.97

MECA-ADRL-IRS (ours) 99.9±0.10/19.9±0.10/33.3±0.38 99.5±0.50/19.9±0.03/24.9±0.74 99.0±0.00/19.9±0.03/22.6±0.09 97.0±1.00/19.8±0.04/31.4±0.42

TABLE II
Generalization results of our method and baseline methods in theMUSC mission

Methods 5 vs. 8 10 vs. 20 15 vs. 25 20 vs. 30
WR(%) / MER / MEL WR(%) / MER / MEL WR(%) / MER / MEL WR(%) / MER / MEL

MUSC-NODRL 0.0±0.00/8.1±0.12/– 0.0±0.00/6.9±0.00/– 0.0±0.00/8.9±0.07/– 0.0±0.00/9.3±0.40/–
MUSC-MAPPO – – – –
MUSC-ADRL 97.0±1.00/19.8±0.06/35.8±0.17 90.5±0.50/19.3±0.02/45.0±0.53 92.5±0.50/19.5±0.07/42.7±0.03 94.0±1.00/19.6±0.02/40.5±0.51

MECA-ADRL-IRS (ours) 98.0±1.00/19.8±0.09/22.2±0.48 96.5±0.05/19.7±0.08/26.9±0.14 98.0±1.00/19.9±0.04/23.9±0.58 99.0±1.00/19.9±0.04/22.8±0.58

C. Simulation Results

1) Effectiveness: To fully evaluate the effectiveness of
the proposed method, we conduct four combat scenarios:
two symmetric combat scenarios (i.e., 10 ally UAVs vs. 10
enemy UAVs; 15 ally UAVs vs. 15 enemy UAVs), and two
difficult asymmetric combat scenarios (i.e., 10 ally UAVs vs.
15 enemy UAVs; 15 ally UAVs vs. 20 enemy UAVs) where
requires a high level of cooperation between teammates for
the ally UAVs due to the disadvantage of quantity.

The training results are shown in Fig. 4. The results
show that the proposed method has better performance
than the baseline methods in terms of average win rate
and convergence rate. Especially, due to the addition of
the individual reward shaping, our method realizes efficient
training and converges to a higher winning rate faster than the
other methods. Moreover, compared with MUSC-MAPPO,
MUSC-ADRL with observation-level and communication-
level attention has better performance, especially in difficult
asymmetric combat scenarios with higher requirements for
cooperation. This also confirms that the attention mechanism
is conducive to the cooperation among UAVs for battling
the enemies together, because of its selective and focused
characteristics.

In addition, we test the policy learned by different meth-
ods. The test results are shown in Table I. Similarly, the
proposed method MUSC-ADRL-IRS has better performance
than the other methods in terms of WR, MER and MEL.

On the contrary, MUSC-NODRL fails. Besides, MUSC-
ADRL-IRS and MUSC-ADRL have little difference in the
performance of the combat scenarios: 10vs.10, 10vs.15 and
15vs.15. This is because they can all converge to good results
due to the breakability of the enemies’ strategy. However,
in the more difficult combat scenario, 15vs.20, MUSC-
ADRL-IRS greatly outperforms MUSC-ADRL, which is
because the individual reward shaping can can help and
accelerate the learning of effective policies of UAVs in the
15vs.20 scenario. Moreover, MUSC-ADRL-IRS aims to add
the individual reward shaping on MUSC-ADRL to improve
training efficiency, which is verified in the training results.
By contrary, the performance of MUSC-MAPPO without the
attention and individual reward shaping is always not good.
In general, the training and test results fully demonstrate the
effectiveness and superiority of the proposed method.

2) Generalization: In order to verify the generalization
of the proposed method, the learned policy is evaluated in
new scenarios without any fine-tuning. The learned policy
is obtained in the combat scenario where 10 ally UAVs
battle 15 enemy UAVs, i.e., 10 vs. 15. Four new hard and
asymmetric combat scenarios are selected, including 5 vs.
8; 10 vs. 20; 15 vs. 25; 20 vs. 30. The generalization
results of our method and the baseline methods is shown in
Table. II. As we expected, the proposed method outperforms
the baseline methods in terms of win rate, episode reward
and length, especially in more difficult scenarios. On the
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Fig. 5. Keyframe analysis with observation-level and communication-level attentions in the 5vs.5 MUSC scenario.

(a) Initial stage (b) Encounter stage (c) Fierce battle stage (d) End with blue wining

Fig. 6. Snapshots of multi-UAV cooperative short-range air combat in the 10vs.10 scenario.

contrary, MUSC-MAPPO can not adapt to the new scenarios
different from the training and fails since its policy network
input size is fixed, while the designed two-level attention
policy can process the dynamic input size. Beside, although
MUSC-ADRL-IRS and MUSC-ADRL have a small gap
in the test results, MUSC-ADRL-IRS is highly superior
to MUSC-ADRL in the generalization results. This is due
to the individual reward shaping, which also shows that
the embedding of individual behavior knowledge helps to
produce more generalized policies.

3) Ablation Analysis: We further investigate and analyze
the effectiveness of key components of the proposed method.
MUSC-ADRL is an ablation version of our method, without
the individual reward shaping. The main difference between
MUSC-ADRL and MUSC-MAPPO is mainly on the policy
network. According to the above simulation results shown
in Fig. 4 and Table I II, MUSC-ADRL outperforms MUSC-
MAPPO, which demonstrates the superiority of the designed
attention policy network. Moreover, MUSC-ADRL-IRS has
better performance than MUSC-ADRL, which verifies the
effectiveness of the individual reward shaping for efficient
training.

D. Qualitative Analysis

To analyze the effectiveness of the proposed two-
level attention policy network, as shown in Fig. 5,
we present keyframe analysis with observation-level and
communication-level attentions in the 5vs.5 MUSC scenario.

Fig. 5(a) shows a combat situation where 5 blue ally UAVs
(0, 1, 2, 3, 4) battle 5 red enemy UAVs (0, 1, 2, 3, 4) at 10
timestep, and Fig. 5(b-c) present the observation-level and
communication-level attention weights of the blue side in
this combat situation. In the observation-level attention, the
blue side mainly focuses on the two red enemy UAVs close
to them, red UAVs 2 and 4. This is very helpful for the
blue side to quickly destroy the enemy UAVs 2 and 4. In
the communication-level attention, blue UAVs 1, 2, 3, 4 use
almost equal attentions to communicate with each other,
while blue UAV 0 only communicate with blue UAVs 1 and 2
close to it due to the limitation of the communication range.
The results of keyframe analysis show that the blue UAVs
can learn reasonable and effective attention weights to fo-
cus on important observation information or communication
messages through using the two-level attention policy, and
demonstrate the effectiveness of the proposed policy.

Aside from the attention analysis above, we further ob-
serve the whole process of the MUSC mission. The four
snapshots of the MUSC mission in the 10vs.10 scenario are
shown in Fig. 6. The four snapshots show the four stages of
the combat: initial, encounter, fierce battle and end stages,
respectively. The results demonstrate that the blue UAVs
can win quickly by using the policies obtained through the
proposed method.
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V. CONCLUSION

In this paper, MECA-ADRL-IRS is proposed to learn
cooperative policies of UAVs for completing the MUSC
mission through attention-based DRL using individual
reward shaping. Specifically, an observation-level and
communication-level attention distributed policy is designed
to enable each UAV to selectively focus on important en-
vironmental features and messages. Moreover, to embed
knowledge to accelerate the policy learning without chang-
ing the optimization objective, a potential-based individual
reward function is constructed by implicitly translating the
individual reward into the specific form of dynamic action
potentials. Besides, an actor-critic training algorithm based
on the CTDE framework is adopted to train the policy
network of UAV maneuver decision. We build a three-
dimensional UAV simulation and training platform based on
Unity for realizing the MUSC mission. Simulation results
confirm the effectiveness and generalization of the proposed
method.
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