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Dear Editor,

This  letter  aims  to  establish  a  privacy-preserving  distributed  opti-
mization algorithm by combining the consensus iteration by subgra-
dients, which not only enables the privacy preservation of optimiza-
tion  but  also  guarantees  the  optimality  of  solutions  with  some  bias
bounds.

In the setting of distributed optimization, a network of nodes, hav-
ing  their  own  objective  functions  depending  on  the  global  agents’
state,  would  like  to  distributedly  optimize  the  sum  of  all  objective
functions  through  the  local  agent-to-agent  information  change.  In
comparison  with  the  centralized  methods,  such  as  gradient  search
approach,  iteration  method  and  even  the  intelligent  approaches,  the
distributed  approaches  are  more  robust  with  respect  to  the  distur-
bances,  and  are  more  flexible  and  scalable.  Besides,  the  centralized
methods require a center to calculate the global system information at
each iterating step, which may harm the robustness of the considered
systems like grids and lead to the restriction of flexibility and scala-
bility [1]–[3].

The recently rapid development on the research of multi-agent sys-
tems, specially the study of consensus problem, greatly induces sev-
eral consensus-based distributed optimization algorithms. To just list
a  few, Nedic and Ozdaglar  [4]  developed a subgradent  algorithm to
optimize the total  cost  function over a network, where the objective
function can be non-smooth. In their setting, the optimization admit-
ting  certain  inaccuracies  subject  to  iteration  stepsizes  and  subgradi-
ent bounds can be realized through minimizing each agent’s own cost
functions. After that, this algorithm was improved into the broadcast-
based  algorithm  named  subgradient-push  algorithm  [5].  Moreover,
by resorting to the leader-follower protocol,  a leader was set  to col-
lect and maintain the error message with respect to the optimal solu-
tion, as a result, the eventual consensus vector is exactly the optimal
solution of the considered optimization problem [6]. After that, based
on the two-level structure, the leader in the above cited work can be
removed [7].

In  this  letter,  we  shall  consider  a  multi-agents-based  distributed
convex  optimization  problem,  where  the  objective  functions  can  be
non-smooth. However, due to almost of the aforementioned methods
are based on the multi-agent-consensus, their setup, no matter on the
undirected or  directed and time-varying or time invariant  communi-
cation  rules,  requires  each  agent  to  communicate  the  state  informa-
tion with others. This may result in serious privacy disclosure prob-
lems. The one is that the direct message communications breach the
privacy of certain individuals if their state values contain some sensi-
tive information, and the other is that the accuracy information passes
may be vulnerable to eavesdroppers that attempt to steal the informa-

tion by tapping communication channels. For instance, as claimed in
[8], the smart grids linked through such direct message communica-
tions  may  be  tender  for  adversaries  to  attack  the  grid  system effec-
tively.  Furthermore,  in the case that  agent privacy variables are dis-
closed, the adversaries may inject the optimal attacks which result in
the  increase  of  total  generation  cost,  and  damage  the  entire  power
systems.

Until now, there have been a certain amount of works focusing on
the privacy-preserving distributed optimization algorithms.  The first
typical approach is the differential privacy defined in [9], [10]. As an
unavoidable  result  of  noises  injection,  the  convergence  accuracy  of
optimization algorithm would be compromised. Thus, there would be
a  tradeoff  between  optimality  and  privacy  level.  The  observability
design approaches were proposed in [11], [12] such that the privacy
information is not available to nonneighboring agents but are unable
to deal with eavesdroppers who can eavesdrop all information in the
communication  networks.  However,  these  approaches  can  only
address  the  undirected  communication  networks,  and  would  be  dis-
abled if the communication topologies would be directed.

The  contributions  of  this  work  can  be  summarized  as  follows:  1)
We shall  establish a subgradient algorithm based on the multi-agent
consensus,  wherein  all  agents  only  know  the  noises-injected  state
information of their in-neighbors. Thus, the most excellent improve-
ment of these results in comparison to [4] is the ability to protect the
privacy  of  individuals.  2)  Compared  with  the  distributed  gradient-
based algorithms in  [5],  the  subgradient  approach can deal  with  the
convex non-smooth objective functions.

:

Problem formulation: Here,  we shall  be focusing on the follow-
ing optimization problem with total demands constraints, named Eco-
nomic Dispatch Problem
 

min
gi∈Ωi

m∑
i=1

fi(gi), Ωi = [g−i ,g
+
i ], s.t.

m∑
i=1

gi = D (1)

gi
fi : R+→ R+

Ωi
g−i g+i ∑m

i=1 gi = D
fi

gi∑m
i=1 gi ≥ D fi i = 1,

2, . . . ,m
∑m

i=1 g−i ≤ D ≤∑m
i=1 g+i

where m is the number of individual nodes (i.e., generators), D is the
total demand of powers that need to be generated by this system,  is
the  power  generated  by  agent i,  and  accordingly  sim-
ply denotes the local cost function of agent i to generate such amount
of  power.  The interval  is  the  upper  and lower  bounds of  powers
yielded by individual i, wherein  and  are respectively the lower
and  upper  power  bound  of  agent i.  Finally,  is  the  con-
straint of total demands. Noting that  is increased with respect to the
variable  as  usual,  the  demand  constraint  in  (1)  is  equivalent  to

 in  the  almost  of  cases.  Moreover,  functions , 
, are always convex, and the inequality 

guarantees  the  existence  of  the  optimal  solution  subject  to  the  total
demand assumption.

Ki(λ) =mingi∈Ωi fi(gi)−λ(gi −Di)
Di

∑n
i=1 Di = D

By  defining  with  arbitrarily
decomposed  satisfying , we can equivalently solve the
following dual problem of problem (1) by utilizing Lagrangian-mul-
tiplier-based conversion:
 

max
λ∈R+

m∑
i=1

Ki(λ) (2)

λ ∈ R+ ∑n
i=1 Di = D

Di

where  is  the  so-called  Lagrangian  multiplier  subject  to  the
demand  constraint .  One  should  note  that  the  constants

 here  are  just  the  virtual  demands  which  can  be  arbitrarily
assigned.

g∗i
λ∗

Remark 1: We finally claim how to obtain the optimal solution 
to problem (1) from the optimal solution  of problem (2).

Ki(λ) gi
∂Ki(λ)
∂gi
=

∇ fi(g∗i )−λ∗ = 0 g∗i =min
{
max
{
(∇ fi)−1(λ∗),g−i

}
,g+i
}
.

Differentiating  function  subject  to ,  we  have  that 
,  that  is,  There-

fore, we also need the following assumptions:

K∗
Assumption  1:  As  for  optimization  problem  (2),  we  assume  its

optimizing value is finite as , and accordingly the optimizing solu-
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λ∗ λ∗ = {λ ∈ R∗| ∑m
i=1 Ki(λ) = K∗}tion is denoted by set  with .

fiAssumption 2: Cost functions  are locally differentiable around a
small neighbor domain of at least one optimizing solution.

V = {1,2, . . . ,m}
tk λi(k)

tk+1
λi(k+1)

( j, i) ∈ Ek (V,Ek)
[tk, tk+1)

λi(t+1)

Given  the  node  (i.e.,  agent)  set ,  for  each  agent i,
the state of agent i at time instant  is denoted by , which is an
estimate of agent i for solution λ . Then, at the next time instant ,
the state of agent  is updated in accordance with the states of
its  in-neighbor  agents j,  which  is  achieved  through  a  directed  link

,  where  is  the  communication  topology  during  the
time  interval .  Specifically,  the  updating  state  information

 combines its self state and in-neighbors’ information as fol-
lows:
 

λi(k+1) =
m∑

j=1

wi
j(k)λ̄ j(k)−αi(k)∂Ki (k) (3)

wi(k) = (wi
1(k),wi

2(k), . . . ,wi
m(k)) ∈ Rm

tk wi
j(k)

(tk, tk+1) ∂Ki (k) Ki λi(k)

where  stands  for  the  weight
vector  that  agent i holds  and  assigned  with  its  neighbors  at  time
instant , and each component  therein denotes the weight that
agent i assigns  to  agent j,  when  the  information  is  received  in  time
interval .  is the subgradient of function  at .

λ̄ j(k)
o j(k) ∈ [−ō j(k),+ō j(k)]

λ̄ j(k) = λ j(k)+o j(k)

Specially,  to  protect  the  privacy  of  individuals,  state  shared
by  agent j is  processed  by  adding  a  noise 
arbitrarily, i.e., . Then, we shall prove that, given
the  following  two  assumptions,  such  distributed  protocols  can  seek
the optimal solution without disclosing privacy.

Assumption 3: Each agent i has at least one honest out-neighbors.∑∞
k=0 ōi(k) < +∞, 0 < ōi(k) ≤ ōi(s), ∀k > s > 0.

Assumption 4: The bounds for noises satisfy the following condi-
tions: 

wi
j(k)Finally, we give some assumptions for assigned weights .

κ ∈ (0,1) wi
i(k) ≥ κ wi

j(k) ≥ κ ( j, i) ∈ Ek

wi
j(k) = 0 wi(k)

∥wi(k)∥1 = 1
W(k) = (wi

j(k))m×m

Assumption 5: The weight rule in (3) satisfies that 1) There is a pos-
itive  number  such  that ,  with ,
and ,  otherwise.  2)  The weight  vector  is  a  stochastic
vector  for  any k and i,  i.e., .  3)  The  weight  matrix

 is symmetric.
E∞ = {(i, j)| ∀M ∈ R+, ∃ β >

M, s.t. (i, j) ∈ Eβ}. (V,E∞)
Assumption  6:  Denote  the  edge  set 

 We  assume  that  the  directed  graph  is
strongly connected.

(V,E∞)
N ≥ 1 (i, j) ∈ E∞

(i, j) ∈ Ek ∪Ek+1∪ · · ·∪Ek+N−1 k ≥ 0

Assumption 7: Consider the directed graph . There exists an
positive integer  such that any directed edge  satisfies
that  holds for all .

W(k : s) =W(s)W(s+1) · · ·W(k−1)W(k) W(k,k) =W(k)
s ∈ N+ k ∈ N+ k ≥ s
W(k, s) [W(k : s)]i =W(s)W(s+1) · · ·W(k−1)×

W(k)wi(k) (i, j) W(k, s)
[W(k : s)]i

j = [W(s)W(s+1) · · ·W(k−1)W(k)wi(k)] j

Main results: Given the following notation to record matrix prod-
uct:  with ,
for all  and  with , it leads to that the i-th column of
matrix  is denoted by 

,  and  the -th  entry  of  matrix  is  given  by
.  In  this  setup,

iteration (3) can be simplified as
 

λi(k+1) =
m∑

j=1

[W(k : s)]i
jλ

j(s)+
k∑

r=s

m∑
j=1

[W(k : r)]i
jo j(r)

−
k∑

r=s+1

m∑
j=1

[W(k : r)]i
jα

j(r−1)∂K j (r−1)−αi(k)∂Ki (k). (4)

W(k,r)

W(k,r) k→ +∞

From above iteration, we see that matrix  occupies all three
items  of  right  hand  side.  We  therefore  specially  pay  attention  on
study the convergence of matrix  as , which has been
established in [4].

Lemma 1: If Assumptions 5–7 hold,
W̄(r) W(k : r) k→ +∞

limk→∞W(k : r) =
W̄(k) = (1/m)1T

m1m, ∀r ∈ N+

1)  Limitation  of  matrix  sequence ,  as ,  is
doubly  stochastic  with  the  same  entries,  that  is, 

.
[W(k, s)]i

j 1/m
k→ +∞ i, j = 1,2, . . . ,m∣∣∣∣[W(k : s)] j

i −
1
m

∣∣∣∣ ≤ 2×1+κ−N0

1−κ−N0
× (1− κN0 )

k−s
N0

k ≥ s κ

2) The convergence of  every element  subject  to  is
geometric as  and is uniform with respect to .
Moreover, it holds that . for
all ,  is  defined  in  Assumption  5, m is  the  number  of  agents,

N0 = (m−1)Nand  with the given N in Assumption 7.

αi(k) = α k ∈ N+

Now,  we  proceed  to  study  the  convergence  of  our  subgradient
algorithm. In order to simply the theoretic analysis,  we consider the
constant  stepsize  here,  which  is  a  constant  to  all  agents  at  any time
instant,  that  is, ,  for  all .  Based  on  this  setting,  the
iteration (4) can be
 

λi(k+1) =
m∑

j=1

[W(k : s)]i
jλ

j(s)+
k∑

r=s

m∑
j=1

[W(k : r)]i
jo j(r)

−α
k∑

r=s+1

m∑
j=1

[W(k : r)]i
j∂K j (r−1)−α∂Ki (k). (5)

ῑ∗

Subsequently,  to  consider  a  related “stopped” model,  we  assume
that  each  agent  would  shutoff  calculating  his  subgradient  after  a
finite  iterating  step  bound.  Denoting this  step  threshold  as ,  it  can
be mathematically formalized as follows:
 

∂K j (k) =
{
An arbitrary subgradient at λ j(k), k < ῑ∗

0, k ≥ ῑ∗.
(6)

λi(k)
λi(k)

In  such  setup,  we  utilize  to  represent  the  estimating  state  of
. Combining (6) and (5), the iterating scheme of agents would be

turned to
 

λi(k+1) =



m∑
j=1

[W(k : s)]i
jλ

j(s)+
k∑

r=s

m∑
j=1

[W(k : r)]i
jo j(r)

−α
k∑

r=s+1

m∑
j=1

[W(k : r)]i
j∂K j (r−1)−α∂Ki (k), k < ῑ∗

m∑
j=1

[W(k : s)]i
jλ

j(s)+
k∑

r=s

m∑
j=1

[W(k : r)]i
jo j(r)

−α
ῑ∗∑

r=s+1

m∑
j=1

[W(k : r)]i
j∂K j (r−1), k ≥ ῑ∗.

(7)

limk→+∞ λi(k)
k̄

τ(k̄) = limk→+∞ λi(k).
W(s)

According to Lemma, as k goes infinity, we know that the limita-
tion  exists and only depends on the setting “stopping”
time . Therefore, we can correspondingly set the following notation
to  stand  for  this  limitation:  By  Lemma  1  and
specially noting that matrix  is doubly stochastic, it holds that
 

τ(k̄) =

m∑
j=1
λ j(0)−

ῑ∗∑
r=s

m∑
j=1
α∂K j (r−1)

m
+ lim

k→∞

k∑
r=s

m∑
j=1

[W(k : r)]i
jo j(r).

(8)

lim
k→∞
∑k

r=s
∑m

j=1[W(k : r)]i
jo j(r)

Thereinto,  observing  that  the  first  and  the  third  terms  are  not
affected  by k limits,  we  shall  focus  on  the  second  item  about  the
accumulation  limit ,  whose  positive-
term series hold that
 

lim
k→∞

k∑
r=s

m∑
j=1

[W(k : r)]i
j|o j(r)|

≤ 2× 1+ κ−N0

1− κ−N0
×

m∑
j=1

 lim
k→+∞

 k∑
r=s

(1− κN0 )
k−r
N0 × ō j(r)


 .

ar = (1− κN0 )
k−r
N0 × ō j(r)∣∣∣∣ ar+1

ar

∣∣∣∣ = (1− κN0 )−
1

N0 × ō j(r+1)
ō j(r) < (1− κN0 )−

1
N0 < 1

limk→∞
∑k

r=s
∑m

j=1[W(k : r)]i
j|o j(r)| k→∞

limk→∞
∑k

r=s
∑m

j=1[W(k : r)]i
jo j(r) = ϕ j.

ϕi = ϕ j i, j ∈ {1,2, . . . ,n}

Denote ,  we  consider  the  rate  of  two adja-

cency items as , thus,
the  series  converges  as .
We  define  this  limitation  as 
Here,  we  suppose  that ,  for  any ,  to  simplify
the mathematical notations. Substituting it into (8) yields that 
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τ(k̄) =
1
m

m∑
j=1

λ j(0)+ϕ−α
k̄∑

r=s

 m∑
j=1

1
m
∂K j (r−1)

 (9)

and further implies
 

τ(k+1) = τ(k)− α
m

m∑
j=1

∂K j (k). (10)

λ ∈ RTheorem 1: For any , it holds that
 

∥τ(k+1)−λ∥2 ≤ ∥τ(k)−λ∥2 + 2α
m

m∑
j=1

(∥∂T
K j

(k)∥+ ∥∂τK j
(k)∥)

×∥λ j(k)−τ(k)∥− 2α
m

[K(τ(k))−K(λ)]+
α2

m2

m∑
j=1

∥∂K j (k)∥2. (11)

max1≤ j≤m |λ j(0)| ≤
αR |∂K j (k)| ≤ Q

Theorem  2:  Assume  the  initial  point  satisfies 
 and subgradient holds that . Then, we have

∥τ(k)−λi(k)∥
∥τ(k)−λi(k)∥ ≤ 2αQR1 +ϕ, ∀ i = 1,2, . . . ,m, R1 = 1+ (R+Q)

Q ×
m(1+κ−N0 )

1−κ−N0
×∑k−1

s=0(1− κ−N0 )
k−s−1

N0

1)  There  is  a  uniform  bound  on ,  which  is  given  as
 where 

.
τ̂(k) = 1

k
∑k−1

s=0 τ(s) λ̂i(k) = 1
k
∑k−1

s=0 λ
i(s)2) Let  and . It holds that

 

K(τ̂(k)) ≤ K∗ +
m∥τ(0)−λ∗∥2

2kα
+

4α2QR1 +mα2Q2 +m2ϕ

2α
and
 

K(λ̂i(k)) ≤ K∗ +
m∥τ(0)−λ∗∥2

2kα

+
4α2QR1 +4α2(R1 +1)Q2

2α
+mQϕ+

m2ϕ

2α
.

Finally, we analyze the privacy preserving of our algorithm.

α W(k)
λi o j(s) ∂Ki

Theorem 3: If eavesdroppers know the systems parameters, that is,
the  stepsize  and the  iterating matrix ,  it  cannot  infer  the  pri-
vacy information of any agent, i.e., , , (k).

Computer simulations: As for the experiment setups, the number
of  individual  agents  is  chosen  as  3  for  computation  simplicity,  the
number of samples is selected to be 100, and the maximum of itera-
tion steps is 200.

f (g) =max{gT AT Ag+bT g+
c, d} c = 0.066 d = −0.167

Furthermore, to simulate a real application in smart grid, the cost is
further  modified  by  the  supermum  of  the  quadratic  function  and  a
minimal  constant  cost,  which  is  assigned  by  the  following  ground-
truth non-differentiable cost function as 

, where the coefficients are given as , ,
 

AT A =

 96.640 −3.342 0.349
−3.342 76.557 8.927
0.349 8.927 82.401

 , b =

 0.315
0.950
−0.824


eig(AT A) = [69.769, 88.543, 97.287]

where d is  the  minimal  generating cost.  Furthermore,  we can check
its  positive  semi-definiteness  according  to  its  eigen-values  as

.

10−3,10−6

10−12,10−15

10−9

10−7

The convergence results with different step-sizes are shown in Fig. 1.
It can be found that with over-large step sizes, the objective does not
converge  and  even  oscillate  or  overshoot  (cases  of  step  size

);  With  over-small  step  sizes,  the  objective  will  converge
to local optimum (cases of step size ); Only with appro-
priate step size (case of step size ), the dual objective converges
to  the  global  optimum.  Specifically,  for  the  oscillating  results,  the
hyper-parameters (step size here) need to satisfy certain conditions to
hold for the uniform convergence. When the hyper-parameter attains
a certain threshold, the objective started to convergence. In the exper-
iments, we found the threshold for step size is .
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Fig. 1. The convergence results of the dual objective with different step sizes.
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