
Hierarchical Cooperative Swarm Policy Learning

with Role Emergence

Tianle Zhang1,2, Zhen Liu1,2(�), Zhiqiang Pu1,2, Tenghai Qiu1 and Jianqiang Yi1,2

Abstract—Swarm systems can cooperatively and efficiently
accomplish specified complex tasks. Recent works have shown
the potential of multi-agent reinforcement learning methods to
study behavior policies of swarm systems. However, it is difficult
for them to complete complex swarm tasks efficiently. In human
society, role assignment can effectively help humans understand
complex tasks and decompose them into simple certain subtasks.
Inspired by this, we propose a two-level hierarchical cooperative
swarm policy learning framework with role emergence based on
hierarchical deep reinforcement learning for distributed swarm
systems. In this framework, roles are dynamic and emergent.
Agents with the same role tend to collectively complete a certain
subtask. Specifically, each agent uses a higher-level swarm policy
to dynamically select a role for itself in a role space and at a
higher temporal scale, while it uses a lower-level swarm policy
to perform the responsibilities of the selected role in a primitive
action space. Meanwhile, hierarchical swarm policies with partial
observation are centrally trained and decentrally executed, where
agents’ local interaction modules and extrinsic team rewards
are designed to promote cooperation among agents. In addition,
an intrinsic reward is defined to enable different roles to be
identified by agents’ longer-term behaviors, which implicitly
associates the roles with responsibilities. Simulation results show
that our method can learn and generate emergent, dynamic and
identifiable roles, which helps swarm systems to reliably and
efficiently accomplish complex tasks in a shorter time.

Index Terms—distributed swarm system, role emergence, hi-
erarchical multi-agent reinforcement learning.

I. INTRODUCTION

Swarm systems have attracted the attention of many re-

searchers in recent years because of their unique benefits

and great potential applications. Their applications can be

founded in warehousing logistics, search and rescue scenarios,

formation control [1]–[3], etc. Most of the swarm systems

used in these applications are to use many identical agents

to collectively accomplish a common target. Meanwhile, each

agent in the swarm systems has simple and limited capabili-

ties, e.g. partial observability, local interactivity and restricted

manipulation. This provides high requirements for efficient

cooperation among agents. Besides, the number of agents in

the swarm systems may be large-scale and uncertain. Hence,

finding swarm policies that enable swarm systems to efficiently

accomplish complex tasks remains great challenging.

Recently, multi-agent reinforcement learning (MARL) has

shown great potential in multi-agent systems, and many deep

1Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China, e-mail: tianle-zhang@outlook.com, liuzhen@ia.ac.cn,
zhiqiang.pu@ia.ac.cn, tenghai.qiu@ia.ac.cn,
jianqiang.yi@ia.ac.cn

2School of Artificial Intelligence, University of Chinese Academy of
Sciences, Beijing 100049, China.

MARL methods have been proposed [4]–[9]. MARL provides

a promising approach to develop the behavior policies of

swarm systems. However, most of MARL methods cannot be

directly applied to swarm systems due to some challenges,

including the scalability of swarm policies and the complexity

of swarm tasks. To achieve scalability, some MARL methods

adopt a mechanism that all agents in the same swarm system

share and learn a policy network [10]. But, their centralized

training manner will encounter dimensional curse with the

increase of the number of agents. Meanwhile, the simple

sharing mechanism is not always effective on many complex

swarm tasks that require agents to learn many skills. An

effective way to efficiently accomplish complex tasks is to

assign a corresponding subtask to each agent, which can be

seen as a division of labor. This brings forward a question, that

is, how to realize the dynamic division of labor and parameter

sharing for swarm systems, so as to improve the efficiency of

completing complex tasks.

Inspired by the division of labor in nature and human

society, a concept that comes to mind is role assignment. Each

role has individual responsibility for the whole task. Agents

with the same role take on the same responsibilities, and can

form a small team to collectively accomplish specified sub-

tasks. Complex tasks can be decomposed by roles associated

with responsibilities equivalent to subtasks. The role theory

has been widely researched in sociology, economics, and

organization theory. Some researchers have introduced the

concept of role into multi-agent systems [11]–[13]. However,

these works need to use prior domain knowledge for task

decomposition and predefine the responsibilities of each role,

which is not suitable for complex swarm systems in dynamic

and uncertain environments and prevents the swarm system

from adapting to the environments [14].

Motivated by the above discussions, we propose a novel hi-

erarchical cooperative swarm policy learning framework with

role emergence (HCSP-RE) to learn role-oriented cooperative

swarm policies, so as to enable distributed swarm systems

to reliably and efficiently accomplish complex tasks. In this

paper, the key technical and simulation contributions are as

follows. 1) We construct a two-level role-oriented hierarchical

policy scheme for each agent in distributed swarm systems

by defining a high-level action space as a set of all roles.

The scheme consists of a higher-level policy that chooses and

maintains a role for many time steps, and a lower-level policy

that takes primitive actions according to the assigned role. 2)

We design a centralized training and decentralized execution

mechanism for both high-level and low-level policies, where

978-1-7281-9048-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 S
ym

po
siu

m
 S

er
ie

s o
n

Co
m

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (S
SC

I)
|

97
8-

1-
72

81
-9

04
8-

8/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SS

CI
50

45
1.

20
21

.9
66

00
08

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 11,2022 at 06:12:58 UTC from IEEE Xplore. Restrictions apply.

agents’ interaction module and extrinsic team rewards are

designed to promote cooperation among agents in the same

swarm system. This mechanism avoids the limitations of cen-

tralized training in large-scale agents. 3) We define an intrinsic

reward for lower-level policies to enable different roles to be

identified by agents’ long-term behaviors. This makes the roles

contain enough information about agents’ long-term behaviors,

which implicitly associates the roles with responsibilities. 4)

simulation results show the effectiveness and superiority of

HCSP-RE compared with the existing methods.

II. BACKGROUND

A. Partially Observable Markov Games

In this paper, we consider a complex swarm task that can

be modeled by a partially observable Markov game (POMG)

[15] which is an multi-agent extension of Markov decision

processes. A POMG for n agents is defined by a set of states S

describing the possible state of an environment, a set of actions

A1, ... ,An and a set of observations O1, ...,On for the agents.

Based on the local observation oi ∈ Oi, agent i takes action

ai ∈ Ai in the environment. Then, agent i obtains a reward

by a reward function ri : S × A1 × ... × An 7→ R. The state

of the environment evolves to next state according to the state

transition function P : S × A1 × ... × An 7→ S. Meanwhile, the

initial state of the environment is determined by a distribution

ρ : S 7→ [0, 1]. Agent i aims to maximize its own expected

cumulative return Ri =
∑T

t=0 γ
trt

i
, where γ ∈ [0, 1] is a discount

factor and T is the time horizon.

B. Proximal Policy Optimization

In this paper, proximal policy optimization (PPO) [16] is

adopted as the basic training algorithm. PPO is a novel policy

gradient algorithm [17] for deep reinforcement learning, and

it is an actor-critic framework. PPO uses two deep neural

networks approximate a value function (critic) Vφ and a policy

function (actor) πθ respectively, where φ and θ are critic and

actor network parameters respectively. The objective of PPO is

to update an actor that maximizes expected advantage function

of the current actor πθold
. In addition, in order to ensure that

the performance of the new actor is gradually improved, the

optimization objective of PPO is as follow:

JPPO
πθ
= E
[

min(
πθ

πθold

Aπθold (s, a),

clip(
πθ

πθold

, 1 − ǫ, 1 + ǫ)Aπθold (s, a))
]

,
(1)

where clip(πθ
πθold

, 1 − ǫ, 1 + ǫ) limits πθ
πθold

in the interval [1 −

ǫ, 1 + ǫ], and Aπθold (s, a) = Qπθold (s, a) − Vφ(s) is the advantage

estimate function. The action value function Qπθold (s, a) is

approximately evaluated by temporal difference operation, i.e.,

Qπθold (s, a) = r + γVφ(s
′

) − Vφ(s).

C. Hierarchical Multiagent Reinforcement Learning

In single-agent hierarchical reinforcement learning, multiple

layers of policies are trained to perform decisions and controls

at higher levels of temporal and behavioral abstraction [18]. In

hierarchy of policies, the lowest policy applies actions to the

environment, while the higher level policies are able to plan

over a longer time scale. Similar to single-agent hierarchical

learning, multiagent hierarchical policies can also be learned

from high-level and low-level perspectives through tempo-

ral abstraction [19]. In the learning process, high-level and

low-level policies are trained independently without gradient

transfer between levels. Recently, an efficient learning method

is that centralized MARL algorithm and independent rein-

forcement learning are used to train high-level and low-level

policies respectively [20]. But, there will be some limitations

when the method is applied to distributed swarm systems.

D. Distributed Swarm Systems

In this paper, we study a swarm system where a group

of self-organizing homogeneous agents tries to collectively

accomplish specified tasks. The swarm system with n homoge-

nous agents is distributed and self-organized. The illustration

of the swarm system is shown in Fig. 1. For simplicity, we

assume that geometry of the agents in the swarm system is

modeled as a disc. The basic state of agent i contains its

own position pi = [px
i
, p

y

i
]T and velocity vi = [vx

i
, v

y

i
]T , i.e.,

si = [pi, vi]
T . The kinematic model of agent i is a double

integrator model, and the action of the agent is denoted as

ai = [F x
i
, F

y

i
]T , where F x

i
, F

y

i
are forces on the agent in x

and y directions. Meanwhile, the number of the agents in the

swarm system is uncertain and may be large-scale. Obviously,

the environment of the agents in the swarm system is uncertain

and dynamic. In addition, the main challenges in this paper

are as follows.

Agent

y(
𝐦
)

x(𝐦)

𝟎

−𝟏
−𝟏

𝟏

𝟎 𝟏𝟎. 𝟓−𝟎. 𝟓

𝟎. 𝟓

−𝟎. 𝟓

𝑝*+,
𝑣*+,

𝑝* = [𝑝*
0 , 𝑝*

2
]4

𝑣* = [𝑣*
0 , 𝑣*

2
]4

𝑝*5,
𝑣*5,

𝑝*+6
𝑣*+6

𝑝*
𝑣*

𝑝*56

𝑣*56

𝐷8

𝐷9

Interaction range

Observation range

Fig. 1. Illustration of a distributed swarm system. Green solid circles represent
agents in the swarm system. Red and blue dotted circles represent the
observation range and interaction range of each agent respectively.

1) Partial Observability: In the distributed swarm system,

each agent has a limitation on observability. Each agent can

only perceive its own state and the states of neighbors within

the observation range Do of the agent.

2) Local Interactivity: In swarm systems, agents often need

to interact with collaborators to facilitate cooperation among

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 11,2022 at 06:12:58 UTC from IEEE Xplore. Restrictions apply.

agents. However, in the distributed swarm systems, each agent

only interacts with some of the homogeneous agents within the

range of its local interaction Dc, instead of all agents in the

same swarm system.

3) Role Assignment: to efficiently complete the specified

complex tasks, the swarm system need a clear role assignment.

Meanwhile, due to high uncertainty of the swarm system,

the role assignment should be dynamic. Each agent has an

assigned role, and performs the responsibility of the role by

a long-term behavior. Through dynamic role assignment, the

swarm system can achieve labor division for all agents to de-

compose complex tasks, which is also higher-level intelligent

cooperation among the agents. In this paper, roles in the swarm

system are emergent without being defined in advance, and the

role of each agent changes dynamically at a higher time scale.

The responsibilities of roles are also determined automatically

by learning approaches. The process of responsibility deter-

mination is equivalent to the process of task decomposition,

which can be understood that responsibilities are equivalent

to subtasks. Meanwhile, responsibilities can also be reflected

through the agents’ longer-term behaviors.

Hence, this paper mainly need to find a swarm policy for the

distributed swarm system to realize dynamic role assignment,

which implicitly implements task decomposition via emergent

roles associated with responsibilities that are equivalent to

subtasks.

III. APPROACH

In this section, we propose a novel hierarchical cooperative

swarm policy learning framework with role emergence, called

HCSP-RE, which introduces the dynamic and identifiable role

concept into distributed swarm systems and promotes them to

reliably and efficiently accomplish complex tasks. Firstly, the

overall design of HCSP-RE is given. Then, role-oriented dis-

tributed hierarchical swarm policies with centralized training

and decentralized execution are presented in detail. Next, to

associate each role with different responsibilities, we define

an identifier-based intrinsic reward to enable the role to be

identifiable by agents’ longer-term behaviors. Finally, the

training algorithm of HCSP-RE is presented.

A. Overall Design of HCSP-RE

The overall structure of HCSP-RE is given in Fig. 2. At

the higher-level policy, the temporally-extended extrinsic team

reward is used to train a high-level decentralized actor-critic

network for decentralized dynamic assignment of role ρi to

each agent i, i = 1, ..., n. At the lower-level policy, conditioned

on the assigned role, a low-level decentralized actor-critic

network takes primitive actions to swarm environments, that

is, it performs the responsibilities of roles. The trajectory of

agent i, τi, generated by the lower-level policy under the

assigned role ρi is collected into a dataset D = {{(ρi, τi)}
n
i=1
},

which is used to train a role identifier q to approximately

estimate the true posterior probability as q(ρi|τi) that predicts

roles from trajectories. Meanwhile, The likelihood of posterior

probability, logq(ρi|τi), is acted as the intrinsic reward for the

lower-level policy to associate roles with responsibilities and

learn identifiable roles.

In HCSP-RE, the experiences of all agents are used to

train one higher-level policy network, one lower-level policy

network and one identifier network, that is, agents in the

same swarm system share all the learning parameters including

higher-level policy, lower-level policy and identifier networks.

This sharing method avoids dimensional curse of large-scale

agents in swarm systems, and achieves the scalability of

swarm policies. Besides, all perception modules have the same

network structure and different parameters, so do interaction

modules.

B. Role-oriented Distributed Hierarchical Swarm Policies

with Role Assignment and Performing Responsibility

In the role-oriented distributed hierarchical swarm policies

as shown in the middle of Fig . 2, the distributed higher-level

policy is designed to implement role assignment and the lower-

level policy performs the responsibility of the role assigned

by the higher-level policy. In the following, take agent i as an

example to present the higher-level and lower-level policies in

detail.

Higher-level Policy: Role Assignment

Agent i uses the higher-level policy to dynamically assign

a role ρi ∈ Z for itself according to the partial observation

oi ∈ O (oi = {s j| j ∈ No(i)}) and local interactive message

mh
i
∈ Mh (mh

i
= {hh

j
| j ∈ Nc(i)}) of the agent in a role space Z

every k time steps, where Z denotes a set of role variables

z j (j = 1, ..., q) with one-hot encoding, i.e., Z = {z1, ..., zq} (q

represents the number of roles), Mh = {hh
1
, ..., hh

n} denotes a set

of high-level interactive messages, No(i) is some neighborhood

(include itself) within the observation range Do of agent i,

and Nc(i) is some neighborhood (include itself) within the

interaction range Dc of agent i. In particular, the network

structure of the higher-level policy is a coupled actor-critic

network. The high-level critic network ch
i

: O × Mh 7→ R

consists of a perception module Ph
i
, an interaction module Ih

i

and a high-level value module Vh
i

that are two fully-connected

(FC) layers, i.e., ch
i
= Vh

i
(mean(h̃h

i
, h̃h
−i

)) (−i denotes all agents

except for agent i). The high-level actor network µi : O×Mh 7→

Z makes up of a perception module Ph
i
, an interaction module

Ih
i

and a role module Ah
i

that are two FC layers. Herein,

The perception module and interaction module are both graph

attention networks [21] based on Transformer [22], and the

two modules can process information of uncertain number of

agents in swarm systems. The perception module is designed

to extract effective high-level environment feature hh
i

from oi,

and the feature hh
i

encodes the spatial relations between agent

i and the surrounding environment. The interaction module

is designed to cooperatively negotiate role division with sur-

rounding homogeneous agents by utilizing interactive message

mh
i
, yielding high-level interaction feature h̃h

i
which contains

cooperative information with neighbor agents. In addition, in

the structure of the higher-level policy, the high-level critic

network is used to evaluate the output of the high-level actor

network in the training phase. The actor network is used as

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 11,2022 at 06:12:58 UTC from IEEE Xplore. Restrictions apply.

Sw
arm

Environm
ent

Agent 𝒊

Higher-level Policy

𝑜#

Perception
Module 𝑃#

%

Interaction
Module 𝐼#

%

ℎ#
%

…

collaborators

(ℎ#
%

Role
Module 𝐴#

%

Role 𝜌#

Agent 𝒊

Lower-level Policy

𝑎#

Trajectory 𝜏#Perception
Module 𝑃#

-

IdentifierGRU

FC

Perception
Module 𝑃#

.

ℎ#
-

F
C

Interaction
Module 𝐼#

-

High-level Value
Module 𝑉#

%

(ℎ#
-

collaborators

…

q 𝜌# 𝜏#)

dynamic
greedy

selection

Extrinsic Team
Reward 𝑅

Training with temporally-extended
extrinsic team reward ∑𝒕

𝒕4𝒌6𝟏𝑹

Training with dynamic weighted sum of
intrinsic reward and extrinsic team reward

CrossEntropy
Loss

Intrinsic reward
𝑙𝑜𝑔(𝑞(𝜌#|𝜏#))

Low-level
Value Module 𝑉#

-

Policy
Module 𝐴#

-

𝑚#
-

𝑚#
% (ℎ6#

%

(ℎ6#
-

Fig. 2. Hierarchical cooperative swarm policy learning framework with role emergence.

the higher-level policy, where it outputs the probabilities of

roles, and the role with the highest probability is chosen by

greedy method.

In addition, the higher-level policy with actor-critic frame-

work adopts a centralized training and decentralized execution

manner [4]. In this training phase, to cooperatively learn

effective role assignment for distributed higher-level policy,

besides the interaction module with collaborators, we design

an extrinsic team reward R : S × {A}n
i=1
7→ R that maps

global state and joint actions to a scalar reward. Meanwhile,

the higher-level policy is implemented each k time steps, that

is, each choice of role ρi for agent i is sustained for k time

steps, which enables the lower-level policy to fully perform

the responsibilities of the role with enough time. Furthermore,

the higher-level policy learns to assign roles for the lower-

level policy to optimize temporally-extended extrinsic team

reward RH that is the sum of extrinsic team rewards R obtained

during the execution interval k of the higher-level policy,

i.e., RH :=
∑t+k−1

t Rt. Hence, the higher-level policy can be

obtained through optimizing the following objective,

argmax
µi

Eot
i
,P,ρt

i
∼µi,a

t
i
∼πi

[

T̃
∑

t̃=1

γt̃

t̃+k−1
∑

t=t̃

Rt)], (2)

where P denotes the swarm environment transition

probability,t̃ represents the number of the higher-level

policy execution times in each episode, γ is a high-level

discount factor, t̃ = k ∗ t and πi is the actor of the lower-level

policy given in the following.

Lower-level Policy: Performing Role Responsibility

Each agent uses the lower-level policy to perform the

responsibility of the role assigned by the higher-level policy

in a primitive action space. Conditioned on an assigned role

ρi ∈ Z, an agent’s observation oi ∈ O and interaction

message ml
i
∈ Ml (ml

i
= {hl

j
| j ∈ Nc(i)}) from collaborators

where Ml = {hl
1
, ..., hl

n} denotes a set of low-level interactive

messages, the lower-level policy outputs a primitive action ai

in the action spaceA interacting with the environment. Similar

to the network structure of the higher-level policy, the network

structure of the lower-level policy is also an actor-critic net-

work. The low-level critic network cl
i

: O×Ml×Z 7→ R consists

of a perception module Pl
i
, an interaction module Il

i
and two-

FC low-level value module V l
i
, i.e., cl

i
= V l

i
(mean(h̃l

i
, h̃l
−i

)).

The low-level actor network πi : O × Ml × Z 7→ A makes

up of a perception module Pl
i
, an interaction module Il

i
and

two-FC policy module Al
i
. Herein, the perception module is

also used to extract effective low-level environment feature

hl
i

from oi and the interaction module is also adopted to

promote low-level cooperation among roles to better perform

responsibilities from the roles, yielding low-level interaction

feature h̃l
i
. Besides, the low-level critic network is responsible

for evaluating the output of the low-level actor network in the

training. The low-level actor network is used as the lower-level

policy, which directly outputs a primitive action to the swarm

environment.

Similar to the higher-level policy, the lower-level policy also

adopts the centralized training and decentralized execution

manner with an actor-critic framework. For its training, the

lower-level policy needs to learn to choose primitive actions

to generate useful and identifiable behaviors for its acting role,

that is, it produces corresponding behaviors to perform the

responsibility of the role. Hence, a low-level reward function

RL is designed to drive the lower-level policy to achieve its

responsibilities. The low-level reward is dynamic weighted

sum of extrinsic team reward R and intrinsic reward RI , i.e.,

RL = R+αRI , where the team reward is used to guarantee that

the generated behaviors are useful for team performance, and

the intrinsic reward given in the next subsection is designed to

promote the association of roles with responsibilities, which

enables roles to be identifiable by agents’ long-term behaviors.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 11,2022 at 06:12:58 UTC from IEEE Xplore. Restrictions apply.

Hence, the lower-level policy can be obtained by maximizing

the low-level reward, i.e.,

argmax
πi

Eot
i
,P,ρt

i
∼µi,a

t
i
∼πi

[

T
∑

t=1

γtRt
L]. (3)

C. Role Identifiability via Identifier-based Intrinsic Rewards

In role-oriented swarm systems, agents with same roles have

same responsibilities for complex tasks. Each role has individ-

ual responsibility that can be reflected through corresponding

behaviors. Intuitively, a role is a comprehensive pattern of

behavior, and each role is identifiable by agents’ long term

behaviors. Therefore, we would like associate a role with

its responsibility by enabling the role ρi to be identified by

agents’ longer-term behavior, that is, trajectory τi. This can be

achieved by maximizing the mutual information between the

individual trajectory and the role, i.e., I(τi; ρi), which measures

the amount of information that the roles contain about agent’

longer-term behavior. But, maximizing the mutual information

is often intractable. Hence, we introduce a variational posterior

estimator qξ(ρi|τi) parameterized with ξ to approximately

estimate the true posterior p(ρi|τi), which derives a tractable

lower bound on I(τi; ρi) [14]. In addition, since the role ρi

assigned by the higher-level policy is a fixed value and not

a variable for the lower-level policy, the lower bound of the

mutual information can be expressed as follows [23],

I(τi; ρi) ≥ Eτi,ρi∼p(ρi |τi)[log(qξ(ρi|τi))]. (4)

The posterior estimator qξ is designed as an identifier as shown

in the right of Fig. 2, which is used to predict the role ρt
i

from trajectory τt,k
i
= (ot

i
, at

i
, · · ·, ot+k−1

i
, at+k−1

i
) generated by

the lower-level policy under the role ρi. For qξ, we use a

perception module P
ρ

i
to process observation states in the

trajectory and gated recurrent unit (GRU) [24] to encode

trajectory information. The network parameter of the identifier

is the parameter ξ. The identifier parameter is updated using a

dataset D = {{(ρi, τi)}
n
i=1
} of role-trajectory pairs, where each

makes up of the role ρi assigned by the higher-level policy

and the corresponding trajectory τi generated by the lower-

level policy under the role ρi.

To maximizing the mutual information, we only need to

maximize its lower bound. Hence, we take the lower bound

as the intrinsic reward function for the lower-level policy,

i.e., RI = log(qξ(ρi|τi)). Through the operation, the lower-

level policy optimizes the intrinsic reward, which means to

maximize I(τi; ρi). This can enable the assigned role to be

identified through agents’ long-term behaviors generated by

the lower-level policy, which promotes the association of roles

with responsibilities.

D. Training Algorithm

Algorithm 1 is designed to optimize the objectives in (2) and

(3) to achieve role emergence for HCSP-RE. In the training

algorithm, we adopt an improved proximal policy optimization

(PPO) [16] algorithm based on a coupling actor-critic network

framework. Specifically, the higher-level policy networks (the

high-level critic and actor) and lower-level policy networks

(the low-level critic and actor) are updated by minimizing

high-level total loss Lh = β1Lch + β2Lµ − β3Hh and low-level

total loss Ll = β1Lcl+β2Lπ−β3Hl respectively, where β1, β2, β3

are hyper-parameters. The high-level total loss Lh is conducted

by weighted summation of high-level value loss Lch , action

loss Lµ and action entropy Hh. The low-level total loss Ll is

conducted by weighted summation of low-level value loss Lcl ,

action loss Lπ and action entropy Hl,

Lch =E[(RH + γc
h(o

′

i ,m
′

i; w−h) − ch(oi,mi; wh))2],

Lcl =E[(RL + γc
l(o

′

i ,m
′

i , ρ
′

i; w−l) − cl(oi,mi, ρi; wl))
2],

(5)

Lµ = − E[min(
µ(oi,mi; wh)

µ(oi,mi; w−
h
)
, clip(

µ(oi,mi; wh)

µ(oi,mi; w−
h
)
,

1 − ǫ, 1 + ǫ)) ∗ (RH + γc
h(o

′

i ,mi; w−h) − ch(oi,mi; wh)],

Lπ = − E[min(
π(oi,mi, ρi; wl)

π(oi,mi, ρi; w−
l
)
, clip(

π(oi,mi, ρi; wl)

π(oi,mi, ρi; w−
l
)
,

1 − ǫ, 1 + ǫ)) ∗ (RL + γc
l(o

′

i ,mi, ρi; w−l) − cl(oi,mi, ρi; wl)],

(6)

Hh = −
∑

µ(oi,mi; w)log(µ(oi,mi; w)),

Hl = −
∑

π(oi,mi, ρi; w)log(π(oi,mi, ρi; w)).
(7)

Herein, Hh or Hl is specially designed to encourage explo-

ration for agents through penalizing the entropy of actor µ or

π. Meanwhile, the identifier qξ is updated with a cross entropy

loss Lq = CrossEntropy(ρi, ρ̂i) where ρ̂i is the output of qξ,

which can be viewed as a supervised learning process with

the sample dataset D. In addition, we periodically evaluate the

performance of the learned swarm policies, e.g., success rate.

If performance exceeds S threshold, we gradually increase the

weight α to better promote the association of responsibilities

performed by the lower-level policy with the given roles.

IV. SIMULATIONS

In this section, simulations are conducted to verify the

effectiveness of the proposed HCSP-RE including a fully

cooperative coverage task and a predatory-prey-style pursuit

task. This aims to demonstrate the effectiveness and efficiency

of the proposed method. The key point of the demonstration

is whether the proposed method can improve the efficiency of

task completion.

A. Task Description

Coverage: This task requires a swarm system with n ho-

mogeneous agents to cooperatively reach n landmarks. In

other words, the agents need to cover all of the landmarks.

Meanwhile, the corresponding relationship between agents and

landmarks is not determined in advance. This task is similar

to the cooperative navigation task in [4].

Pursuit: This task is that a swarm system with n slower

predators need to cooperatively hunt m (m < n) faster preys in

a randomly generated environment. Specifically, the preys are

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 11,2022 at 06:12:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Training Algorithm for HCSP-RE

1: Initialize high-level critic ch and actor µ, low-level critic

cl, and actor π, identifier q, high-level replay buffer BH ,

low-level replay buffer BL, and trajectory-role dataset D

2: for each episode do

3: ot = env.reset()

4: for each step t = 1, ...,T in episode do

5: if t mod k = 0 then

6: if t > 1 then

7: Compute Rt
H
=
∑k

j=1 Rt− j, Store (ot−k, ρt−k,Rt
H

)

into BH , Store (ρt−k, τt−k,k) into D

8: Compute intrinsic reward RI

9: Recompute Rt
L
= Rt

L
+ αRI from t − 1 to t − k

10: end if

11: Assign new ρi by high-level actor µi, i = 1, ..., n

12: end if

13: Get at from low-level actor π

14: ot+1,Rt = env.step(at)

15: Compute Rt
L
= Rt, Store (ot, at,Rt

L
) in BL

16: end for

17: Compute high-level and low-level advantage estimates

with generalized advantage estimator (GAE) [25] using

ch and cl, and store into BH and BL respectively for

each episode.

18: if size of BL ≥ Nthreshold then

19: Update ch and µ by minimizing high-level total loss

Lh = β1Lch + β2Lµ − β3Hh with sampling from BH

20: Update cl and π by minimizing low-level total loss

Ll = β1Lcl + β2Lπ − β3Hl with sampling from BL

21: Update q by minimizing Lq calculated with sampling

from D

22: Empty BH , BL, D

23: end if

24: if evaluation success rate ≥ S threshold then

25: α = α + αs

26: end if

27: end for

controlled by an improved fixed policy based on the Voronoi

escape strategy [26] and are confined to a closed world.

B. Simulation Settings

In simulations, all task environments are built on the multi-

agent particle environment (MAPE) [4], where agents with

double integrator dynamics models take discrete actions in

a two-dimensional world. In each task, the agents can only

partially observe the surrounding environment and interact

with local collaborators. This is also a characteristic of dis-

tributed swarm systems. In addition, to speed up training

process, we adopt curriculum learning with model reload [27]

by progressively increasing the number of training agents in

a swarm system for each task.

In coverage task, we design a shaped team reward by

adding the negative minimum distance of all agents from each

landmark. In pursuit task, a swarm system obtains +10 team

reward when one live prey is hunted by predators. Meanwhile,

a shaped team reward is designed to minimize the distance

between the swarm system and all preys, which aims to

speed up the learning process. Besides, in the training or test

phase, when one of the following two conditions is satisfied,

the episode will be terminated. The first is that the task is

successfully accomplished by the swarm system. Another one

is that the episode reaches 50 time steps. In addition, in the

Pursuit task, the state of agent i contains the life state sl
i
,

i.e., si = [pi, vi, s
l
i
]T , where sl

i
= 1 represents the state of

being alive and sl
i
= 0 represents the state of being dead.

For implementation details, we set γ = 0.99, Nthreshold = 5000,

q = 4, β1 = 0.5, β2 = 1.0, β3 = 0.01, S threshold = 0.9, ǫ = 0.2,

αs = 0.1, Do = 2.5 Dc = 3, execution interval of higher-level

policy k = 5 and the dimension of discrete action space is 4.

In addition, to fully validate the superiority of the proposed

method, we adopt the method proposed in [21] (TRANSFER)

as a baseline method. This is because this method can be

applied in swarm systems with a variable number of agents.

C. Simulation Results

Quantitative Evaluation. In the coverage task, we set a

swarm system with n = 12 agents to occupy n = 12 landmarks.

In the coverage task, a swarm system with n = 15 predators

needs to hunt m = 5 preys. To speed up training process, we

adopt curriculum learning manner with model reload. In par-

ticular, the policy is firstly learned in a team with small number

of agents. When the success rate of evaluation for the learned

policy exceeds a threshold (90%), this policy is transferred to a

team with more agents to be trained until the number of agents

reaches the set requirement, e.g., n ∈ {3, 6, 12} for the coverage

task and (n,m) ∈ {(3, 1), (6, 2), (9, 3), (12, 4), (15, 5)} for the

pursuit task. Through this manner, we obtain the learned policy

and test its performance. Simulation test results are shown

in Table I. The test results (mean and standard deviation)

are obtained by running 1000 episodes in five independently

seeded environments, where each seeded environment runs

200 episodes. As expected, our method shows superior per-

formance than the baseline method in terms of success rate,

episode reward and episode length, especially in the episode

length. The results of the episode length show that our

method can complete the task in a shorter time. This superior

performance demonstrates that emergent roles by our method

can improve the efficiency of task completion. We infer that

this is because the complex tasks can be decomposed into

common subtasks by assigning different roles associated with

responsibilities to agents in swarm systems, which accelerates

the completion time of tasks with a clear role division. On the

contrary, the baseline method need to take a long time to finish

the tasks due to the lack of efficient labor division of roles

with cooperation for complex tasks. In short, our method has

high efficiency of task completion for complex swarm systems.

Though not by a large margin, this superiority indicates the

benefits of the proposed method with emergent roles.

In order to further verify the generalization of our method,

the learned swarm policy is performed in scenarios where

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 11,2022 at 06:12:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I
Simulation test performance of our method and baseline method in coverage and pursuit tasks. Success Rate: percentage of episodes successfully completed

by the agents. Mean Episode Reward: mean of rewards for each episode of the agents. Episode Length: successful episode length.

Task Method Success Rate Mean Episode Reward Episode Length (Average / 75th / 90th Percentile)

coverage (n = 12)
TRANSFER 0.94±0.03 -7.20±0.21 20.65±0.35 / 24.00±0.63 / 28.80±1.17

HCSP-RE (ours) 0.96±0.01 -6.52±0.16 16.19±0.37 / 18.20±0.40 / 21.60±0.80

pursuit (n = 15,m = 5)
TRANSFER 0.94±0.02 0.89±0.15 26.52±0.38 / 30.60±0.80 / 37.00±0.89

HCSP-RE (ours) 0.98±0.01 1.51±0.09 24.14±0.46 / 26.20±0.40 / 33.00±1.79

TABLE II
Generalization performance of our method in the coverage and pursuit tasks.

Task Number of agents Success Rate Mean Episode Reward Episode Length (Average / 75th / 90th Percentile)

coverage
n = 9 0.98±0.01 -5.69±0.07 16.44±0.28 / 18.40±0.49 / 21.80±0.75

n = 14 0.92±0.01 -7.48±0.10 16.67±0.33 / 18.80±0.40 / 22.20±0.75

pursuit
n = 12,m = 4 0.95±0.01 0.82±0.10 25.35±0.54 / 28.00±1.10 / 37.20±2.40

n = 18,m = 6 0.97±0.01 1.80±0.03 24.48±0.16 / 27.00±0.63 / 34.20±0.40

the number of agents is different from that of the training.

The results are shown in Table II. As expected, our method

still has good generalization performance. This is because the

dynamic role assignment of our method can adapt well to

various uncertain environments. Hence, the generalization per-

formance further demonstrates the effectiveness and advantage

of introducing role assignment into swarm systems.

Ablation Studies. To understand the superior performance

of HCSP-RE, we carry out ablation studies to test the contri-

bution of its main components and analysis its main hyper pa-

rameters. Firstly, ablation studies regarding main components

of HCSP-RE is implemented, and the results are shown in Fig.

3. The HCSP-RE-L method is a ablation method without the

higher policy, that is, there is no role assignment. The results

show that HCSP-RE has better performance than HCSP-RE-L

and TRANSFER in term of the convergence rate. This fully

validates the effectiveness of the higher policy of the HCSP-

RE method with role assignment. It can be seen from the Fig.

3 that with the increase of the number of agents or the task

becomes more difficult, the advantage of HCSP-RE is greater.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Updates 1e4

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

M
ea

n
P

er
 S

te
p

R
ew

ar
d

TRANSFER
HCSP-RE-L
HCSP-RE

(a) Mean per step reward vs. number of
updates in 3-agent coverage task

0.0 0.2 0.4 0.6 0.8 1.0
Number of Updates 1e4

1.4

1.2

1.0

0.8

0.6

0.4

0.2

M
ea

n
P

er
 S

te
p

R
ew

ar
d

TRANSFER
HCSP-RE-L
HCSP-RE

(b) Mean per step reward vs. number of
updates in 7-agent coverage task

Fig. 3. Ablation studies regarding main components of HCSP-RE.

Role Emergence. To fully analyze and verify the effec-

tiveness of the proposed method, we further investigate the

emergence of roles in some scenarios as shown in Fig. 4.

Black solid circles represent landmarks or live preys, grey

solid circles represent dead preys and other color solid circles

represent agents in swarm systems. Different color solid circles

(a) Coverage scenario 1 (b) Coverage scenario 2

(c) Pursuit scenario 1 (d) Pursuit scenario 2

Fig. 4. Illustrations of keyframes in coverage and pursuit tasks.

denotes agents acting as different roles. It can be seen from

the figure shown in Fig. 4 that a swarm system can assign

different roles to agents to complete a complex task. The

complex task can be decomposed by defining roles associated

with simple subtasks using our learning framework. Agents

with the same role collectively accomplish a subtask. This

enables the complex task to be performed more efficiently. In

the following, let us give an intuitive explanation of Fig. 4.

In Coverage scenario 1 (Fig. 4(a)), the swarm system have

a division of two roles, i.e., red agents and yellow agents.

Agents with the same role form a small team to cooperatively

accomplish a subtask, e.g., occupying some automatically

assigned landmarks. Meanwhile, to complete the task more

efficiently, the emergent roles for agents are dynamic by

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 11,2022 at 06:12:58 UTC from IEEE Xplore. Restrictions apply.

the role assignment of the higher-level policy. In Coverage

scenario 2 (Fig. 4(b)), the division of labor for different roles

is clearly reflected in the task by the proposed method. In

Pursuit scenario 1 (Fig. 4(c)), the predator swarm system uses

the division of roles to cooperatively hunt preys. This is easy

to come up with different pursuit strategies to intelligently and

farsightedly capture preys. In Pursuit scenario 2 (Fig. 4(d)), the

predator swarm system have captured all preys with emergent

roles associated with responsibilities. In particular, red agents

are responsible for hunting all preys, and orange and green

agents are responsible for preventing preys from escaping. The

comprehensibility and interpretability of roles are our future

research point.

V. CONCLUSIONS

In this paper, HCSP-RE is proposed to enable distributed

swarm systems to emerge roles to efficiently accomplish com-

plex tasks, which implicitly draws connection to the division

of labor and task decomposition by defining roles. Specifically,

each agent use the higher-level policy to assign a role for it,

and the lower-level policy to perform the responsibilities of the

assigned roles. Meanwhile, these hierarchical swarm policies

are centrally trained and decentrally executed. Furthermore,

an intrinsic reward for the lower-level policy is designed to

associate roles with responsibilities. Simulation results verify

the superiority of the proposed method, and provides role

concept into swarm systems to explain and promote coopera-

tion within agent teams for complex tasks. In the future, the

comprehensibility and interpretability of roles are directions

of our research.

Acknowledgment

This work was supported by the National Key Re-

search and Development Program of China under Grant

2020AAA0103404, 2018AAA0101005, the Strategic Priority

Research Program of Chinese Academy of Sciences under

Grant No. XDA27030403, and Science and Technology De-

velopment Fund of Macau (No.0025/2019/AKP).

References

[1] Y. Liu, L. Wang, H. Huang, M. Liu, and C.-z. Xu, “A novel swarm
robot simulation platform for warehousing logistics,” in 2017 IEEE

International Conference on Robotics and Biomimetics (ROBIO). IEEE,
2017, pp. 2669–2674.

[2] R. D. Arnold, H. Yamaguchi, and T. Tanaka, “Search and rescue with
autonomous flying robots through behavior-based cooperative intelli-
gence,” Journal of International Humanitarian Action, vol. 3, no. 1,
p. 18, 2018.

[3] Z. Sui, Z. Pu, J. Yi, and S. Wu, “Formation control with collision
avoidance through deep reinforcement learning using model-guided
demonstration,” IEEE Transactions on Neural Networks and Learning

Systems, 2020.
[4] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-

agent actor-critic for mixed cooperative-competitive environments,” in
Proceedings of the 31st International Conference on Neural Information

Processing Systems, 2017, pp. 6382–6393.
[5] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,

“Counterfactual multi-agent policy gradients,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.
[6] J. Jiang and Z. Lu, “Learning attentional communication for multi-agent

cooperation,” in Proceedings of the 32nd International Conference on

Neural Information Processing Systems, 2018, pp. 7265–7275.

[7] H. Mao, W. Liu, J. Hao, J. Luo, D. Li, Z. Zhang, J. Wang, and
Z. Xiao, “Neighborhood cognition consistent multi-agent reinforcement
learning,” arXiv preprint arXiv:1912.01160, 2019.

[8] T. Wang, J. Wang, C. Zheng, and C. Zhang, “Learning nearly decompos-
able value functions via communication minimization,” in International

Conference on Learning Representations, 2019.
[9] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,

and I. Mordatch, “Emergent tool use from multi-agent autocurricula,”
in International Conference on Learning Representations, 2019.

[10] M. Hüttenrauch, S. Adrian, G. Neumann et al., “Deep reinforcement
learning for swarm systems,” Journal of Machine Learning Research,
vol. 20, no. 54, pp. 1–31, 2019.

[11] A. Campbell and A. S. Wu, “Multi-agent role allocation: issues, ap-
proaches, and multiple perspectives,” Autonomous agents and multi-

agent systems, vol. 22, no. 2, pp. 317–355, 2011.
[12] M. Cossentino, V. Hilaire, A. Molesini, and V. Seidita, Handbook on

agent-oriented design processes. Springer, 2014.
[13] K. M. Lhaksmana, Y. Murakami, and T. Ishida, “Role-based modeling

for designing agent behavior in self-organizing multi-agent systems,”
International Journal of Software Engineering and Knowledge Engi-

neering, vol. 28, no. 01, pp. 79–96, 2018.
[14] T. Wang, H. Dong, V. Lesser, and C. Zhang, “Roma: Multi-agent

reinforcement learning with emergent roles,” in Proceedings of the 37th

International Conference on Machine Learning, 2020.
[15] M. L. Littman, “Markov games as a framework for multi-agent rein-

forcement learning,” in Machine learning proceedings 1994. Elsevier,
1994, pp. 157–163.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347.

[17] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour et al., “Policy
gradient methods for reinforcement learning with function approxima-
tion.” in NIPs, vol. 99. Citeseer, 1999, pp. 1057–1063.

[18] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical
reinforcement learning,” in 32nd Conference on Neural Information

Processing Systems (NeurIPS 2018). Curran Associates, Inc., 2019,
pp. 3303–3313.

[19] H. Tang, J. Hao, T. Lv, Y. Chen, Z. Zhang, H. Jia, C. Ren, Y. Zheng,
Z. Meng, C. Fan et al., “Hierarchical deep multiagent reinforcement
learning with temporal abstraction,” arXiv preprint arXiv:1809.09332,
2018.

[20] J. Yang, I. Borovikov, and H. Zha, “Hierarchical cooperative multi-
agent reinforcement learning with skill discovery,” in Proceedings of the

19th International Conference on Autonomous Agents and MultiAgent

Systems, 2020, pp. 1566–1574.
[21] A. Agarwal, S. Kumar, K. Sycara, and M. Lewis, “Learning transferable

cooperative behavior in multi-agent team,” in International Conference

on Autonomous Agents and Multiagent Systems (AAMAS’2020). IF-
MAS, 2020.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017.

[23] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “Maven: Multi-
agent variational exploration,” 2019.

[24] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” in EMNLP, 2014.

[25] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[26] Z. Zhou, W. Zhang, J. Ding, H. Huang, D. M. Stipanović, and C. J. Tom-
lin, “Cooperative pursuit with voronoi partitions,” Automatica, vol. 72,
pp. 64–72, 2016.

[27] W. Wang, T. Yang, Y. Liu, J. Hao, X. Hao, Y. Hu, Y. Chen, C. Fan,
and Y. Gao, “From few to more: Large-scale dynamic multiagent cur-
riculum learning,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 34, no. 05, 2020, pp. 7293–7300.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 11,2022 at 06:12:58 UTC from IEEE Xplore. Restrictions apply.

