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Abstract—Deriving efficient cooperative policies in uncertain
dynamic environments poses huge challenges for a distributed
swarm system due to the limited capability of the agents and
the complex dynamics of the environment. In this paper, a
novel distributed method based on deep reinforcement learning
using observation-level and communication-level graph networks
is proposed to learn cooperative policies for the distributed swarm
system. Specifically, a relational directed graph attention neural
network is designed to model observation-level graphs composed
of heterogeneous relational graphs among each agent and each
type of entities (e.g., obstacles, other teammates, opponents),
for extracting different relational representations. Moreover, a
relevant directed graph attention network is presented to cut
off the ineffective communication among irrelevant agents, and
model a relevant communication topology between each agent
and relevant homogeneous neighbor agents as an communication-
level graph, for promoting efficient inter-agent interactions. Fur-
thermore, a distributed actor-critic algorithm with full parameter
sharing is implemented to learn cooperative swarm policies by
using distributed critics, which avoids the curse of dimensionality
under a centralized critic. Various simulation results validate
the effectiveness and generalization of the proposed method,
and demonstrate that the proposed method outperforms existing
state-of-the-art methods on coverage and pursuit tasks.

Index Terms—Distributed swarm systems, deep reinforcement
learning, graph neural networks, multi-agent systems.

I. Introduction

In recent years, swarm systems composed of unmanned
ground or aerial vehicles have attracted more and more at-
tention among researchers due to the unique benefits and
the promising broad applications. For the benefits, they can
accomplish complex tasks in a low-cost and highly decen-
tralized form, and realize independent coordination, dynamic
adjustment and self-healing combination in complex environ-
ments [1]. Their applications can be found in warehousing
logistics [2], search and rescue scenarios [3], satellite clusters
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[4], etc. A swarm system has many homogeneous agents who
need to achieve a common goal through interaction with each
other in the uncertain dynamic environment. Generally, each
agent in the swarm system has limited capabilities in terms
of communication, sensing and manipulation, such that the
required tasks need to be completed collectively by multiple
agents with distributed control methods. Moreover, the agents
are replaceable and interchangeable, and the number of the
agents is uncertain. Therefore, due to the limited capability of
the agents and the complex dynamics of the environment, it
is still challenging to find cooperative policies that can enable
the distributed swarm system to derive cooperative behaviors
for completing specified tasks.

Recently, deep reinforcement learning (DRL) has shown
great potential to solve multi-agent cooperative problems.
Some DRL methods are proposed by designing global co-
operation mechanisms, such as centralized critic [5], commu-
nication among agents [6], and joint value factorization [7].
However, most of these methods cannot be directly applied to
swarm systems due to some challenges:

a) The high dimensionality of state and observation infor-
mation caused by the increase in the number of agents;

b) Changing of the available information set size, because
the number of observed neighbor entities increases or
decreases over time for each agent.

Although there are the challenges, some research works with
DRL for swarm systems have made good progress. A guided
DRL method is proposed to learn to control a group of
cooperative agents with limited sensing capabilities [8]. But,
this method uses a histogram over distances with a fixed
dimension size as the observation representation, which has
poor scalability and generalization. Considering this drawback,
a state representation method based on mean embeddings of
distributions is designed to adapt to the change of information
set size for swarm systems [9]. But, this method just uses a
mean operation for the information of surrounding entities for
each agent, and ignores natural spatial structures among each
agent and its neighboring entities.

In reality, a swarm system can be naturally described as a
graph structure, which can represent spatial relations among
agents. Meanwhile, there may be multiple different types
of entities in the environment, e.g., obstacles, other team-
mates, and opponents. Different types of entities have different
influence relations on each agent, e.g., avoiding obstacles,
cooperating with other teammates, and capturing opponents.
Therefore, each agent and the entities belonging to the same



type should be modeled as a graph for representing their
special spatial influence relations. Besides, the communication
topology among each agent and its teammates is also usually
represented as a graph structure. Through this graph, agents
can transmit effective messages to promote their effective
interactions.

In recent years, graph neural networks (GNNs) [10], [11]
are widely used and deeply researched to process graph-
structured data for finding the relations among nodes in graphs.
Therefore, it is a natural idea that the swarm systems can be
modeled as graph structures through GNNs, and processed
for extracting spatial relational representations. Similarly, the
communication topology among agents can be modeled by
GNNs. Currently, there are some multi-agent learning works
using GNNs to deal with the observation and communication
information [12]–[14]. Especially, some of them integrate
attention mechanisms to enable agents to selectively focus
on important information. However, most of them ignore
different relations among each agent and other entities in the
environment, and they do not consider the invalid inter-agent
communication that would weaken the focus on truly impor-
tant communication. Moreover, they do not simultaneously
consider observation-level and communication-level graphs for
each agent.

Motivated by the aforementioned discussions, a new dis-
tributed method based on DRL using observation-level and
communication-level graphs, called Relational and Relevant
directed graph Attention based Swarm actor-critic (RRAS), is
proposed to learn cooperative policies for distributed swarm
systems in this paper. Specifically, a relational directed graph
attention neural network (RDGANet) is designed to model
observation-level graphs composed of heterogeneous relational
graphs among each agent and each type of entities (e.g.,
obstacles, other teammates, opponents), for extracting different
relational representations. Moreover, a relevant directed graph
attention network (RGAT) is presented to cut off the inef-
fective communication between irrelevant agents, and model
a relevant communication topology among each agent and
relevant homogeneous neighbor agents as an communication-
level graph, for promoting efficient inter-agent interactions.
Furthermore, to avoid the curse of dimensionality under a
centralized critic, a distributed actor-critic algorithm with full
parameter sharing is implemented to learn cooperative swarm
policies.

II. Background
A. Distributed Swarm System

In this paper, a distributed swarm system shown in Fig. 1,
where n homogenous and autonomous agents (green circles)
try to carry out tasks together, is studied in a two-dimensional
space [15]. Meanwhile, there are other entities (black circles)
in this environment, e.g., obstacles and opponents. For sim-
plicity, we assume that the geometry of the agents and other
entities is modeled as a disc with a radius. For clarity, we
refer to the agents and other entities as entities. The state
si = [pi, vi] of agent i (i ∈ {1, ..., n}) includes its own position

pi = [px
i , py

i ] and velocity vi = [vx
i , v

y
i ], which can be observed

by other agents. Each agent is partially observable, and can
only obtain its own state and the states of neighboring entities
(e.g., obstacles, other teammates and opponents) within its
observation scope. The state of the neighbor entity consists
of its position and velocity. The observation scope of each
agent is a circular area with radius Do. Meanwhile, each
agent has only local communication capability, and can only
communicate with other homogenous agents (i.e., teammates)
within its communication scope. The communication scope is
a circular area with radius Dc. Beside, the dynamic model
of each agent is modeled as a double integrator. The action
of agent i can be expressed as ai = [F x

i , F
y
i ], where F x

i , Fy
i

represent the forces applied to the agent in both directions.
In the swarm system, the number of entities within the
observation scope of agent i and the number of homogeneous
agents in the communication scope of the agents will change
dynamically at each timestep. Therefore, agent i needs to make
efficient decisions based on its partial observations and local
communication messages in uncertain dynamic environments.
In this paper, we study how to learn cooperative policies for
the distributed swarm system to accomplish specified tasks
efficiently.
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Fig. 1: Illustration of the distributed swarm system.

B. Partially Observable Markov Games

A multi-agent extension of Markov decision processes,
called partially observable Markov game [16], is considered
for the distributed swarm system. A Markov game for n agents
is defined through: a set of states S describing all possible
global state of the game, a set of actions A1, ...,An and a set
of partial observations O1, ...,On that the agents can acquire.
In the process of environment interaction, each agent i uses
a policy πi : Oi 7→ Ai , to choose an action ai ∈ Ai based
on its partial observation oi ∈ Oi. Meanwhile, the environment
state evolves to the next state according to the state transition
function T : S × A1 × ... × An 7→ S. Each agent i can obtain
a reward Ri by a reward function: S × A1 × ... × An 7→

R, and perceives a private partial observation oi ∈ Oi : S 7→
Oi. The initial state is determined through a state distribution
ρ : S 7→ [0, 1]. The goal of each agent i is to maximize its
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Fig. 2: Overall Structure of RRAS.

own expected cumulative return E[
∑T

t=0 γ
tRi(t)] over a certain

period of time, where γ ∈ [0, 1] is a discount factor and T is
the time horizon.

III. Method

A. Overall Structure of RRAS

A new distributed method using observation-level and
communication-level graphs based DRL, named RRAS, is for-
mally proposed to learn cooperative policies for the distributed
swarm system. As shown in Fig. 2, the overall structure of the
proposed RRAS consists of four main modules. 1) RDGANet
is designed to model observation-level graphs composed of
heterogeneous relational graphs among each agent and each
type of entities (e.g., obstacles, other teammates, opponents)
through using multiple DGANets, for extracting different
relational representations. Then, a group-relation attention
network is adopted to selectively centralize different influence
relations from different relational graphs. 2) RGAT is specially
presented to firstly cut off the ineffective communication
between unrelated agents by using a relevant attention mech-
anism, and model a relevant communication topology among
each agent and relevant homogeneous neighbor agents as an
communication-level graph by using GAT, for facilitating ef-
ficient inter-agent interactions. 3) Merging module with a soft
attention mechanism is given to effectively merge observation
and interaction embeddings by complementing each other, for
boosting the environmental representation of each agent. 4)
Distributed actor-critic algorithm with full parameter sharing
is implemented to learn cooperative swarm policies by using
distributional critics, which avoids the state dimension disaster
under a centralized critic. In the following, each module will
be described in detail.

B. RDGANet for Different Relational Representations

In a complex swarm environment, there are multiple dif-
ferent types of entities in the observation scope of each
agent, e.g., obstacles, other teammates, opponents. Each agent
has different relations with different types of entities, such
as cooperation with teammates, competition with opponents,

avoidance with obstacles and so on. Through representing
these different relations, each agent can understand its sur-
rounding environment at a higher level, and then selectively
focus on one of the relations that is beneficial to accomplish-
ing tasks. Besides, graph attention neural networks can be
used to effectively represent natural spatial relations among
entities, and the attention mechanisms can enable each agent
to selectively focus on important entities through assigning
attention weights for efficiently completing the specific task
[17], [18]. Meanwhile, Transformer [19] is a new simple
network architecture based solely on attention mechanisms
with scaled dot-product attention. Since the scaled dot-product
attention in Transformer is invariant to the number and per-
mutation of nodes, it shows great potential in the field of
multi-agent systems for effectively assigning attention weights
among agents [12], [20]. Inspired by the above, we design
RDGANet based on Transformer to model observation-level
graphs composed of heterogeneous relational graphs among
each agent and each type of entities, for extracting different
relational representations. The modeling process of RDGANet
consists of the following three stages.

1) Group Division: The first stage is to cluster all entities
into K groups according to different types of entities using
prior knowledge. The same type entities are clustered into one
group, where the k-th group is denoted with Ck, k = 1, ...,K.
For instance, in a predator-prey game, all predators can be
categorized into one group, and all preys are clustered into
another group. Besides, the entities that do not perform any
actions but participate in the game can be clustered into a
group, e.g., obstacles or targets. According to the divided
groups, the partial observation of agent i can be represented as
oi = {o1

i , ..., o
K
i }, where ok

i = {sk
j | j ∈ No(i)}, sk

j = [vx
j , v

y
j, px

j , py
j]

T

is the observation state of entity j, k is the index of the group
that entity j belongs to, and No(i) is a set of neighborhoods
(include itself) within the visual range of agent i.

2) Relational Graph Modeling: Then, multiple directed
graph attention neural networks (DGANets) based on Trans-
former, which have the same structure but different parameters,
are adopted to model heterogeneous relational graphs for dif-



ferent groups in the partial observation of agent i. A relational
directed graph Gk

i := (Vk
i ,E

k
i ) is modeled by a DGANet based

on agent i’s partial observation ok
i . In this graph, each node

is either agent i or other neighboring entity j belonging to k
group, j ∈ Ck ∩ No(i), and there exist directed edges pointing
to agent i from the neighboring entities. In the following, the
modeling process of a DGANet (e.g., DGANetk) is described
in detail through a simple scene where there are three entities.
As shown in Fig. 3, agent i can observe its neighboring entities
belonging to the k-th group, i.e., entity 2 and entity 3. Based
on this scene, a relational directed graph can be modeled by
a DGANet for agent i, where nodes are the three entities and
there exist edges from entities 2 and 3 to agent i. Specifically,
the observation state of entity j, j ∈ Ck ∩ No(i), is firstly
encoded as the feature embedding,

hk
j =

{
WS · sk

i j = i
W k

N · (sk
j − sk

i ) j , i , (1)

where WS ,W
k
N are learnable parameter matrices. Now, entity

j computes a key Ek
j = W k

Ehk
j, query Qk

j = W k
Qhk

j and
value Vk

j = W k
Vhk

j vectors where W k
E ,W

k
Q,W

k
V are other

learnable parameter matrices. Then, after receiving query-
value pair (Qk

i , E
k
j) from its neighbors, agent i assigns weights

to corresponding neighbors:

αk
i j = so f tmax(

Qk
i

T Ek
j

dE
), (2)

where dE is the dimensionality of the key vector. Next, it
computes the aggregated embedding according to the assigned
weights:

ĥk
i = W k

out

∑
j∈Gk∩N(i)

αk
i jV

k
j , (3)

where W k
out is another learnable parameter. Finally, agent

i calculates the final relational embedding h̃k
i by doing a

non-linear transformation of an embedding composed of hk
i

concatenated with ĥk
i by using a one-FC-layer network F, i.e.,

h̃k
i = F([hk

i ||ĥ
k
i ]). Herein, the relational embedding h̃k

i of the k-th
group to agent i can be obtained, which implicitly represents
the spatial influence relation.
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Fig. 3: Illustration of DGANet.

3) Attention Aggregation: Finally, to enable agent i to se-
lectively centralize different influence relations from different
groups, we design a group-relation attention mechanism to

aggregate the relational embeddings as shown in Fig. 4. In
this mechanism, an embedding concatenating the relational
embedding h̃k

i and the encoding embedding hk
i is fed into a

two-FC-layer network F1, which outputs a coefficient value
ak

i . Based on different coefficient values, each relational em-
bedding is assigned a weight βk

i = so f tmax(ak
i ), k = 1, ...,K.

Finally, the observation embedding of agent i can be obtained
by weighted summation as follow:

ho
i =

K∑
k=1

h̃k
i ∗ β

k
i . (4)

Here, the observation embedding ho
i of agent i is got by

RDGANet, which implicitly encodes the spatial influence
relation of the surrounding entities on agent i.
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Fig. 4: Group-relation attention mechanism.

C. RGAT for Efficient Inter-Agent Interactions

Effective communication among homogeneous agents can
not only enlarge the receptive field of each agent, but also
promote cooperation. In reality, the communication topology
of a swarm system is always represented as a graph, and each
edge of the graph conveys a different communicate message.
However, if all neighboring agents in the swarm system
communicate with each other, it will lead to data disaster and
communication delay, yielding inefficient interactions. Mean-
while, there is a lot of useless communication inside, which
weakens attention given to the few truly significant commu-
nication among agents [21]. Therefore, we design RGAT to
firstly cut off the ineffective communication between irrelevant
agents, and model a relevant communication topology among
each agent and relevant homogeneous neighbor agents as an
communication-level graph. RGAT consists of the following
two modules:
• Relevant Attention: Remove the edges between irrelevant

neighbor agents in a full connected communication topol-
ogy, yielding a relevant communication topology.

• Graph Attention Network (GAT) [11]: Model the
constructed relevant communication topology as an
communication-level graph and extract effective interac-
tion messages from the graph for each agent.

The modeling process of RGAT consists of the following three
steps.

1) Firstly, we define a fully connected communication
topology Gc

i := (Vc
i ,E

c
i ) for agent i, where each node r ∈ Vc

i



denotes agent i or other homogeneous agents within the
communication scope of the agent, and there exists an edge
e ∈ Ec

i between two nodes if the distance between the nodes
is less than the communication distance Dc. The observation
embedding ho

i of agent i is used as the interactive message to
be transmitted in this graph. Therefore, agent i can receive a
local interaction message set mi = {ho

j | j ∈ Nc
i } from other

neighbor homogeneous agents, where Nc
i is a set of other

homogeneous agents (include itself) within the communication
scope of agent i.

2) After that, the edges between irrelevant neighbor agents
in the graph are removed through a relevant attention mech-
anism as shown in Fig. 5. Agents 2 and 3 are the neighbors
of agent i, i.e., 2, 3 ∈ Nc

i . For simplicity, j ∈ Nc
i denotes

the neighbor of agent i. The relevant attention mechanism
is adopted to learn the relevant weight wr

i, j, which is a
scalar value (0 or 1) and determines whether there exists
interaction relation between agents i and j in the swarm
system. Specifically, firstly, the interaction relations among the
agents need to be learned. The output of the traditional Long
Short-Term Memory (LSTM) network only depends on the
inputs of the current time and the previous time, which does
not take advantage of the information of all times. On the
contrary, Bi-directional Long Short-Term Memory (BiLSTM)
network can utilize the inputs at all times, which is a great
attribute that deliberates the relations of all inputs. Therefore,
the BiLSTM network is adopted to learn interaction relations
among the agents in this paper. In particular, we concatenate
the observation embeddings of agent i and agent j as an
embedding, where j ∈ Nc

i and j , i. This embedding is fed
into the BiLSTM network:

{hi, j} = f (BiLS T M({[ho
i ||h

o
j ]})), (5)

where f (·) is a FC layer network, hi, j is a two-tuple vec-
tor that indicates related and unrelated classes. Then, since
sampling based on softmax function is not able to realize
back-propagation of gradients, the gumbel-softmax function
is adopted for obtaining the relevant weight,

wr
i, j = gum(hi, j), (6)

where gum(·) is the gumbel-softmax function and wr
i, j is 0 or 1.

wr
i, j = 0 and wr

i, j = 1 denote relevant and irrelevant interaction
relations between agents i and j respectively. Meanwhile,
since agent i is related to itself, wr

i,i is set to 1. The relevant
weight wr

i, j indicates whether there is a directed edge from
agent j to agent i in the graph Gc

i . By the relevant attention
mechanism, the directed edges between irrelevant agents in
the communication topology are removed, yielding a relevant
communication topology.

3) Finally, GAT is implemented to model the relevant
communication topology as an communication-level graph and
extract interaction messages from this graph. In particular, the
observation embeddings are treated as interaction messages
among the agents in the graph. The observation embeddings
only represent each agent’s understanding of the surround-
ing environment, without containing cooperative information.
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Softmax 𝑤",$%ℎ"' ℎ$'
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Fig. 5: Relevant attention mechanism.

Now, after agent i receives the local interaction messages
mi = {ho

j | j ∈ Nc
i }, these interaction messages are transformed to

encodings, i.e., E j = Wcho
j , where Wc is a learnable parameter

matrix. Based on E j, the attention coefficient can be computed
as follow:

ξi j = LeakyReLU(aT [wr
i, jEi||wr

i, jE j]), (7)

where aT is a learnable parameter vector, LeakyReLU is
a nonlinear activation function and j ∈ Nc

i . Based on the
attention coefficient, the attention weight between agents i and
j is calculated,

ci j =

 exp(ξi j)∑
r∈Nc

i
exp(ξir) i f Ai j = 1

0 otherwise
, (8)

where A = {Ai j} is the adjacency matrix of the graph. If
two agents are within their respective communication scope,
Ai j = 1. Otherwise, Ai j = 0. Then, agent i aggregates all
effective interaction messages through computing a weighted
sum of its neighbors’ encoding, yielding the interaction em-
bedding hc

i =
∑

j∈Nc
i

ci, jE j. Hence, the interaction embeddings
are obtained by RGAT, which implicitly represent effective
interaction messages among each agent and its collaborators.

D. Merging Observation and Interaction Embeddings
Considering the respective problems of partial observation

and local communication in the real world: the incompleteness
and inaccuracy of the observation information, unreliable
interaction caused by communication delay, we combine the
observation and interaction embeddings to complement each
other. Meanwhile, in order to enable agents to effectively
merge both cooperation embeddings and observation embed-
dings, we use a soft attention mechanism. In this mechanism,
a embedding concatenating ho

i and hk
i is fed into a two-FC-

layer network F2, which outputs an observation coefficient
value ao

i . Similarly, a embedding concatenating hc
i and hk

i is fed
into the network F2, which outputs an interaction coefficient
value ac

i . After getting the coefficient values, the observa-
tion and interaction embeddings are assigned the weights
ζo

i = so f tmax(ao
i ) =

exp(ao
i )

exp(ao
i )+exp(ac

i ) and ζc
i = so f tmax(ac

i ) =
exp(ac

i )
exp(ao

i )+exp(ac
i ) , respectively. Subsequently, the environmental

embedding hi is defined by weighted sum using the weights,

hi = ho
i ∗ ζ

o
i + hc

i ∗ ζ
c
i . (9)

Here, the environmental embedding hi is a state representation
of the surrounding environment of agent i, which implicitly
represents agent i’s understanding of the surrounding environ-
ment.



E. Distributed Actor-Critic with Full Parameter Sharing for
Policy Learning

The framework of centralized training with decentralized
execution (CTDE) [5] is commonly adopted to learn cen-
tralized critics to update the decentralized policies during
training. During testing, only the decentralized policies are
executed. However, the centralized critic easily causes the
state dimension disaster as the number of agents increases
and cannot be transferred to new environments. Therefore, in
this paper, we design a distributed actor-critic framework with
full parameter sharing for policy learning, where distributed
critics are learned to update distributed actors by allowing
reward functions to use extra information. Specifically, based
on the descriptions in the above subsections B,C,D, the en-
vironmental representation network composed of RDGANet,
GAT and soft attention mechanism is firstly defined, which
takes the partial observation oi of agent i as input and outputs
the environmental embedding hi. Then, the actor and critic of
agent i are defined as follow (i = 1, ..., n),

1) Agent i’s actor parameterized by θ, composed of environ-
mental representation network and policy network, takes
the partial observation oi and local interaction message
set mi of agent i as input and outputs action values of
agent i for making decisions, i.e., πθi : oi × mi 7→ ai.

2) Agent i’s critic parameterized by φ, composed of environ-
mental representation network and value network, takes
the partial observation oi and local interaction message
set mi of agent i as input and outputs a scalar value for
guiding the actor training, i.e. vφi : oi × mi 7→ R.

In the actor, the environmental embedding hi is fed into a
policy network P(·) composed of two FC layers, which outputs
the action values. In the critic, the mean of the environmental
embeddings of agent i and its communication neighbors,
i.e., hv

i = mean(
∑

j∈Nc
i

h j), is fed into a value network V(·)
composed of two FC layers, which outputs a scalar value.

Moreover, the distributed actor-critic framework adopts full
parameter sharing for efficient training. Firstly, each actor and
critic share the environmental representation network, includ-
ing RDGANet, GAT and soft attention mechanism. Secondly,
n homogeneous agents share all the learnable parameters
of the actors and critics, including those of environmental
representation network, policy network, and value network.
Since each agent receives different observations, obtains inter-
action messages from other agents differently and perceives
the environment differently (relative state of all the entities),
sharing parameters does not prevent them from producing
different behaviors.

Furthermore, as shown in Algorithm 1, an novel algorithm
based on proxima policy optimization (PPO) [22] is used
to efficiently train the actors and critics for generating ef-
fective cooperative policies. This algorithm is different from
the traditional PPO algorithm. Firstly, multiple threads are
opened to simulate the interactions between the agents and
the swarm environment in parallel. Fusion experiences from
multiple parallel environments are collected to train the actors

Algorithm 1 Training Algorithm of RRAS

1: Initialize the network parameters of actor πθi and critic vφi ,
i.e., RDGANet, RGAT, soft attention mechanism, policy
and value networks parameters

2: Build W parallel environments
3: for Update number =1 to M do
4: Collect training samples {oi,mi, ai,Ri} from W parallel

environments by running an actor πθi with T time-steps
in each environment. The actor selects different actions
ai based on different observation information oi and
interaction messages mi (i = 1, ..., n).

5: Compute state-action values Qi(t) =
∑T

t′>t γ
t′−tRi(t)

6: Compute advantage estimate values Âi(t) = Qi(t)−vφi (t).
a critic vφi outputs judgement values vi for the selected
actions ai based on observation information oi and
interaction messages mi

7: Store memory D = {oi, ai,Ri,Qi, Âi}, i = 1, ..., n
8: πθold

i ← πθi
9: for Epoch = 1 to 4 do

10: Sample training samples L from memory D
11: Calculate value loss:

Lvφi
= 1
|L|

∑
τ∈L(Qi − vφi )2

12: Calculate action loss:
Lπθi = − 1

|L|

∑
τ∈Lmin( πθi

π
θold
i

Âi, clip( πθi

π
θold
i

, 1 − ε, 1 + ε)Âi)
13: Calculate total loss:

L = ψ1Lvφi
+ ψ2Lπθi − ψ3H, H = −

∑
πθi log(πθi )

14: Update actor and critic network parameters by min-
imizing L with gradient descent algorithm

15: end for
16: Clear memory D
17: end for

and critics, which can speed up the process of the training.
Then, since the actors and critics share the environmental
representation network, a total loss L is used to update all the
learnable network parameters, instead of updating the actors
or the critics individually. The total loss is defined by the
weighted summation of a value loss Lvφi

, an action loss Lπθi
and an action entropy term H. Herein, the action entropy term
is specially designed to encourage exploration for the agents
by penalizing the entropy reduction of the actors.

IV. Simulations

In order to evaluate the performances of the proposed
RRAS, we design three kinds of simulation tasks as shown in
Fig. 6: coverage, pursuit with a single prey and pursuit with
multiple preys. The coverage and pursuit tasks are fully coop-
erative and mixed cooperative-competitive tasks, respectively.
The tasks are built on the multi-agent particle environment
(MAPE) [5]. The environment is set to be 2 × 2 square units
in two-dimensional space where the agents adopt a double
integrator dynamics model. The action space of each agent
is discrete, and the agent can accelerate and decelerate in
X and Y directions. In addition, the initial positions of all



entities (agents, obstacles, landmark, prey, etc.) are randomly
placed. At each timestep, each agent observes the local state
in its field of view: its own velocity and position, the relative
distance between it and other entities, and interacts with other
neighbor agents, and then, selects one of the following actions:
accelerate to north, south, east or west, and no acceleration.
Next, each agent can receive a team reward that is defined by
the relative distance between it and other entities.
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(a) Coverage (b) Pursuit with a single prey (c) Pursuit with multiple preys

agent

landmark

predator

prey

obstacle

predator

prey

obstacle

Fig. 6: Illustrations of three simulation tasks. Red and blue
dotted circles represent the observation scope and communi-
cation scope of each agent, respectively.

In the training phase, the network parameter settings of
the proposed method are shown in TABLE I. Meanwhile,
the training hyperparameters are set: γ = 0.99; ψ1 = 1;
ψ2 = 0.5; ψ3 = 0.01; ε = 0.2. After accumulating experiences
for total 4096 timesteps which are 128 timesteps on W = 32
parallel environments, each update of all network parameters
is implemented with 4 epochs through the algorithm as shown
in Algorithm 1. The evaluation is carried out after every 50
updates on 100 episodes with a new seed environment. In this
phase, each agent chooses greedy discrete actions. Besides,
in the training or evaluation phase, when one of the following
two conditions is satisfied, the episode will be terminated. The
first condition is that the task is successfully accomplished.
Another one is that the episode reaches 50 timesteps. Besides,
curriculum learning [23] is adopted to speed up the process
of learning cooperative policies.

TABLE I: Network parameter settings of the proposed method.

Parameter Value or Size

Do, Dc 1.5, 2.0

BiLS T M input and hidden size 256, 128

WS , W k
N R128X4, R128X4

W k
E , W k

Q, W k
V R128X4, R128X4, R128X4

W k
out , Wc, aT R128X128, R128X128, R256X1

f (·), F(·) (128, 2), (256, 128)

F1(·) (256, 128, 128, 1)

F2(·) (256, 128, 128, 1)

P(·) (128, 128, 128, 5)

V(·) (128, 128, 128, 1)

Three state-of-the-art methods are selected as baseline meth-
ods: 1) LTCB [12]: the method uses graph attention network to

process the local observation and communication information
of the agent, but does not group the local observation and
remove redundant communication; 2) DyAN [13]: the method
uses graph neural network to deal with the local dynamic
observation of the agent, and does not involve the attention
mechanism; 3) AERL [14]: the method uses graph attention
network and LSTM to promote communication among agents.
Furthermore, we use 3 metrics to evaluate different meth-
ods: Success Rate(S%): Percentage of episodes the agents
completed the task. Mean episode reward (MER): Mean of
episode reward for each agent. Mean episode length (MEL):
Mean of successful episode length. In addition, the update
number (UN) of the network parameters also needs to be
noted, i.e., M shown in Algorithm 1.

A. Coverage

1) Task Description: In a coverage task, n homogeneous
agents are required to cooperatively reach n landmarks without
colliding with each other. The agents have to cover all of the
landmarks. There is no specific matching relationship between
the landmarks and the agents, which means that the landmarks
are not assigned to each agent. Each agent need to learn to
observe the effective information of the landmarks and other
agents within it visual area, and interact with collaborators
for covering all landmarks. In the coverage task, there are two
groups in the environment, i.e., landmarks and agents (K = 2).

2) Results: To evaluate the performance of the proposed
method in swarm systems, a coverage task where 20 agents
cover 20 landmarks is conducted. Since it is difficult for the
agents to directly learn the cooperative policies for completing
this task, curriculum learning is implemented to speed up the
learning. The curriculum learning and test performances of
different methods in the coverage task are shown in TABLE
II. For curriculum learning, a curriculum strategy with the
increasing numbers of agents and landmarks is designed.
Specifically, a coverage policy is firstly trained with a 3-
agent team (n = 3). Once the evaluation success rate of
this policy reaches a threshold (90%), the learned policy is
directly transferred to a team with more agents to continue
training. The process is repeated until the number of the team
reaches 20 agents. The results show that RRAS has faster
convergence with a higher success rate (97.8%) compared
with other methods. On the contrary, DyAN fails due to
the lack of communication and attention mechanism. RRAS
outperforms LTCB and AERL. This may be because the
designed RDGANet can extract different relational represen-
tations from agents’ observations, and RGAT can remove
invalid communication and promote effective communication.
In general, the results in the coverage task fully demonstrate
the effectiveness of the proposed method.

In order to further verify the generalization of the proposed
method in the coverage task, the learned policy in the 20-
agent team is directly tested without any fine-tuning in new
scenarios with different numbers of agents. The corresponding
results are shown in Fig. 7. The results demonstrate that the
learned policy obtained by the proposed RRAS shows the best



TABLE II: Curriculum learning and testing performance of our method and other comparison methods in the coverage task.

Curriculum
Learning

Method n = 3 n = 6 n = 9 n = 12 n = 15 n = 18 n = 20
S% UN S% UN S% UN S% UN S% UN S% UN S% UN

LTCB [12] 94 2650 92 2850 91 4650 93 1800 91 4950 93 3450 89 6200
DyAN [13] 93 800 94 250 92 500 93 200 98 200 0 12200 0 6200
AERL [14] 92 2900 94 3850 93 2600 93 4300 91 3450 92 12000 90 6200

RRAS (Ours) 95 850 93 400 93 550 97 500 91 500 92 1800 97 6200

Testing
(n = 20)

Method S% MER MEL
LTCB 88.6 ± 0.21 -2.593 ± 0.0533 24.46 ± 0.214
DyAN 0.0 ± 0.00 -4.800 ± 0.0650 50.00 ± 0.000
AERL 90.6 ± 0.47 -2.743 ± 0.0235 26.12 ± 0.142

RRAS (Ours) 97.8 ± 0.12 -1.894 ± 0.0125 17.87 ± 0.260

generalization than other methods in the term of success rate.
This indicates that the proposed method can be transferable
to different team sizes while maintaining good performance.
Moreover, since the policy is obtained through the curriculum
learning with adding new agents until 20 agents, teams with
less than 20 agents have better success rates than teams with
more than 20 agents. Furthermore, in more than 20 agents
scenarios that do not appear in the learning process, RRAS still
achieves better generalization performance than other methods.

Fig. 7: Generalization performance of different methods in the
coverage task.

B. Pursuit with A Single Prey

1) Task Description: In a pursuit with a single prey task,
n slower predators need to cooperatively chase one faster
prey around a randomly generated environment with l large
static obstacles obstructing the way. Only when the cooperative
predators have collided with the prey, the chasing process
is completed. Meanwhile, during the chasing process, each
predator needs to avoid collisions with obstacles and other
predators. Therefore, each predator needs to learn to extract
effective information within its visual area and cooperate
with other neighbor predators for pursuing the prey while
avoiding collisions. The maximum velocities of the prey
and predators are 1.5 and 1.0 (unit · s−1) respectively. The
maximum accelerations of the prey and predators are 4 and 3
(unit · s−2) respectively. Thus, the movement ability of the prey
is obviously stronger than that of the predators. This makes the
task more difficult to be completed, which requires a higher
level of cooperation among the predators. Besides, two static

obstacles are placed into the environment (i.e., l = 2). The
prey adopts the fixed policy [24].

2) Results: For pursuit with one fixed-policy prey, we
conduct a task scenario where ten predators chase one prey.
In this task, the predators need to learn cooperative chasing
policies. The training results are shown in Fig. 8, which show
that RRAS have better performance than the other methods
in terms of convergence rate. Furthermore, we evaluate the
effectiveness of the policy obtained through the training, and
the results are shown in TABLE III. The evaluate results show
that the proposed RRAS has best performance compared with
the other methods. the predators performing the RRAS method
can catch the prey faster than the other methods, along with
higher rewards. This is largely due to RDGANet, which can
model the relations between each predator and the prey and
implicitly predict the strategy and intention of the prey. In
addition, the generalization results with different number of
predators are shown in Fig. 9. The results show that RRAS has
always maintained a high success rate, even when the number
of predators is low. Therefore, these results fully reflect the
advantages of our proposed method.

(a) Mean per-step reward (b) Success rate

Fig. 8: Training results for the predators in the pursuit task
where ten predators chase one fixed-policy prey

TABLE III: Evaluation results.

Method S% MER MEL

LTCB 60.5 ± 1.50 21.833 ± 2.1129 35.22 ± 0.574

DyAN 99.5 ± 0.50 23.295 ± 1.3977 15.53 ± 0.049

AERL 86.0 ± 2.00 24.028 ± 0.9266 26.55 ± 0.120

RRAS (Ours) 100.0 ± 0.00 28.269 ± 1.1358 12.62 ± 0.270



Fig. 9: Generalization performance of the different methods in
the pursuit task with one fixed-policy prey.

C. Pursuit with Multiple Preys

1) Task Description: In a task of pursuing multiple preys,
n slower predators need to cooperatively chase p (p < n)
faster preys. They are all in a randomly generated environment
with l large static obstacles. The goal of the predators is to
capture all preys, and the preys need to stay away from the
predators as much as possible. When any one of the preys is
captured by the predators, it dies and keeps stationary. This
chasing process continues until all preys are captured. The
simulation environment of the task is similar to that of the
task of pursuing a single prey. Differing from chasing one
prey, the predators need to know whether each prey is dead
or alive to decide whether to pursue or not. Meanwhile, each
prey also need to know the life state of its partner. Hence, we
give each agent j a life state slive

j , which slive
j = 1 represents

the state of being alive and slive
j = 0 represents the state of

being dead for agent j. The observation state of each agent j
is changed to s j = [vx

j , v
y
j, px

j , py
j, s

live
j ].

2) Results: To test the performance of our method in the
pursuit task with multiple preys, we built a scenario with 20
predators, 5 preys and 2 static obstacles. In this scenario, each
predator need to choose cooperation with other predators or
chasing preys individually. Meanwhile, when chasing preys, it
also need to choose which prey to chase. In order to form
multiple comparative simulation, the predators perform the
different methods to chase the preys that implement the dif-
ferent methods. The predators and preys need to learn chasing
and escaping policies in mutual competition, respectively. The
simulation results are shown in TABLE IV. This results are
the mean and standard deviation of episode reward obtained
for the predators under different methods. Compared with
the other methods, the predators trained by RRAS achieve
the highest episode reward. Similarly, the preys trained by
RRAS have the best defense against the predators. We an-
alyze that the superior performance of RRAS is due to the
designed RDGANet for learning relational representations that
implicitly represent the strategy and intention of the preys
and the designed RGAT for promoting effective interactions
among collaborators. Moreover, our method RRAS merges
observation and communication information using an attention

mechanism, which enables each predator to selectively attend
cooperation with other predators or chase preys individually.
Through the pursuit task with multiple preys, the effectiveness
and advantage of our method are fully demonstrated.

TABLE IV: The mean and standard deviation of episode
reward for the predators in the task of pursuing multiple preys.

Method of predators

(n = 20)

Method of preys (p = 5)

LTCB DyAN AERL RRAS

LTCB 55.04 ± 3.816 0.00 ± 0.000 55.08 ± 2.052 0.00 ± 0.000

DyAN 57.479 ± 1.948 8.00 ± 0.600 58.792 ± 1.691 6.00 ± 0.250

AERL 51.37 ± 1.043 0.00 ± 0.000 55.22 ± 3.935 0.00 ± 0.000

RRAS 61.96 ± 3.281 12.50 ± 1.250 58.98 ± 0.918 57.06 ± 1.948

D. Ablation Studies

To demonstrate the effectiveness of the main components
of the proposed RRAS, i.e., RDGANet and RGAT, ablation
studies regarding the main components are implemented in two
difficult tasks: 8-agent coverage task and 3 vs. 1 pursuit task
with one fixed-policy prey. The training results (mean episode
reward vs. number of updates) are shown in Fig. 10. RRAS-
w/o-RDGANet and RRAS-w/o-RGAT are ablation methods
that remove RDGANet and RGAT modules on RRAS, respec-
tively. The results demonstrate that RRAS outperforms RRAS-
w/o-RDGANet and RRAS-w/o-RGAT. This fully validates
the necessity and effectiveness of the two components for
RRAS. Without one of RDGANet and RGAT, we can not get
better performance than RRAS. Consequently, the superiority
of RRAS is due to both RDGANet for different relational
representations and RGAT for efficient inter-agent interactions.

(a) Mean episode reward vs. number of
updates in 8-agent coverage task.

(b) Mean episode reward vs. number of
updates in 3 vs. 1 pursuit task

Fig. 10: Ablation studies regarding main components of
RRAS.

Besides, to evaluate the performance of ablation methods
with more agents, we further carry out an ablation study using
curriculum learning in 20-agent coverage task. The evaluation
results are shown in TABLE V. RRAS-w/o-RA is an ablation
method that removes the relevant attention mechanism on the
basis of RRAS. The results show that RRAS has the best
performance compared with the other ablation methods. In
particular, RRAS outperforms RRAS-w/o-RA, which shows
the validity of removing invalid interactions among agents.



This ablation study further fully demonstrates the effectiveness
of each component of the proposed RRAS.

TABLE V: Evaluation results in 20-agent coverage task.

Method S% MPR MEL

RRAS-w/o-RDGANet 90.1 ± 1.54 -2.545 ± 0.0816 24.01 ± 0.129

RRAS-w/o-RGAT 94.3 ± 1.23 -2.226 ± 0.1039 21.20 ± 0.820

RRAS-w/o-RA 95.2 ± 0.23 -2.208 ± 0.0284 20.26 ± 0.894

RRAS (Ours) 97.8 ± 0.12 -1.894 ± 0.0839 17.87 ± 0.260

V. Conclusion
In this paper, RRAS is proposed to learn the cooperative

policies of distributed swarm systems for efficiently accom-
plishing specific tasks. In particular, RDGANet is designed to
model different relational graphs among each agent and each
type of entities for extracting different relational representa-
tions. RGAT is presented to cut off ineffective communication
among irrelevant agents and model relevant communication
topology for promoting efficient inter-agent interactions. Fur-
thermore, the distributed actor-critic algorithm with full pa-
rameter sharing is implemented to learn cooperative swarm
policies. Various simulation results validate the effectiveness
and generalization of RRAS, and demonstrate that the pro-
posed RRAS outperforms existing state-of-the-art methods on
coverage and pursuit tasks.
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