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Abstract. Swarm systems with simple, homogeneous and autonomous individu-
als can efficiently accomplish specified complex tasks. Recent works have shown
the power of deep reinforcement learning (DRL) methods to learn cooperative
policies for swarm systems. However, most of them show poor adaptability when
applied to new environments or tasks. In this paper, we propose a novel seman-
tic perception swarm policy with DRL for distributed swarm systems. This pol-
icy implements innovative semantic perception, which enables agents to under-
stand their observation information, yielding semantic information, to promote
agents’ adaptability. In particular, semantic disentangled representation with pos-
terior distribution and semantic mixture representation with network mapping are
realized to represent semantic information of agents’ observations. Moreover, in
the semantic representation, heterogeneous graph attention network is adopted
to effectively model individual-level and group-level relational information. The
distributed and transferable swarm policy can perceive the information of uncer-
tain number of agents in swarm environments. Various simulations and real-world
experiments on several challenging tasks, i.e., sheep food collection and wolves
predation, demonstrate the superior effectiveness and adaptability performance
of our method compared with existing methods.

1 Introduction

In recent years, swarm systems have received increasing attention from researchers
due to its unique benefits and great potential applications. For the benefits, they can
coordinately complete complex tasks in a low-cost and decentralized form, and real-
ize dynamic adjustment and self-healing combination in complex environments. Their
applications can be founded in warehousing logistics [13], satellite cluster, search and
rescue scenarios [2], etc. In a swarm system, many identical agents need to collectively
accomplish a common goal through interactions among the agents. However, each agent
in the swarm system has limited capabilities, e.g., partial perception, local interaction
and restricted manipulation. This puts forward high requirements for efficient cooper-
ation among agents. Meanwhile, the number of agents in the swarm system may be
uncertain and changing. This requires that the policies of agents have strong adaptabil-
ity. Therefore, finding a policy that enable the swarm system to reliably and efficiently
complete a specified task in uncertain and dynamic environments remains challenging.
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Recently, deep reinforcement learning (DRL) methods have shown great potential
in multi-agent systems. Some multi-agent reinforcement learning methods, that focus
on designing global cooperation mechanisms such as centralized critic [14], communi-
cation among agents [11], joint value factorization [8], are born. However, most of them
cannot be directly applied to swarm systems due to some challenges, including the high
dimensionality of observation caused by large-scale agents, and changes in the size of
available information sets due to dynamic number of agents. Although there are chal-
lenges, some works have made good progress for swarm systems with DRL. A guided
approach is proposed to enable a group of agents with limited sensing capabilities to
learn cooperative behaviors [10]. But, this approach adopts a histogram over distances
with a fixed dimension as observation inputs, which results in additional information
not being efficiently encoded due to its poor scalability. Considering this shortcoming,
a new state representation for swarm systems with DRL based on mean embeddings
of distributions is proposed [9]. This work uses an empirical mean embedding as input
for a decentralized policy. However, it ignores different relations among neighboring
agents, which may lead to its poor adaptability in new tasks and environments. These
works focus on processing observation information of the surrounding environment of
agents, where the size of observation information is variable. But, they do not try to
consider understanding and interpreting observation information.

In reality, people can perceive the information around them by listening, seeing and
touching, thus producing their own understanding to adapt to real life [3]. Naturally,
this can be applied to swarm systems: agents understand their perceived observations to
generate semantic information to promote their adaptability. Moreover, semantic infor-
mation is an abstraction obtained by inferring interpretations from agents’ observations
and updating these interpretations with new information [6].

Motivated by the above discussions, we propose a novel semantic perception swarm
policy (SPSP) with DRL to enable distributed swarm systems to reliably and efficiently
accomplish specified tasks in this paper. The main innovation of this policy is to adopt
semantic perception, which enables agents to understand their observation information,
to enhance the agents’ adaptability in new tasks or environments. Specifically, seman-
tic disentangled representation with posterior distribution and semantic mixture rep-
resentation with network mapping are implemented to represent semantic information
about the agents’ observations. Moreover, in the semantic representation, heterogeneous
graph attention network (HGAT) is adopted to effectively model individual and group
level relational representation.

2 Background

2.1 Partially Observable Markov Games

In this paper, we consider a partially observable Markov game (POMG) which is an
extension of Markov decision processes to a game with multiple agents. A POMG for
N agents is defined as follows: s ∈ S denotes the global state of the game, oi ∈ Oi

denotes the local observation of agent i, ai ∈ Ai is an action taken by agent i based
on the local observation. Agent i obtains the reward by a reward function ri : S × A1

× ... × AN �→ R. The state of the game evolves to next state according to the state
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transition function T : S × A1 × ... × AN �→ S. The initial states are determined by
a distribution ρ : S �→ [0, 1]. Agent i aims to maximize its own expected cumulative
return Ri =

∑T
t=0 γ

trti , where γ ∈ [0, 1] is a discount factor and T is the time horizon.

2.2 β-VAE

Variational autoencoder (VAE) can perform efficient approximate inference and learn-
ing with directed probabilistic models whose latent variables have intractable poste-
rior distributions [12]. β-VAE is a modification of the VAE framework. It introduces
an adjustable hyperparameter β that balances latent channel capacity and independence
constraints with reconstruction accuracy. This enables β-VAE to discovery disentangled
representation or interpretable factorised latent from raw data in a completely unsu-
pervised manner [7]. The emergence principle of disentangled representation can be
explained from the perspective of the information bottleneck. A disentangled represen-
tation can be defined as one where single latent units are sensitive to changes in single
generative factors, while being relatively invariant to changes in other factors [4]. In
this paper, we adopt β-VAE to perform semantic disentangled representation.

2.3 Distributed Swarm Systems

In this paper, we study a distributed swarm system which is a group of self-organizing,
homogeneous and autonomous agents that try to collectively achieve a common goal.
In the swarm system, agents are modelled as a disc with an actual shape radius. The
state of agent i consists of its own position pi = [pxi , p

y
i ]
T and velocity vi = [vxi , v

y
i ]
T ,

i.e., si = [pi, vi]T . Meanwhile, the kinematics of agent i is modeled as a double integra-
tor model, and the action of the agent can be denoted as ai = [Fx

i , F
y
i ]

T , where Fx
i , F

y
i

represent the force applied to the agent in x and y directions. Meanwhile, each agent
in the swarm system has partial observability with radius DO and local interactivity
with radius DI . Furthermore, the swarm system has state semanticity. Specifically, each
observation state contains corresponding semantic information. Semantic information
can be represented by utilizing different semantic factors. A semantic factor is a latent
encoding of an attribute of observation states. For example, in predator-prey games, a
predator can obtain semantic information from its observation information. This seman-
tic information consists of semantic factors which are latent encodings for observation
attributes, e.g., collaborators’ forces level, prey’s situation, etc.

3 Approach

In this section, we propose a swarm policy SPSP with good adaptability for the dis-
tributed swarm system with n homogeneous agents to reliably and efficiently accom-
plish specified tasks. Firstly, the overall design of the proposed SPSP is given. Next,
semantic perception which is the main innovation of the policy is presented in detail.
Finally, the training method of SPSP is shown.
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Fig. 1. Semantic perception swarm policy network structure.

3.1 Overall Design of SPSP

As shown in Fig. 1, the network structure of SPSP consists of three modules: a semantic
perception module, an interaction module and an actor-critic module. Specifically, the
semantic perception module is designed to extract semantic information hoi from partial
observation oi for agent i, where i = 1, ..., n. Then, the agent regards the semantic infor-
mation hoi as information that can be propagated among agents. The interaction module
is adopted to promote cooperation between the agent and neighbor agents through the
transmission of semantic information, yielding interaction message hci which implicitly
encodes cooperation information. Next, the interaction message hci is used as input to
the actor-critic module. In the actor-critic module, the actor generates actions to the
swarm environment, where the actions are the results of the SPSP decision. The critic is
used to evaluate actions in the training phase. In the following, we present each module
in detail.

(1) Semantic Perception: In this module, we hope to enable agents to understand and
interpret their observations through semantic perception, yielding semantic infor-
mation. Therefore, we would like to encode the partial observation oi of agent i
into a disentangled semantic vector Zd

i and a mixture semantic vector Zm
i . In the

disentangled semantic vector, its semantic factors are sensitive to changes in single
observation attribute, such as position or velocity, while being relatively constant
to changes in other observation attributes, similar to disentangled representation
[7]. Meanwhile, the mixture semantic vector is the mapping result of observation
states to semantic information space consisted of semantic factors. These make
that the learned knowledge is easier to transfer into new tasks or environments,
and new observation states can be interpreted through learned semantic factors.
Specifically, semantic disentangled representation with posterior distribution and
semantic mixture representation with network mapping are realized to extract the
disentangled semantic vector Zd

i and the mixture semantic vector Zm
i respectively.
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In the semantic representation, HGAT is adopted to effectively model individual-
level and group-level relational information. Then, the disentangled semantic vec-
tor is concatenated with the mixture semantic vector to feed into a fully-connected
layer (FC). The output is a semantic perception vector hoi , which implicitly contains
semantic information.

(2) Interaction: The interaction module adopts a graph attention network (GAT) [17]
to enable agent i to selectively interact with its neighboring collaborators, instead
of stacking all collaborators’ interaction messages. In this module, for a swarm
system including n agents, we firstly define an interactive graphG := (V,E), where
each node denotes an agent in the swarm system, and there exists an edge between
two nodes if the nodes are in their respective interaction range. The existing edges
reflect the local interactivity of the swarm system. Next, the semantic perception
vector hoi is used as the interactive message to be transmitted in this graph. GAT
is implemented to selectively attend to extracting the interaction vector hci , which
contains effective cooperation information, from the graph by:

hci = σ(
∑

j∈NI
i ∪{i}

exp(σ0(aT [W hoi ||W hoj ]))
∑

q∈NI
i ∪{i}

exp(σ0(aT [W hoi ||W hoq))
∗W hoi ), (1)

where NI
i is some homogeneous neighborhood within the interaction scope DI of

agent i, a is a learnable parameter vector and W is a learnable parameter matrix,
σ and σ0 are ReLU and LeakyReLU activation functions respectively. The fraction
in (1) is the attention weight, which acts to attend effective interactions.

(3) Actor-Critic: In actor-critic module shown in Fig. 1, an actor π that generates an
action distribution is approximately represented by the policy network Fp, i.e.,
π(oi) ≈ Fp(hci ). A critic V that predicts the discounted future returns to evaluate
actions is approximately expressed by the value network Fv, i.e., V(oi) ≈ Fv(hci ).
The actor and critic only use partial observation oi, which is a completely decen-
tralized form. This helps it apply to large-scale agent scenarios due to avoiding
centralized dimensional curses. In addition, in a swarm system, all agents use the
same actor and critic networks in the execution and training phase. This idea makes
our proposed SPSP be able to satisfy the scalability of swarm systems.

3.2 Semantic Perception

In the semantic perception module, semantic disentangled representation with posterior
distribution and semantic mixture representation with network mapping are innova-
tively designed to represent semantic information. In the following, we present these
parts in detail.

Semantics Formulation
Firstly, abstract semantic information needs to be formulated using mathematics. The
formulation is based on three innovative assumptions: Assumption 1. Semantic infor-
mation can be represented by a vector Z = [z1, ..., zK], which consists of independent
semantic factors zk, k ∈ 1, ...,K. Each semantic factor is a variable, which obeys Gaus-
sian distribution. A semantic factor is a latent encoding of an observation attribute. For



Semantic Perception Swarm Policy with Deep Reinforcement Learning 117

simple example, a semantic factor of a three-dimensional object may be a latent encod-
ing for its scale or color.Assumption 2. In a task, different observation state oi implicitly
contain finite semantic information Zi, that contains fixed number of semantic factors.
Assumption 3.Multiple observation states can be reconstructed from a semantic vector.
This is because different observation states may contain similar semantic information.
The above assumptions is formally formulated as follows.

Semantic Disentangled Representation
In semantic disentangled representation, we mainly extract a disentangled semantic vec-
tor Zd

i with posterior distribution from observation state oi. In particular, under the con-
dition of knowing agent’s partial observation state oi, we would like to infer Zd

i through:

p(Zd
i |oi) =

p(oi|Zd
i )p(Z

d
i )

p(oi)
=

p(oi|Zd
i )p(Z

d
i )∫

p(oi|Zd
i )p(Z

d
i )dZ

d
i

, (2)

where p(oi|Zd
i ) is a reconstruction process from the disentangled semantic vector.

However, the above equation is difficult to calculate directly. Hence, we approximate
p(Zd

i |oi) by another tractable distribution q(Zd
i |oi). The objective is that q(Z

d
i |oi) needs

to be close to p(Zd
i |oi). We achieve it through minimizing Kullback-Leibler (KL) diver-

gence [15]: min KL(q(Zd
i |oi)||p(Z

d
i |oi)), which equals to maximize Evidence Lower

BOund (ELBO) [5]:

max Eq(Zd
i |oi)log p(oi|Z

d
i ) − KL(q(Zd

i |oi)||p(Z
d
i )). (3)

In ELBO, the former term denotes reconstruction likelihood, and the latter term
guarantees that the posterior distribution q(Zd

i |oi) is similar to the true prior distribu-
tion p(Zd

i ). This can typically be modeled as a VAE [12]. In this paper, we design a
VAE as shown in Fig. 2. The encoder of this VAE learns a posterior distribution map-
ping q(Zd

i |oi;w) from oi to Zd
i . Specifically, we firstly adopt HGAT [19] as shown in

Fig. 1 to learn state representation with a high dimension. This is because HGAT effec-
tively model individual-level and group-level relational information, and it can process
the observation states of different number agents. In HGAT, the first step is to cluster
all agents into three groups using prior knowledge, i.e., homogeneous agents φ1, non-
homogeneous agents φ2 and non agents φ3. Next, we introduce the modeling process of
individual and group levels in HGAT.

Individual Level: Agent i has a partial observation oi = [oφ1i , o
φ2
i , o

φ3
i ], where oφmi =

{s jφm | jφm ∈ Nφmi } (m = 1, 2, 3), s jφm is the local state of agent j belonging to φm group,
andNφmi is some neighborhood (include itself) belonging to φm group within the obser-
vation scope DO of agent i. Now, agent i computes the different individual embedding
hφmi to summarize the individual relations between agent i and other neighboring agents
belonging to different groups. The different embedding hφmi is calculated using different
parameter GAT. This calculated process is similar to the Eq. (1).

Group Level: In this step, different individual embedding hφmi from different groups
is aggregated with attention weights as a group embedding hei , i.e., h

e
i =
∑3

m=1 βφmh
φm
i ,
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where βφm = so f tmax( f (hφmi )) is a attention weight measuring group-level relations,
f (·) is a FC layer. Next, the group embedding hei is concatenated with the local state of
agent i to be fed into another FC layer. The output is a state representation vector hdi .

After obtaining the state representation vector using HGAT, disentangled module
is designed to generate the disentangled semantic vector Zd

i . In particular, we use the
reparameterization trick to achieve it, instead of directly outputting Zd

i . We firstly sam-
ple ε from a unit Gaussian, and then generate Zd

i by mean μZd
i
and variance σ(Zd

i )
of

disentangled module output, i.e., Zd
i = μ(Zi) +σ(Zd

i )
	 ε, where ε ∼ N(0, 1). The decoder

of the VAE learns a distribution mapping p(ôi|Zd
i ;w) from Zd

i back to ôi through Bi-
directional Long-Short Term Memory (BiLSTM) and FC. The above description is just
the construction process of the decoder and encoder in the VAE. Furthermore, we need
to train the VAE to generate the disentangled semantic vector. This can be achieved
through β-VAE[7], which is a modification of the VAE that introduces an adjustable
hyperparameter β to the KL term of original VAE objective to realize disentangled rep-
resentation. Hence, the loss function for training the VAE is:

Fig. 2. Variational autoencoder.

minL1(oi, ôi;w) + βKL(q(Z
d
i |oi;w)|p(Z

d
i )) (4)

Semantic Mixture Representation
In semantic mixture representation, we need to obtain a mixture semantic vector Zm

i
with network mapping from observation state oi. Unlike the disentangled representa-
tion, each semantic factor of mixture semantic vector is sensitive to changes in multiple
observation attributes, but they contain much useful observation information, which can
compensate for the information loss in the disentangled semantic vector. Meanwhile,
observation states with similar semantics can be mapped into the similar position in
semantic information space, which can boost the adaptability of our proposed policy.
Therefore, we would like to map observation state space into semantic information
space made up of semantic factors by an advanced function Φ. The function is difficult
to be constructed directly due to its strong nonlinearity. In this paper, we approximate
the function Φ by a novel neural network as shown in Fig. 1. The network consists
of HGAT and mixture module. Firstly, HGAT is adopted to realize high dimensional
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state representation hmi that models individual and group relational information. This is
similar to the HAGT of semantic disentangled representation, but they have different
parameters. Then, the mixture module is used to produce the mixture semantic vector
Zm
i , which has the same number of semantic factors as the disentangled semantic vector.

3.3 Training Method of SPSP

We adopt an improved proximal policy optimization (PPO) algorithm to train our pro-
posed policy SPSP. This algorithm based on an actor-critic architecture is different from
traditional PPO algorithm [16]. Specifically, we firstly open multiple threads to simulate
the interactions between agents and the swarm environment in parallel. Fusion experi-
ences from multiple parallel environments are collected to train SPSP, which can speed
up the convergence. Moreover, SPSP is trained by minimizing an total loss L, which is
conducted by the weighted summation of value loss LV , action loss Lπ, action entropy
H and disentangled semantic loss Lds, i.e.,

L = β1LV + β2Lπ − β3H + β4Lds, (5)

where
LV = E(oi,o′i )[(r + γV(o

′

i;w
−) − V(oi;w)2]

Lπ = −E(oi,o′i )[min(
π(oi;w)
π(oi;w−)

, clip(
π(oi;w)
π(oi;w−

, 1 − ε, 1 + ε))

∗ (r + γV(o′i;w−) − V(oi;w)]

H = −
∑
π(oi;w)log(π(oi;w))

Lds = Eoi [L1(oi, ôi;w) + βKL(q(Z
d
i |oi;w)|p(Z

d
i ))]

(6)

Herein, the action entropy H is specially designed to encourage exploration for
agents by penalizing the entropy of actor π. The disentangled semantic loss Lds is imple-
mented to generate the disentangled semantic vector Zd

i with posterior distribution. This
corresponds to Eq. (4).

4 Results

In this section, simulations and real-world experiments, including a fully cooperative
sheep food collection task and a predatory-prey-style wolves predation task, are con-
ducted to verify the effectiveness and adaptability of our proposed SPSP.

4.1 Task Description

Sheep Food Collection: This task has n food locations and n fully cooperative homo-
geneous agents (sheep). The agents need to collaboratively occupy as many food loca-
tions as possible without colliding with each other. Wolves Predation: This task is that
n slower wolves need to cooperatively hunt m faster sheep with a fixed Voronoi escape
strategy [20] in a randomly generated environment with l large static obstacles. Mean-
while, wolves are required to avoid collisions with obstacles and other wolves. Besides,
sheep are confined to a closed world. If a sheep is touched by wolves, it will be caught.
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4.2 Simulation Results

Simulation Setting
In simulation, all tasks are built on the particle-world environment (MAPE) [14], where
agents take actions with discrete timesteps in a continuous 2D world. In each task, the
agents have partial observability and local interactivity. We set the observation radius
to be 1.5 unit and interaction radius to be 2 unit, i.e., DO = 1.5, DI = 2. For the training
phase, each update of SPSP is implemented after accumulating experiences for total
4096 timesteps (128 timesteps on 32 parallel processes). Meanwhile, each episode is
terminated by accomplishing the tasks or lasting up to 50 timesteps [1]. In addition,
to speed up training process and learn more sophisticated behaviors, we adopted cur-
riculum learning through model reload [18]. Specifically, each task, e.g., sheep food
collection and wolves predation, can be defined as a subtask set containing some sub-
tasks sorted from simple to complex. Due to the transferability of our proposed SPSP,
the learned policy in simple subtask can be directly transferred to complex subtask by
model reload.

The design of reward is an especially important step for reinforcement learning. In
sheep food collection task, we set a shape reward with mean distance between sheep and
food locations through Hungarian algorithm matching. Meanwhile, sheep get a negative
reward when colliding with other sheep. In wolves predation task, whenever sheep is
eaten (collided) by any wolf, the whole wolves will get a positive reward. Meanwhile,
wolves will get a negative reward when colliding with other wolves or static obstacles.
In addition, in wolves predation task, the state of agent should also include the life
state, i.e., si = [pi, vi, sli]

T , where sli = 1 represents the state of being alive and sli = 0
represents the state of being dead. For implementation details, we set K = 8, β = 4,
β1 = 0.5, β2 = 1, β3 = 0.01, β4 = 0.01. The dimension of discrete action space is 4.

To fully validate the performance of our method, we use the method proposed in
[1] (TRANSFER) as a baseline method. This is because this transferable method also
adopts a fully decentralized manner in training and execution. Meanwhile, it uses graph
attention networks to perceive agents’ observations, without semantic perception.

Effectiveness Analysis
To fully verify the effectiveness of our method SPSP, we set five different scenario
simulations for sheep food collection and wolves predation tasks. Simulation results is
shown in Table 1. In the sheep food collection task, n = 3, 6, 12, 18, 24 sheep scenario
is designed respectively. The policy trained by 7000 updates can be transferred to a sce-
nario with more sheep through model reload, that is curriculum learning. The test results
show our proposed SPSP has better performance in success rate, reward and episode
length metrics than TRANSFER. This is because SPSP can implicitly understand the
intention of collaborators by semantic perception to promote cooperation. In the wolves
predation task, five scenarios, where n = 3, 6, 9, 12, 15 wolves hunt m = 1, 2, 3, 4, 5
sheep respectively in l = 2 static obstacles environments, is designed to realize the
task. The policy trained by 5000 updates be transferred to a scenario with more wolves
and sheep. As expected, our proposed SPSP obtain higher scores compared with the
baseline method. This is due to the semantic perception of SPSP, which can infer the
escape strategy of sheep. Therefore, the results fully reflect the good performance and
advantages of our method.
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Table 1. Simulation test performance of our method and baseline method in sheep food collection
and wolves predation tasks. Success Rate (S%): percentage of the successfully completed-task
episodes. Mean Episode Reward (MER): mean of rewards for each episode of the agents. Mean
Episode Length (MEL): mean of successful episode length. Score: rewards of each step of agents.

Sheep food collection Method n = 3 n = 6 n = 12

S%/MER MEL S%/MER/MEL S%/MER/MEL

TRANSFER 97.6/–3.92/14.01 99.4/–2.01/12.69 98.6/–1.24/13.65

SPSP(ours) 99.2/–3.80/13.62 100.0/–1.91/12.02 100.0/–1.11/12.51

Wolves predation Method n= 3, l= 2 (m= 1) n= 6, l= 2 (m= 2) n= 9, l= 2 (m= 3)

Mean score Mean score Mean score

m= 1/m= 2 m= 1/m= 2/m= 3 m= 2/m= 3/m= 4

TRANSFER –0.067/-0.092 –0.599/–0.520/–0.479 –0.887/–0.752/–0.692

SPSP(ours) 0.129/–0.010 –0.287/–0.166/0.018 –0.464/–0.359/–0.252

Sheep food collection Method n= 18 n= 24 /

S%/MER/MEL S%/MER/MEL /

TRANSFER 98.2/–0.92/16.08 97.2/–0.87/18.99 /

SPSP(ours) 100.0/–0.72/13.34 99.4/–0.64/15.58 /

Wolves predation Method n= 12, l= 2 (m= 4) n= 15, l= 2 (m= 5) /

Mean score Mean score /

m= 3/m= 4/m= 5 m= 4/m= 5/m= 6 /

TRANSFER –1.082/–0.967/–0.872 –1.282/–1.158/–1.083 /

SPSP(ours) –0.523/–0.466/–0.397 –0.775/–0.710/–0.641 /

Adaptability Analysis
In order to verify the adaptability of the proposed method, we use the learned policy
to accomplish the tasks in new scenarios. In sheep food collection task, the generaliza-
tion performance of our method and baseline method is shown in Fig. 3. The results
show our method has better adaptability than baseline method, especially in large-scale
agent scenarios. This is due to the advantage of our proposed semantic perception. The
semantic perception can understand semantic information similar to the old environ-
ments or tasks from different observations in new environments or tasks. This strongly
improves the adaptability of the policy. In wolves predation task, we also conducted
generalization tests as shown in Table 1. The learned policy is adopted to enable wolves
hunt different numbers of sheep. As expected, our method shows better adaptability

Fig. 3. Generalization performance of our method SPSP and baseline method in the sheep food
collection task, (a) (b) (c) (d) (e) represent generalization results for the policies learned in n =
3, 9, 12, 18, 24 sheep scenarios respectively.
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than baseline method. This is reflected in our method to getting higher scores in the
new environment. This is because different prey has similar escape strategies, which
can be inferred by the semantic perception. Hence, though not by a large margin, this
adaptability improvement indicates the benefits of the proposed method.

4.3 Real-World Experiment Results

In addition to the simulations, real-world experiments are also carried out to verify
the performance of SPSP. Two real-world experiment task systems are conducted, i.e.,
sheep food collection and wolves predation task systems. In each physical experiment
task system, the kinematic constraints of robots (sheep or wolves) are holonomic con-
straints, which means that robots can move in any two-dimensional direction. The poli-
cies learned by simulation are performed in each robot. The illustration of trajectories
is shown in Fig. 4. In sheep food collection task, n = 3 sheep (green robots) need to
occupy three food location (red objects). Each sheep adopts the same policy learned
by the simulation of the same scenario. Actual result illustrate that sheep can com-
plete the task of food collection. In wolves predation task, n = 3 wolves (green robots)
need to hunt m = 1 sheep (red robot) in environments with l = 1 static obstacles
(black objects). Experiment result shows wolves with the learned policy can hunt sheep.
Hence, although there are sim-to-real problems in the real-world experiment, SPSP
can still achieve good results. This is due to SPSP’s excellent adaptability brought by
semantic perception.

Fig. 4. Illustration of trajectories in real-world experiments. (Color figure online)

5 Conclusion

In this work, we propose a novel semantic perception swarm policy (SPSP) with DRL
for distributed swarm systems to reliably and efficiently accomplish specified tasks.
This policy contains innovative semantic perception to promote agents’ adaptability
by understanding observation information. Specifically, semantic disentangled repre-
sentation with posterior distribution and semantic mixture representation with network
mapping are performed to represent the semantic information of agents’ observations.
In semantic representation, HGAT is adopted to model individual-level and group-level
relational information. Simulation and real-world experiment results verify the effec-
tiveness and adaptability of SPSP in several challenging tasks.
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