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Abstract— This paper presents a novel deep reinforcement
learning (DRL) method to solve the locomotion control problem
of the biomimetic underwater vehicle (BUV) with hybrid
propulsion, in order to meet the challenge of intractable
multi-fins coordination and the complex hydrodynamic model.
The system overview of the BUV, named RoboDact, with
two flexible long fins and a double-joint fishtail as hybrid
propulsion, is introduced. After that, the locomotion control
problem is modeled as a Markov decision process (MDP) to
be solved. Therefore, the locomotion control method based on
soft actor-critic (SAC, a novel DRL algorithm) is proposed.
The simulation environment is established based on the kinetic
model for interaction. Finally, the feasibility and effectiveness
of the proposed control method is demonstrated after extensive
simulations. It will provide rich insights into the coordination
control of biomimetic underwater vehicles.

I. INTRODUCTION

After long-term natural evolution, fishes possess various

shapes and structures to perform astonishing movements,

such as high swimming efficiency and excellent maneuver-

ability [1]. According to thrust-generating mode, fish swim-

ming types can be divided into two types, body and/or caudal

fin (BCF) and median and/or paired fin (MPF). Biomimetic

underwater vehicles (BUV) obtain thrust by imitating the

behaviors of fishes, which make the vehicles have good

performance in efficiency and mobility [2].

Recently, a variety of BUVs and corresponding loco-

motion control methods had been proposed by worldwide

researchers. Yu et al. produced a four-joint robotic fish

(BCF mode) with high maneuverability, and proposed a

closed-loop pitch angle control strategy based on the intrin-

sic oscillatory property [3], [4]. Wang et al. developed a
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Fig. 1. The schematic diagram of the RoboDact.

MPF-type biomimetic underwater vehicle RobCutt with two

undulating pectoral fins, which can realize some closed-loop

locomotion control based on the active disturbance rejection

control (ADRC) technique [5]. Morgansen et al. developed

an underwater vehicle with a two-link tail fin and pectoral

fins (hybrid mode), and a PID-based controlled was designed

for depth control [6].

BUV can move with high maneuverability at high speeds

in BCF mode, and great stability at low speeds in MPF

mode [7]. Coordinating the BCF and MPF propulsion modes,

a novel biomimetic underwater vehicle RoboDact, inspired

by Dactylopteridae, was designed and implemented with

great maneuverability and stability. In BCF propulsion mode,

the RoboDact obtain big trust by swinging the double-joint

fishtail. In MPF propulsion mode, the RoboDact undulates

the two flexible long fins to obtain better stability. Therefore,

a locomotion control method to coordinate these two propul-

sion modes of the RoboDact is beneficial and important.

Nowadays, many control methods of BUV are based on

precise mathematical models or adaptive methods for un-

certain systems [8]. The model-based methods require high

accuracy of the model. Moreover, the model-free methods,

such as classical PID controller, require rich debugging

experience. The two kinds of propulsive modes of the Ro-

boDact have strong coupling. In particular, multiple motion

parameters need to be controlled concurrently. Recently, ar-

tificial intelligence (AI) technologies, such as reinforcement

learning [9], have been applied to control BUVs, which allow

the BUV to autonomously learn various swimming skills. In

this paper, a reinforcement learning method based on the

soft actor-critic (SAC) algorithm is proposed to coordinate

control of the RoboDact locomotion with hybrid propulsion.

The remainder of this paper is organized as follows. The
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TABLE I

MEASURED PARAMETERS OF THE ROBODACT PROTOTYPE

Parameters Value Parameters Value

Body length 706.5 mm Total mass 15.1 kg

Body width 248.0 mm Total buoyancy 148.5 N

Body height 240.0 mm Maximum speed 61.12 cm/s

system description of the RoboDact is described in Section

II. Section III presents the proposed locomotion control

method based on SAC. In Section IV, two simulation experi-

ments and analyses are performed to show the feasibility and

performance of the proposed method. Finally, conclusions

and future work are summarized in Section V.

II. SYSTEM DESCRIPTION OF THE BIOMIMETIC

UNDERWATER VEHICLE

A. System Configuration of the BUV

The RoboDact is a novel marine vehicle, which has

two propulsion modes, BCF and MPF, to adapt complex

ocean environment and finish various marine tasks [10]. The

RoboDact consists of a double-joint fishtail, two symmetrical

flexible pectoral fins, a dorsal fin and its body, as shown

in Fig. 1. Note that the hybrid-driven device of BUV is

composed of the double-joint fishtail and the pectoral fins.

The dorsal fin is designed to support the antenna and reduce

resistance. In BCF mode, the RoboDact is propelled by

swinging the double-joint fishtail, which is driven by two

high-power direct current motors. Therefore, the RoboDact

can get enough thrust and swim forward quickly. Further-

more, each pectoral fin is driven by three servo motors to

obtain flexible control. The RoboDact can maintain good

stability by undulating pectoral fins in MPF mode. Through

the coordination of BCF and MPF propulsion modes, the

RoboDact can swim quickly towards the targets in BCF mode

and maintain good stability in MPF mode for tracking and

observing the targets, which is very beneficial for marine

observation, search and rescue tasks.

About the control system of the RoboDact, an embed-

ded chip, STM32F407, is used to offer efficient computing

and communicating power. Moreover, diversified sensors,

including a pressure sensor, an attitude and heading reference

system (AHRS), are well equipped to facilitate locomotion

control. Among them, the pressure sensor obtains depth

information, and the AHRS obtains the attitude information

(roll, pitch and yaw).

According to the concept of the RoboDact, the prototype

was assembled as shown in Fig. 2. The rubber membranes

and aluminum alloy fin ray are composed of pectoral fins,

and the casted plastic is adopted as tail fin and body. Some

actual measured parameters of the RoboDact prototype are

listed in Table I.

Fig. 2. The prototype of the RoboDact.

Fig. 3. The coordinate system of the RoboDact for locomotion control
task.

B. Kinetic Model of the BUV

Considering that the task of locomotion control on the

water surface is a two-dimensional motion, the position and

orientation of the RoboDact are described in the earth-fixed

frame OEXEYE , as shown in Fig. 3. Furthermore, the body-

fixed frame OBXBYB is established, whose origin is fixed

on the geometric center of the BUV.

In the earth-fixed frame OEXEYE , the pose of the Robo-

Dact is denoted by a vector,

η = [x, y, ψ]
T ∈ R

3 (1)

where x and y represent the displacements of the RoboDact

on XE and YE axes. ψ is defined as the angular displacement

on the water surface.

In the body-fixed frame OBXBYB , the velocity of the

RoboDact is expressed as

ν = [u, v, r]
T ∈ R

3 (2)

where u and v represent the linear velocity of the RoboDact

on XB and YB axes. r is defined as the angular velocity on

the water surface.
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Furthermore, the corresponding relationship between the

two fixed frame is described as follows,⎧⎪⎨
⎪⎩

ẋ = u cos(ψ)− v sin(ψ)

ẏ = u sin(ψ) + v cos(ψ)

ψ̇ = r

(3)

Moreover, the body-fixed force and torque (on the surge,

sway and yaw) exerted on RoboDact is represented as

τ = [τu, τv, τr]
T

(4)

with

τ = τf − τd (5)

where τf represents the force and torque generated by the

pectoral fins and tail fin. τd denotes the disturbance force

and torque in the water.

Therefore, the kinetic equation of the RoboDact is built

as follows,

Mν̇ = −C (ν) ν −Dν + τ (6)

where M is the inertia matrix including hydrodynamic added

inertia of the RoboDact. C (ν) is the Coriolis and centripetal

matrix. D is the linear damping matrix.

III. LOCOMOTION CONTROL METHOD BASED ON SAC

A. Locomotion Control System

The locomotion control system of the RoboDact mainly

includes the SAC module and the central pattern generators

(CPG) controller, which is depicted in Fig. 4. The goal g is

composed of the desired velocity and course, which is input

to the SAC module together with real-time states st. Accord-

ing to the trained policy network, the corresponding action

at outputs from the SAC module to the CPG controller. The

CPG controller, described in [10], is developed as the bottom

controller to drive every motor. The motion mode of each fin

can be changed with the CPG parameters, which correspond

with the outputs at of the SAC module.

In practical underwater applications, higher precision and

certain anti-interference ability are needed. Therefore, SAC is

utilized, an advanced deep reinforcement learning (DRL) al-

gorithm based on Actor-Critic architecture, to realize closed-

loop motion control. In the training phase, the transition

tuple (st, at, rt, st+1) is stored in the replay buffer, which

is randomly selected as experience for training the neural

networks. After the completion of neural networks training,

the SAC module can output action at according to the real-

time states of the RoboDact.

B. Markov Decision Process Modeling

Reinforcement learning problems are usually modeled as

a Markov decision process (MDP). Therefore, it is necessary

to transform the locomotion control problem into an MDP

before applying a DRL method.

In course and velocity control tasks, the goal is to keep

desired course and velocity when the RoboDact is swimming.

Therefore, the course and velocity control problem is defined

Fig. 4. Control architecture of the RoboDact.

as an MDP by tuples 〈S,A, P,R, γ〉, where S stands for the

state space, and A is defined as the action space. P represents

the state transition probability distribution. R stands for the

reward function. γ is the discount factor.

The state of course and velocity control is designed as

s = [Δψ,Δν, ν]
T ∈ S (7)

where Δψ = ψ′ − ψ and Δν = ν′ − ν. Among them, ψ′

and ν′ are the desired course and velocity. The velocity ν is

defined in the Section II-B.

The action a is the input parameters of the CPG controller.

In actual processing, the parameters of each fin are unified,

only divided into tail fin aT , left pectoral fin aL and right

pectoral fin aR. Moreover, the amplitude of each fin is set

as the fixed value for simplifying the calculation. Therefore,

a = [aT , aL, aR]
T
= [fT , fL, fR]

T ∈ A (8)

where f is the defined frequency, f > 0 means the back-

ward propagation of the traveling wave generated by fin to

produce forward thrust, and f < 0 means backward thrust.

Furthermore, the tail fin can only produce forward thrust

fT > 0.

The transition probability p(st+1|s1, a1, ..., st, at) =
p(st+1|st, at), means that currant state only depends on the

last state and action. In model-free DRL method, transition

probability distribution P : S×S×A → [0,∞), is unknown

and the RoboDact directly interact with the environment.

The purpose of the course and velocity control is to

control the BUV to keep a target course and velocity from a

random posture and non-motion state. Therefore, the reward

function of the DRL is R : S × A → R. Note that an

improved nonlinear function F (x) is proposed to improve

the sensitivity of the reward function to control accuracy.

The reward function of one step is designed as

r(η, ν) = ρ1F (ψ′ − ψ) + ρ2F (u′ − u)+ (9)

ρ3F (v′ − v) + ρ4F (r′ − r)

with

F (x) = log(k ∗ |x|+ 1) (10)

where ρi < 0 (i = 1, 2, 3, 4) is the weight of each item.

k > 0 is the parameter of F (x). ρ1F (ψ′ − ψ) guides the

BUV to turn to and keep at the desired course. ρ2F (u′−u),

213
Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 13,2023 at 08:00:21 UTC from IEEE Xplore.  Restrictions apply. 



ρ3F (v′−v) and ρ4F (r′− r) are used to keep the RoboDact

at the desired course velocity.

C. Soft Actor-Critic Algorithm Solving

The deep reinforcement learning algorithm based on SAC,

is proposed to solve the MDP of the locomotion control

tasks. SAC is a new off-policy deep reinforcement learning

algorithm [11], which can solve the problem of high sample

complexity and brittle convergence properties of model-

free DRL problems. SAC algorithm is based on the actor-

critic reinforcement learning framework, in which the goal

of the actor is to maximize expected return and entropy

simultaneously.

In SAC actor-critic formulation, two soft Q-functions

Qθi(st, at) are proposed as the critic networks, with param-

eters θ1 and θ2. A Gaussian stochastic policy πφ(at|st) is

proposed as the actor network, with parameters φ. Moreover,

a reply buffer D is designed to reuse previously collected

data for efficiency in the off-policy formulation. A tempera-

ture coefficient α for maximum entropy is designed to adjust

the exploration ability.

For the critic network, the target of Q-function is

yQθ
t = r(st, at) + γ · Vθ1,θ2(st+1) (11)

where (st, at, st+1) ∼ πφ(·|s), the Q-networks are trained

from the reply buffer D with the loss function JQ(θi), which

is defined as

JQ(θi) = (Qθi(st, at)− yQθ
t )2 (12)

Among them, the state value function is defined from current

policy at ∼ πφ as

Vθ1,θ2(st) = min
i=1,2

Qθi(st, at)− α log πφ(at|st) (13)

For the actor network, the Gaussian policy network is

trained with minimizing Jπ(φ), which is defined as

Jπ(φ) = α log πφ(at|st)− min
i=1,2

Qθi(st, at) (14)

where at ∼ πφ, st ∼ D.

The SAC algorithm for the RoboDact motion control is

described in Algorithm 1 in detail.

IV. RESULTS AND ANALYSES

A. Simulation Environment

The DRL algorithm is achieved based on the programming

language Python 3.6, and the Tensorflow 1.12 module is used

to generate the networks. Furthermore, the DRL algorithm

is connected with the simulation environment to achieve

training, all executed in software PyCharm 2020.

The simulation environment for the DRL algorithm is

based on the kinetic model of the RoboDact, which is

described in section II-B. Moreover, instead of transition

probability, the RoboDact directly interacts with the simu-

lation environment when training the neural network. There-

fore, according to the kinetic model, the next state st+1 is

generated directly based on current state st and action at.

Algorithm 1 Training Locomotion Control Policy Based on

Soft Actor-Critic
Input: Training episode number M , steps number of each

episode T , updating rate of each network parameters (λQ

for the Q-networks, λπ for the policy network, and τ for

the target networks), and batch size N .

Output: Locomotion control policy πφ(a|s).
1: Randomly initialize Q-networks Qθ1 and Qθ2 with pa-

rameters θ1 and θ2, and policy network πφ with param-

eter φ.

2: Initialize target Q-networks Qθ̄1 and Qθ̄2 with parame-

ters θ̄1 ← θ1 and θ̄2 ← θ2.

3: Initialize reply buffer D, and a global temperature coef-

ficient α.

4: for eposode = 1 to M do
5: Randomly generate a initial state s0.

6: for step t = 1 to T do
7: Generate stochastic policy distribution πφ(at|st)

according to current policy, and sample an action

at ∼ πφ(at|st).
8: Execute the action at, get the next state st+1

according to interact with the environment, and

compute the reward rt.
9: Store the transition (st, at, rt, st+1) in the reply

buffer, D ← D ∪ (st, at, rt, st+1).
10: if t = T − 1 then
11: for learning step = 1 to T do
12: Sample a random batch of transitions

(st, at, rt, st+1) from D.

13: Update the Q-networks,

θi ← θi − λQ∇̂θiJQ(θi) for i = 1, 2.

14: Update the policy network,

φ ← φ− λπ∇̂φJπ(φ).
15: Update the target Q-networks,

θ̄i ← τθi + (1− τ)θ̄i for i = 1, 2.

16: end for
17: end if
18: end for
19: end for

According to the DRL algorithm, the locomotion control

policy was trained for 1000 episodes, with each episode

lasting 100 time steps. With the CPU (Intel Core i7-8700)

and GPU (Nvidia GeForce GTX 1070) computing, it took

about 557.1s in total. Furthermore, a classical controller

based on proportion integral differential (PID) is designed

as the comparative controller, which includes a course PID

controller and a velocity PID controller. Eight parameters, six

for the PID parameters and two for the scaling parameter,

need to be adjusted manually. Due to the coupling between

pectoral fins and tail fin, and the interaction between course

and velocity control, it is difficult to adjust the parameters

manually. Therefore, it took about 30 minutes (1800s) to

adjust carefully.
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Fig. 5. Process of the course and velocity control experiment with DRL
in the simulation environment.

B. Course and Velocity Control Experiment

According to the well-trained policy, the DRL controller

can control the course and velocity of the RoboDact. The

process of the course and velocity control experiment is

described in Fig. 5. The initial course angle of the RoboDact

was 135◦, and the initial velocity was 0. Moreover, the

desired velocity was 30cm/s. From 0s to 8s, the desired

course angle was 90◦, and changed to 0◦ from the 8th
second.

As shown in Fig. 6, the BUV turned to 90◦ from 0s
to 3.5s, and kept the course to 8s. From 8s to 12.5s, the

RoboDact turned to 0◦, and kept it to 20s. Furthermore,

the RoboDact accelerated to 30cm/s from 0s to 2.5s, and

kept it until 20s. The control frequencies of the each fin

during the simulation is described in Fig. 7. Therefore, the

DRL controller can control the course and velocity of the

RoboDact effectively.

Fig. 8 shows the results of the control experiment with

the well-tuned PID controller. The BUV turned to 90◦ from

0s to 3.6s, and kept the course to 8s. From 8s to 12.5s,

the RoboDact turned to 0◦, and kept it to 20s. Moreover,

the BUV took 5 seconds to accelerate the velocity from

0 to 30cm/s, and kept it until 20s. Due to the change

of course, the velocity fluctuated greatly at about 11s. It

is difficult to obtain a good performance of both course

and velocity controllers at the same time, when adjusting

parameters manually.

C. Course and Velocity Keeping Experiment with Distur-
bance

In the actual underwater environment, there are some

uncertain disturbances such as undercurrent, whirlpool, etc.

Therefore, the robust and self-adaptive ability of the control

method is also essential. During the keeping experiment, the

random disturbances were applied to the RoboDact on surge

Fig. 6. Course and velocity of the RoboDact during the control experiment
with DRL.

Fig. 7. Control frequencies during the control experiment with DRL.

Fig. 8. Course and velocity of the RoboDact during the control experiment
with PID.

and yaw, τ = τ + random(τ), to simulate the uncertain

underwater disturbances. Furthermore, a large disturbance

was applied at about 7.5s on sway and yaw to simulate a

sudden cross-flow.
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Fig. 9. The results of the course and velocity keeping experiments.

The results of the course and velocity keeping experiments

with disturbing are shown in Fig. 9. The initial velocity was

0, and the desired velocity was 30cm/s. Moreover, the BUV

needed to keep the course angel at 90◦. With the DRL

controller (blue curve), the course angle of the BUV was

keeping at 90◦ at 0s to 6.8s and 11.6s to 20s. When a large

disturbance was applied to the RoboDact, it took 4.8s to

return to the original course. The RoboDact was accelerated

to 30cm/s at 2s, and kept it until 20s. With the PID-based

controller (orange curve), the course angle was keeping at

0s to 7.8s and 14.6s to 20s. With a large disturbance was

applied, the RoboDact took 6.8s to return to the original

course. The BUV was accelerated to 30cm/s at about 5s.

However, the velocity had been far more fluctuant compared

with the DRL controller. Specifically, the maximal velocity

reached 39cm/s when the large disturbance was applied.

D. Discussion

The two experiments verify the feasibility and effective-

ness of the proposed locomotion control method based on

the DRL algorithm. Compared with classical PID-based

controllers, the DRL controller provides better performance.

In the control process, the performance of the two controllers

is similar without disturbance. However, the DRL controller

shows more robust performance in the keeping experiments

with disturbance. Furthermore, the coupling relationship be-

tween multiple fins does not be considered explicitly in the

DRL controller, and less time is spent to train or adjust the

controller parameters.

V. CONCLUSIONS

In this paper, a DRL-based approach has been proposed to

address the locomotion control problem for the RoboDact,

a novel BUV with hybrid propulsion. The developed BUV

consists of two flexible long fins and a double-joint fishtail,

which leads to serious coupling between the course and

velocity control. After modeling the problem into a Markov

decision process, the DRL algorithm based on SAC is

utilized to find suitable policies to control the RoboDact

motion. Finally, the proposed locomotion control method is

verified by numerous simulations.

The future work will focus on two aspects. Firstly, the

proposed locomotion control method will be implemented

on the RoboDact prototype in the natural underwater envi-

ronment. Moreover, promising practical applications, such as

attitude keeping and trajectory tracking, is considered to be

achieved with the DRL method.
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