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GPDAN: Grasp Pose Domain Adaptation Network
for Sim-to-Real 6-DoF Object Grasping

Liming Zheng1, Wenxuan Ma1, Yinghao Cai2,∗, Tao Lu2, Shuo Wang2

Abstract—In this paper, we propose a novel Grasp Pose
Domain Adaptation Network (GPDAN) to achieve sim-to-real
domain adaptation for 6-DoF grasp pose detection. The main task
of GPDAN is to detect feasible 6-DoF grasp poses in cluttered
scenes. A point-wise self-supervised domain classification module
with point cloud mixture and feature fusion strategy is proposed
as the auxiliary task to promote the feature alignment between
the source and target domain through adversarial training.
Experimental results on both simulation and real-world environ-
ments demonstrate that GPDAN outperforms other approaches
in detecting 6-DoF grasps on the target domain, highlighting the
effectiveness of GPDAN in improving the performance of 6-DoF
grasp pose detectors trained in simulation and deployed in real-
world environments without any further laborious labeling.

Index Terms—Domain Adaptation, Grasp Pose Detection, Fea-
ture Alignment, Sim-to-real.

I. INTRODUCTION

Robotic grasping is a fundamental capacity that is required
for many robot manipulation tasks. However, the large SE(3)
space for the 6-DoF grasp poses makes the grasp pose
detection in cluttered scenes quite challenging. Most state-
of-the-art grasp pose detection methods [1]–[3] are trained
with labeled data collected in simulation and applied directly
to the real-world environments due to the high cost of data
collection in the real world and the difficulty of labeling the
theoretically infinite ground truth 6-DoF grasp labels in point
clouds. Although the domain gap in point clouds is much
smaller than that of other 2D visual information [4], there
still exists significant reality gaps between simulated and real-
world environments. For example, the spatial sizes of the
objects, the density of points and noise patterns of point clouds
differ between simulated and real-world data as shown in Fig.
1 [5], [6]. These reality gaps limit the performance of grasp
pose detection trained in simulation when applied to the real
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Fig. 1. Point clouds in simulation and real-world environments. (Left) The
objects in the synthetic point clouds usually have a smooth surface formed
by uniformly distributed points. (Right) The point clouds in the real-world
scenes which are captured by an RGB-D camera inevitably contain noise
patterns such as rough surfaces and holes due to various reasons such as
reflectance, transparency, occlusions, etc.

world. The high-scored predictions may fail during execution,
resulting in serious consequences in real-world environments.
Domain adaptation (DA) can be a solution to this problem
by aligning features in the source domain (simulation) and
target domain (real world). In this paper, we propose a novel
Grasp Pose Domain Adaptation Network (GPDAN) for 6-DoF
grasp pose detection. With domain adaptation, the grasp pose
detector is able to produce similar results for similar geometric
features in these two domains so that the performance of the
grasp pose detector in the real-world environments can be
improved.

Various simulation-to-reality domain adaptation methods
have been proposed in many visual and robotic tasks to bridge
the domain gap across different domains. A straightforward
way is domain randomization, which randomizes the task-
irrelevant properties such as background color, object material
and dynamic parameters in simulation to force the network
to extract task relevant features [7], [8]. Recent works have
focused on methods based on geometric feature learning, in-
cluding feature-based methods [9], [10], reconstruction-based
methods [11], [12] and adversarial-based methods [13]–[15].
Through domain adaptation, the module for the main task can
process data from both domains in a more uniform way, which
improves the performance of grasp detection task in the target
domain. Our work falls into the category of adversarial-based
methods, which encourage the feature extractor to extract
similar geometric features for the task of 6-DoF grasp pose
detection that can confuse the domain classifier from both the
source and target domains.

However, directly applying adversarial training to the task
of grasp pose detection is quite challenging, because of the
complexity of the grasp pose configurations and the inherent
difficulties of adversarial training such as gradient vanishing
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and mode collapse. On one hand, using Generative Adversarial
Networks (GANs) to reconstruct the input point cloud by
extracting features from the point cloud itself [16], [17] cannot
achieve good performance on the 6-DoF grasp pose detection
task. Point cloud is a highly structured data format and the
grasp detection task heavily relies on the geometric details.
The ambiguity present in the feature embeddings generated
by GANs is in contrast to the geometric requirements of
grasp pose detection. On the other hand, the generator-
domain classifier structure widely used in adversarial-based
approaches is not suitable for our task because the grasp
generator network in the main task and the domain classifier
in the auxiliary task have disparities in training difficulties.
The domain classifier tends to converge much faster than the
grasp generator, resulting in a lack of gradient flow from the
domain classifier to the feature extractor. Consequently, feature
alignment across domains cannot be achieved.

To this end, in this paper we propose a novel Grasp Pose
Domain Adaptation Network (GPDAN) for 6-DoF grasp pose
detection. The point clouds from the source and target domains
are first mixed into a single cloud where the geometric features
from two domains are fused. Then, for each point in the mixed
cloud, a domain classifier is applied to classify which domain
the point comes from, to iteratively align the geometric fea-
tures in these two domains through self-supervised adversarial
training. The proposed GPDAN has the potential to reduce
the need for expensive data collection and labeling in real
world, which is of great value in robotic applications. The
contributions of this paper are summarized as follows:

• A novel Grasp Pose Domain Adaptation Network (GP-
DAN) for improving the performance of 6-DoF grasp
pose detectors trained in simulation and deployed in real-
world environments.

• A point cloud mixture and feature fusing strategy along
with the point-wise domain classifier to promote the
feature alignment across domains through adversarial
training.

• Experimental results show that our proposed method is
able to significantly improve the performance of the grasp
detectors when deployed in real world.

II. RELATED WORK

A. Grasp Pose Detection

Grasp pose detection using a parallel gripper has been
extensively studied for decades. Early works, such as Dex-
Net [18], introduced deep learning to this field. One line of
this research focuses on 3-DoF grasp pose detection [19]–[21]
which predicts the 2D grasp position and the rotation angle
on the image plane, where the grasps are perpendicular to
it. However, due to the constraint of degrees of freedom, a
large proportion of feasible grasp poses is neglected, which
restricts the flexibility of grasp execution. The other line of
work is 6-DoF grasping [3], [22], [23], which predicts the
grasp position and orientation in 3D space. 6-DoF grasping
offers more flexible and comprehensive grasps that can be
executed in real world. However, the enormous SE(3) search
space poses significant challenges for 6-DoF grasp detection.

Most state-of-the-art grasp pose detection methods are
trained in a supervised manner which necessitates a large
quantity of labeled training data. Therefore, simulation data
is often preferred due to its convenience and low cost of
collection. However, due to the domain gap, model trained
with simulation data may experience significant degradation in
performance when applied to the real world. To this end, this
paper proposes a novel domain adaptation method for grasp
pose detection to reduce the negative impacts of the domain
gap on model performance.

B. Self-Supervised Domain Adaptation

Sim-to-real DA aims to improve the performance of the
model trained with simulation and deployed in the real world,
which has been studied in various applications such as object
detection [19], [24] and pose estimation [25]. Discrepancy-
based methods aim to minimize the distribution differences
between features in the source and target domains. The dis-
tribution differences are usually measured using distribution
loss functions such as KL divergence [24] and Maximum
Mean Discrepancy (MMD) [19]. However, these methods
overlook the differences in feature patterns across domains,
which are crucial in grasp pose detection. Reconstruction-
based methods use GANs to reconstruct the data input in a
self-supervised manner. While reconstruction-based methods
have shown success in tasks such as segmentation [11],
classification [26], and image translation [27], these methods
may not be suitable for grasp pose detection due to the
geometry-sensitive nature of the task. Grasp pose detection
requires to capture fine geometric details, which GAN-based
reconstructions may not adequately provide. Adversarial-based
methods employ domain classifiers to encourage the feature
extractors to extract similar features from both source and
target domains [17], [28], [29]. However, the adversarial tasks
may lead to totally opposite update directions to the main
task of the network, resulting in oscillation or even divergence
in training. In this paper, we propose a point cloud mixture
and feature fusing strategy along with the point-wise domain
classifier to promote the feature alignment across domains
through adversarial training. With the smoother gradients from
the feature fusion module in the two domains, the challenges
of adversarial training such as gradient vanishing and mode
collapse can be avoided.

C. Domain Adaptation in Robotic Grasping

DA methods have also been extensively studied in grasp
detection. Previous work on DA for robotic grasping has
mostly focused on planar grasp detection, which is much easier
than 6-DoF grasp detection. Bousmalis et al. [7] and Jing et
al. [30] generated synthetic images or feature maps from one
domain to the other to align the two domains so that a unified
grasp pose detector can anticipate the training process. Wang
et al. [19] extracted scene features from RGB-D images in both
source and target domains for grasp detection and aligned them
using the MMD loss with a unit Gaussian distribution. Zhu et
al. [31] proposed a confidence-driven mean-teacher network
that utilizes a teacher network trained on source data in a
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supervised manner to provide pseudo-labels for data in the
target domain, which are then used to fine-tune the student
network. To the best of our knowledge, few work has been
focused on domain adaptation for 6-DoF grasp pose detection.
In this paper, we combine domain adaptation for point cloud
and 6-DoF grasp pose detection in a unified framework where
the smooth training of both tasks can be ensured.

III. METHOD

This paper addresses the challenge of improving the per-
formance of 6-DoF grasp pose detection in the real-world
using only labeled grasps from simulations. Specifically, given
labeled point cloud (Ps,Gs) from simulation and unlabeled
point cloud Pt from the real world, where Ps and Pt are the
point clouds from the source and target domains and Gs is the
ground truth grasp labels from the source domain, the objective
is to learn feature representations that are effective for 6-DoF
grasping in both domains. In this paper, we propose a novel
method called the Grasp Pose Domain Adaptation Network
(GPDAN) to learn domain invariant features across domains.

A. Point Cloud Scaling

The dimensions of the objects in the scenes, as well as the
scales of the point clouds may vary greatly across different do-
mains. Thus, the grasp pose detector will produce ambiguous
grasp predictions even for similar geometric features across
domains. Here, we propose a point cloud scaling strategy to
align the scales of the point clouds from different domains,
which helps improve the generalization of the grasp prediction.

Given a point cloud P ∈ RN×3 which consists of N points
under the camera coordinate, a scale factor α is first uniformly
sampled from the range [αmin, αmax]. In order not to change
the relative poses between points in the point cloud and the
camera coordinate, the scaling procedure is carried out in the
coordinate system of the point cloud.

Suppose the center of the point cloud P is xc, for each
point p ∈ P, the corresponding point p′ in the scaled point
cloud P′ is obtained as:

p′ = αp+ (1− α)xc. (1)

Along with the scaling of the point clouds, the ground truth
grasp labels should also be scaled accordingly. For each grasp
pose ggt ∈ SE(3) with finger width w, the orientation in
the scaled grasp pose g′gt is not changed, while the center
coordinate of the parallel gripper x′

g is calculated using eq.
(1) with the new finger width w′ = αw.

B. Domain Invariant Feature Learning

The architecture of GPDAN is shown in Fig. 2. Our
network consists of three blocks: feature extraction, grasp
pose detection for the main task and self-supervised domain
classification for the auxiliary task. The objective is to learn
domain invariant features which can be generalized across
simulation and real-world environments.

The main task of our proposed GPDAN is to detect feasible
6-DoF grasp poses from a partially observed point cloud in

cluttered scenes. The main task is trained in a supervised
manner. Given a point cloud Ps ∈ Ps with its ground
truth grasp labels Gs

gt ∈ Gs, the feature extractor Ψfe first
extracts the local geometric features of the point cloud, then
a grasp pose detector Ψgp takes these features as inputs and
outputs the predicted grasp poses Gpred in the scene, i.e.,
Gpred = Ψgp (Ψfe (P

s)).
The main task of GPDAN is trained with the grasp loss

Lg

(
Gpred,G

s
gt

)
, which back propagation is performed to

obtain feasible grasp poses for the input scenes. Here, the
discrepancy between grasp poses is measured as the average
closest point distance (ADD-S) between the corresponding
five control points as in [32]. There are many alternatives for
the feature extractor Ψfe (e.g. [33]–[35]) and the grasp pose
detector Ψgp (e.g. [2], [32], [36]). We use PointNet++ network
[37] as the feature extractor and VGPN [32] as the grasp
pose detector in this paper. It should be noted that the feature
extractor is shared across domains. Moreover, it is shown in
experiments that the proposed GPDAN can be applied along
with various choices of grasp pose detectors.

An auxiliary self-supervised domain classification task is
additionally designed in GPDAN. Taken randomly and in-
dependently selected point cloud Ps and Pt as inputs, the
shared feature extractor Ψfe samples a subset of points
Xs,Xt ∈ RM×3 consisting of M points from each point
cloud and extracts their local features Fs,Ft ∈ RM×C , where
C is the channel number. The features are then fed into the
self-supervised domain classification module, in which the two
point clouds are mixed together. For each point in the mixed
cloud, the domain classifier Ψcls is trained to classify which
domain the point comes from, i.e., to differentiate the extracted
features in these two domains.

During the training process, a Gradient Reversal Layer
(GRL) [14] is applied to reverse the sign of the gradients from
the domain classification module. Through GRL layer, the
weight parameters in Ψfe are instead adjusted to maximize the
domain classification loss to learn domain invariant features
which are difficult to differentiate between the source domain
and the target domain, through which the geometric features
in these two domains are aligned.

In the process of point cloud mixture, two point clouds
Xs,Xt along with the features Fs,Ft are stacked into a single
mixed point cloud Pm = (Xm,Fm) with Xm ∈ R2M×3 and
Fm ∈ R2M×C , as shown in Fig. 3:

Xm = Xs ⊎Xt,Fm = BNs (Fs) ⊎ BNt
(
Ft

)
, (2)

where BNs and BNt are batch normalization modules for the
source and target domains, respectively. The binary domain
label Y ∗ ∈ {0, 1}2M is also generated to indicate the source
or target domain of each point in the mixed cloud. Through
point cloud mixture, the domain classifier is able to exploit
point clouds and geometric features from both domains si-
multaneously.

However, there may still be significant differences in the
geometric features between different domains, which the do-
main classifier is able to classify the points from source/target
domain easily. In this case, the domain classification loss Lcls

will soon approach to zero at the beginning of the training
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Fig. 2. The architecture of our proposed GPDAN. Point clouds from both source and target domains are first input to a shared feature extractor to obtain the
feature vectors. The features from source domain are then fed into the grasp pose detector to train the main task in a supervised manner. In the self-supervised
domain classification module, the features from both domains are mixed and fused to perform point-wise domain classification as the auxiliary task, where
feature alignment across different domains is achieved through a gradient reversal layer (GRL).
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Fig. 3. The process of point cloud mixture. Point clouds from the source
and target domain are stacked together at their original positions. Their corre-
sponding feature vectors are also stacked together after batch normalization.

process. As a result, no gradient can be obtained from the
domain classifier to the feature extractor. Consequently, the
features from the source and the target domains are not aligned
which the role of the self-supervised domain classification is
negligible.

To this end, a feature fusion module Ψfu is proposed to
further fuse features in the mixed cloud. With this feature
fusion module, the feature of each 3D point is able to fuse
features from other points that comes from two different
domains. Therefore, the discrepancy between features of two
domains can be reduced while the gradients from the feature
learning are maintained during back propagation.

In the feature fusion module, a set abstraction module [37]
Φsa is used to fuse the local features from both domains in
Pm with its spatially neighboring points, in order to prevent
the domain classifier from converging too quickly in the early
stages of training. Φsa first samples S points Pm

smp from
Pm using the farthest point sampling. The features of these
sampled points are then fused together. The corresponding
domain labels Y ∗

smp for Pm
smp are also generated using Y ∗ and

the sample indices. Furthermore, a self-attention module [38]
Φatt is used to fuse similar features in Pm. The self-attention
module enables uniform optimization of similar geometric
features across domains. By concatenating features obtained
from Φatt and Φsa, we can obtain the features from the feature
fusion module Ψfu, i.e. Ψfu = Φatt ◦ Φsa. Through the

feature fusion module, the discrepancy between features across
domains can be effectively reduced.

The final part of the self-supervised domain classification
module is the domain classifier Ψcls which is built by several
fully connected layers. The domain classification is treated as a
two-class classification task. The domain classification module
takes the fused D-dimensional features Fmerge ∈ RS×D from
Ψfu as input, and outputs the predicted domain labels Ŷ ∈
RS×2. A cross entropy classification loss Lcls is then obtained
with the binary label Y ∗

smp through which back propagation
and feature alignment across domains can be achieved. The
self-supervised domain classification branch is represented as:

Ŷ = Ψdc

(
GRL ◦MIX

(
Ψfe (P

s) ,Ψfe

(
Pt

)))
, (3)

where Ψdc = Ψcls ◦ Ψfu is the self-supervised domain
classification module and MIX is the process of the point
cloud mixture.

C. Iterative Training

The main task and auxiliary task are trained iteratively to
align geometric features in the source and target domains
which are suitable for 6-DoF grasping. The training process
is shown in Algorithm 1. It is noted that we use a point-wise
domain loss in the domain classification module instead of
predicting the domain class of the whole point cloud. The
point-wise loss produces much smoother gradients compared
with using the whole point cloud. In this way, the challenges
of adversarial training such as gradient vanishing and mode
collapse can be avoided.

IV. EXPERIMENTS

We train our GPDAN network using the ACRONYM dataset
[39] as the source domain and the GraspNet-1Billion dataset
[36] as the target domain. The ACRONYM dataset con-
tains over 10, 000 scenes collected in simulation while the
GraspNet-1Billion dataset contains 190 real-world scenes.

Our GPDAN network is trained with 70 epochs on a
single Nvidia RTX3060 GPU which takes about 35 hours to
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Algorithm 1 Iterative Training for Grasp Feature Domain
Adaptation
Require: Source point cloud with ground truth grasp labels
(Ps,Gs), Target point cloud Pt, Network Ψfe, Ψgp, Ψdc

for Ps in Ps, Gs
gt in Gs, Pt in Pt do

1. For grasp pose detection:
Gpred = Ψgp (Ψfe (P

s))
lg = Lg

(
Gpred,G

s
gt

)
wgp ← wgp − η∇wgp lg , wfe ← wfe − η∇wfe

lg
2. For self-supervised domain classification:
Pm, Y ∗ = MIX (Ψfe (P

s) ,Ψfe (P
t))

Ŷ , idx = Ψdc (P
m)

Y ∗
smp = INDEX(Y ∗, idx)

lcls = Lcls

(
Ŷ , Y ∗

smp

)
wdc ← wdc − η∇wdc

lcls, wfe ← wfe + η∇wfe
lcls

end for

TABLE I
RESULT OF ABLATION STUDIES

ACRONYM (source) GraspNet-1Billion (target)
SR Recall SR Recall

GPDAN 0.807 0.618 0.699 0.327
w/o adaptation 0.824 0.636 0.559 0.273

scene cls. 0.833 0.573 0.597 0.301
w/o fusion 0.820 0.602 0.568 0.280
w/o scaling 0.813 0.527 0.506 0.178

complete. The range of the point cloud scaling α is set to
[0.5, 1.0] for ACRONYM dataset and [0.9, 1.5] for GraspNet-
1Billion dataset. The performance of GPDAN for grasp pose
detection is evaluated in both simulation and real-world exper-
iments. The performance of grasp pose detection approaches
without domain adaptation is also evaluated to indicate the
effectiveness of GPDAN.

A. Simulation Experiments
The simulation experiments are conducted in PyBullet [40].

A Robotiq-140 gripper is placed on each predicted grasp
pose. We select 100 scenes from ACRONYM dataset and
45 scenes from GraspNet-1Billion dataset as the testing set
in the simulator. All the objects in the scenes are assumed
to have a uniformly distributed density of 1000kg/m3 and
surface friction coefficient of 1.0. The success rate (SR) of the
top-scored 5000 grasp predictions in each experiment and the
recall of the ground truth grasps are evaluated in experiments.
A predicted grasp pose is considered successful if the gripper
can successfully grasp the object and the object is still in
the gripper after shaking it quickly with an amplitude of 45
degrees for 2 seconds. Similar to [2], [32], a ground truth
grasp label is considered to be covered if any successful grasp
prediction lies within 2cm from the position of the label.

1) Ablation Studies: Ablation studies are conducted by
removing modules in GPDAN to investigate the effectiveness
of each module. The remaining parts of the network are trained
with the same training data and experimental configurations.
The results of ablation studies are shown in Tab. I.

In Tab. I, the “w/o adaptation” corresponds to the perfor-
mance of a grasp pose detector trained with the same scaled

point cloud data as GPDAN without domain adaptation. We
use VGPN [32] as the grasp pose detector in all experiments. It
is observed that the domain adaptation in GPDAN significantly
improves the success rate (14%) and recall (5%) of VGPN on
the target domain. There is a slight decrease in performance
(1.7% on SR) of GPDAN on the source domain compared
with VGPN, which can be attributed to the inherent differences
across domains in object shapes, noise patterns and etc.

The “scene cls.” term corresponds to the performance by
predicting the domain class of the individual point cloud
from the source/target domain. That is, we extract the global
features of the whole source/target point cloud and use the
domain classifier to identify which domain the scene point
cloud belongs to, without point cloud mixture and feature
fusion. This strategy is widely used in domain adaptation
[24], [41]. Since the domain classifier converges quickly at the
beginning of the training, which makes the adversarial learning
strategy do not contribute much to the feature alignment across
domains. The performance on the target domain does not
significantly improve compared to the result without domain
adaptation.

The “w/o fusion” term corresponds to the performance
of GPDAN without feature fusion. The point-wise domain
classifier also converges quickly due to the large differences
between features in two domains. Without feature fusion, the
adversarial learning strategy is also negligible. The network
achieves similar performance as the supervised training of
VGPN using data from the source domain.

It is noted in Tab. I that without point cloud scaling, the
point-wise domain classification can not work well either.
The dimensions of the objects strongly influence the extracted
geometric features. The domain adaptation is unable to bridge
the gap between features across domains, which results in even
worse performance on the target domain compared with the
performance without adaptation.

2) Comparative Experiments: The results of comparative
experiments are shown in Tab. II, where AC and GN are
ACRONYM and GraspNet-1Billion datasets, respectively. “AC
→ GN” indicates the domain adaptation from ACRONYM
dataset to GraspNet-1Billion dataset and vice versa. “CGN”
stands for the Contact-GraspNet [2]. “l.b. S” stands for the
lowest grasp score obtained from the top-scored 5000 grasp
predictions, which lies between [−1, 1] as defined in [32]. The
higher the score, the more confident is the grasp prediction.

In all experiments, the point cloud scaling module is used
to scale all the point clouds at the training phase. In addi-
tion to success rate and recall of the top-scored 5000 grasp
predictions, the success rates of the highest 500 grasps are
also evaluated in experiments. Since only the top-scored grasps
are executed by the robot, SR (500) indicates if the highly-
confident grasps predicted by the detector will succeed in
grasping the objects.

It is observed in Tab. II that with domain adaptation from
AC to GN, the SR of our GPDAN on the target domain is
14% higher than that of VGPN and 17.3% higher than that
of Contact-GraspNet. The SR drops slightly from 82.4% to
80.7% on the source domain, which implies that GPDAN is
able to improve the performance of grasp detection on the
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TABLE II
RESULT OF COMPARATIVE EXPERIMENT

Method (Dataset) ACRONYM GraspNet-1Billion
SR SR (500) Recall l.b. S SR SR (500) Recall l.b. S

GPDAN (AC → GN) 0.807 0.934 0.618 0.67 0.699 0.946 0.327 0.51
VGPN [32] (AC) 0.824 0.956 0.636 0.71 0.559 0.914 0.273 0.49
VGPN [32] (AC w/o scaling) 0.820 0.961 0.625 0.69 0.482 0.791 0.213 -0.41
CGN [2] (AC) 0.786 0.836 0.512 -0.61 0.526 0.758 0.279 -0.84
CGN [2]+DA (AC → GN) 0.753 0.802 0.607 -0.76 0.584 0.782 0.257 -0.62
VGPN [32]+UDF (AC → GN) 0.816 0.946 0.623 0.70 0.687 0.886 0.335 0.44
VGPN [32] (GN) 0.501 0.806 0.188 0.59 0.775 0.832 0.438 0.72
GPDAN (GN → AC) 0.607 0.835 0.227 0.52 0.753 0.801 0.421 0.70

S >0.78S >0.78

S >0.61S >0.61

VGPN

GPDAN

S >0.61S >0.61

S >0.20S >0.20

ACRONYM Dataset

S > 0.58S > 0.58

S > 0.62S > 0.62

S >0.80S >0.80

S >0.84S >0.84

GraspNet-1Billion 
Dataset

Fig. 4. Examples of grasp pose predictions of GPDAN (the first row) and VGPN (the second row). Each column shows the prediction results of the same
scene. The first two columns are the results in the source domain (ACRONYM) while the last two columns are results in the target domain (GraspNet-1Billion).
Only the predicted grasps with scores which are higher than a threshold are shown. It is observed that GPDAN and VGPN achieve comparable performance
on the source domain while GPDAN is able to generate more feasible and comprehensive grasp poses on the target domain.

target domain without significantly affecting the performance
on the source domain. Moreover, it is observed that the lowest
grasp scores obtained on the target domain is larger than that
of VGPN, which indicates that the network is more confident
about the grasp predictions since the grasp detector is better
adapted to the features in the target domain. Examples of grasp
pose predictions of GPDAN and VGPN are shown in Fig. 4. It
can be observed that GPDAN and VGPN achieve comparable
performance on the source domain while GPDAN is able to
generate more feasible and comprehensive grasp poses on the
target domain.

To evaluate the generalization ability of the proposed adver-
sarial training strategy, we replace the VGPN with CGN. Other
parts of the network is trained with the same configurations
as GPDAN. The results are indicated by “CGN + DA (AC →
GN)” in Tab. II. It can be seen that the success rate on the
target domain is also higher than the original CGN (“CGN
(AC)”), which shows that our proposed adversarial training
strategy can be generalized to different grasp pose detectors.

Furthermore, to evaluate the effectiveness of our proposed
point cloud mixture strategy and feature fusion, we replace the
self-supervised domain classification module in GPDAN with
a geometry-aware unsigned distance field (UDF) prediction
strategy similar to [42], i.e. the Ψdc in GPDAN is replaced
with a UDF prediction module in this network. Due to the

ambiguity of the global features of the entire point cloud in a
cluttered scene, the performance of VGPN+UDF network on
the target domain is inferior to that of GPDAN. Moreover, the
UDF prediction strategy requires significantly more computing
resources than GPDAN since it has to uniformly sample a set
of points in the whole workspace and calculates the distances
to the closest surface on the object.

In addition, we swap the source and target domains and
retrain our GPDAN, i.e. the domain adaptation is from the
GN dataset to the AC dataset. The results are indicated by
“GPDAN (GN → AC) in Tab. II. The 11% increase in the
success rate on the AC dataset compared to VGPN (GN)
demonstrates that our method can be applied to a variety of
dataset sources and has well generalization ability.

B. Robot Experiments

Physical experiments on a real robot are performed to show
the effectiveness of our method in real-world environments.
The robot platform we use in experiments consists of an
AUBO-i5 6-DoF robotic arm, a DH-Robotics AG-95 two-
finger electrical gripper attached to the end of the arm as the
end effector, and an Intel RealSense L515 RGB-D camera
placed on the top of the workspace, as shown in Fig. 5. With
a point cloud containing 20000 points, each forward pass takes
about 0.2 seconds on a single Nvidia RTX3060 GPU.
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Fig. 5. Experimental settings of the real-world experiments. (Left) Multiple
objects are stacked in a pile on the table. An RGB-D camera is placed above
the workspace to get the observations of the scene. (Right) The robot picks
an object and places it to the drop position.

TABLE III
RESULTS OF ROBOTIC EXPERIMENTS

SR F.A. #Attempts
GPDAN 0.847 0.745 59
VGPN [32] 0.774 0.661 62
CGN [2] 0.719 0.561 57
Method in [36] 0.707 0.517 58

Similar to [32], the point clouds of the scenes consist of
5-10 stacked objects, which are then fed into GPDAN and
grasp pose predictions are generated. Different from [32], we
do not use object segmentation in GPDAN and VGPN in our
experiments. For each attempt, the grasp prediction with the
highest score is performed to grasp and place the object to the
drop position. At most 2 grasps are executed for each object,
after which the success rate of the pick-and-place process is
recorded.

The result of real-world experiments is shown in Tab. III.
SR is the success rate. FA is the first attempt success rate
on each object. Our GPDAN outperforms other methods by
over 7.3% on success rate and 8.4% on the success rate of
the first attempt for each object. The result shows that the
performance of GPDAN is much better compared with the
performance of grasp pose detectors trained in simulation and
directly deployed in real world environments. Compared with
VGPN, the failures caused by the slip of the objects in the
process of grasping are reduced.

V. DISCUSSIONS

To explore the differences between features extracted by
the feature extractor of GPDAN and VGPN, we apply Grad-
CAM++ algorithm [43] on point clouds to show the influences
of the geometric features of different locations on the scores
of grasp predictions, i.e. the grasp capability of features on
different locations. For any point at position xi in the given
point cloud, with its corresponding feature vector fi ∈ F
output by Ψfe, the grasp capability score ri at this point is

GPDAN

VGPN

ACRONYM GraspNet-1Billion 0

1

Fig. 6. The visualization of the grasp capability scores of features in different
domains from GPDAN and VGPN.

calculated as follows:

αi =
(∇fi s̄g)

2

2 (∇fi s̄g)
2
+
∑

j fj
(
∇fj s̄g

)3 ,
w =

∑
i

αi · ReLU (∇fi s̄g) ,

ri = wT fi,

(4)

where s̄g is the mean score of predicted grasps, ∇fi s̄g ∈
RM×C is the gradient of s̄g on fi. The results on the source
and target domains are shown in Fig. 6.

It can be observed from Fig. 6 that GPDAN produces a
wider range of regions with high grasp capability scores com-
pared with VGPN, indicating that GPDAN takes into account
of more information around the target objects when generating
grasps. By incorporating information from a wider neighboring
region, GPDAN is able to gather scene information such as
the noise patterns and differences in object arrangements for
alignment of the features across domains for the main grasping
task. In this way, the grasp detector is able to achieve similar
performances on both domains.

VI. CONCLUSION

In this paper, a novel domain adaptation method GPDAN is
proposed for 6-DoF grasp pose detection. By leveraging the
auxiliary task of point-wise self-supervised domain adaptation
with point cloud mixture strategy in an adversarial training
manner, our approach has significantly improved the perfor-
mance of grasp detection on the target domain. The point cloud
mixture and feature fusion strategy enable the alignment of
similar geometric features across domains. Experimental re-
sults demonstrate that our proposed method outperforms state-
of-the-art grasp pose detection approaches that are trained
in a supervised manner as well as other domain adaptation
methods, highlighting the effectiveness of our approach for
improving the performance of 6-DoF grasp pose detectors
trained in simulation and deployed in real-world environments.
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